Research Article
BibTex RIS Cite
Year 2018, , 1632 - 1647, 05.12.2017
https://doi.org/10.18186/journal-of-thermal-engineering.362048

Abstract

References

  • [1] Polezhaev, J. The transpiration cooling for blades of high temperatures gas turbine. Energ. Convers Manage, 1997, 38, 1123-1133.
  • [2] Trevino, C.; Medina, A. Analysis of transpiration cooling of a thin porous plate in a hot laminar convective flow. Eur. J. Mech., 1997, 2, 245-260.
  • [3] Andoh, Y.H.; Lips, B. Prediction of porous walls thermal protection by effusion or transpiration cooling An analytic approach. Appl. Therm. Eng., 2003, 23, 1947-1958.
  • [4] Cerri, G.; Giovannelli, A.; Battisti, L.; Fedrizzi, R. Advances in effusive cooling techniques of gas turbines. Appl. Therm. Eng., 2007, 27, 692-698.
  • [5] Liu, Y.Q.; Xiong, Y.B.; Jiang, P.X.; Wang, Y.P.; Sun, J.G. Effects of local geometry and boundary conditions on transpiration cooling. Int. J. Heat Mass Tran., 2013, 62, 362-372.
  • [6] He, F.; Wang, J. Numerical investigation on critical heat flux and coolant volume required for transpiration cooling with phase change. Energ. Convers Manage, 2014, 80, 591-597.
  • [7] Huang, Z.; Zhu, Y.; Xiong Y.; Jiang P. Investigation of transpiration cooling for sintered metal porous struts in supersonic flow. Appl. Therm. Eng., 2014, 70, 240-249.
  • [8] Shi, J.; Wang, J. Optimized structure of two layer porous media with genetic algorithm for transpiration cooling. Int. J. Therm. Sci., 2008, 47, 1595-1601.
  • [9] Song, C.H.; Lee, D.Y.; Sung, T.R. Cooling enhancement in an air cooled finned heat exchanger by thin water film evaporation. . Int. J. Heat Mass Tran. 2002, 46, 1241-1249.
  • [10] Leu, J.S.; Jang, J.Y.; Chou, W.C. Convection heat transfer along a vertical heated plate with film evaporation in a non-Darcian porous medium. Int. J. Heat Mass Tran., 2009, 52, 5447-5450.
  • [11] Hsyan, S.M.; Jer, H.M.; Kuang, C.C. A study of the liquid evaporation with Darcian resistance effect on mixed convection in porous media. Int. Commun. Heat Mass, 2005, 32, 685-694.
  • [12] Maity, S. Thermocapillary flow of thin liquid film over a porous stretching sheet in presence of suction/injection. Int. J. Heat Mass Tran., 2014, 70, 819-826.
  • [13] Xin, C.; Rao, Z.; You, X.; Song, Z.; Han, D. Numerical Investigation of Vapor-liquid heat and mass transfer in porous media. Energ. Convers Manage, 2014, 78, 1-7.
  • [14] Sun, Y.; Zhang, L.; Xu, H.; Zhong, X. Flow boiling enhancement of FC-72 from microporous surface in mini channels. Exp. Therm. and Fluid Sci., 2011, 35, 1418-1426.
  • [15] Jiang, P.X.; Yu, L.; Sun, J.G.; Wang, J. Experimental and numerical investigation of convection heat transfer in transpiration cooling. Appl. Therm. Eng.,, 2004, 24, 1271-1289.
  • [16] Liu, Y.Q.; Jiang, P.X.; Jin, S.S.; Sun, J.G. Transpiration cooling of a nose cone by various foreign gases. Int. J. Heat Mass Tran., 2010, 53, 5364-5372.
  • [17] Liu, Y.Q.; Jiang, P.X.; Xiong, Y.B; Wang, Y.P. Experimental and numerical investigation of transpiration for sintered porous flat plates. Appl. Therm. Eng., 2013, 50, 997-1007.
  • [18] Arai, M.; Suidzu, T. Porous ceramic coating for transpiration cooling of gas turbine blade. J. Therm. Spray Tech., 2012, 22, 690-698.
  • [19] He, F.; Wang, J.; Xu, L. Wang X., Modeling and simulation of transpiration cooling with phase change. Appl. Therm. Eng., 2013, 58,173-180.
  • [20] Wang, j.; Zhao, L.; Wang, X.; Ma, J.; Lin, J. An experimental investigation on transpiration cooling of wedge shaped nose cone with liquid coolant. . Int. J. Heat Mass Tran., 2014, 75, 442-449.
  • [21] Tsai, G.; Lin, Y.C.; Wang, H.W.; Lin, Y.F.; Su, Y.C.; Yang, T.J. Cooling transient in a sudden-expansion channel with varied rates of wall transpiration. Int. J. Heat Mass Tran., 2009, 52, 5990-5999.
  • [22] Langener, T.; Wolserdorf, J.; Selzer, M.; Hald, H. Experimental investigations cooling applied to C/C material. Int. J. Therm. Sci., 2012, 54, 70-81.
  • [23] Zhao, L.; Wang, J.; Ma, J.; Lin, J.; Peng, J.; Qu, D.; Chen, L. An experimental investigation on transpiration cooling under supersonic condition using a nose cone model. Int. J. Therm. Sci., 2014, 84, 207-213.
  • [24] Tsai, Y.Y; Lee, C.H. Experimental study of evaporative heat transfer in sintered powder structure at low superheat levels. Exp. Therm. Fluid Sci., 2014, 52, 230-238.
  • [25] Tsai, Y.Y; Lee, C.H. Effect of sintered structural parameters on reducing the superheat level in heat pipe evaporators. Int. J. Therm. Sci., 2014, 74, 225-234.
  • [26] He, S.; Guan, Z.; Gurgenci, H.; Hooman, K.; Lu, Y.; Alkhedhair, A.M. Experimental study of film media used for evaporative pre-cooling air. Energ. Convers Manage, 2014, 87, 874-884.
  • [27] Mills, A.F., Mass Transfer; 2nd ed., Prentica-Hall Inc.: New Jersey, 2001; pp. 153-169.
  • [28] Cengel, Y.A.; Ghajar, A.J. Heat and Mass Transfer; 4th ed., McGrew-Hill Education: New York, 2011; pp. 465-508.

NUMERICAL INVESTIGATION OF HEAT TRANSFER FROM A POROUS PLATE WITH TRANSPIRATION COOLING

Year 2018, , 1632 - 1647, 05.12.2017
https://doi.org/10.18186/journal-of-thermal-engineering.362048

Abstract

The present study is focused on
investigation of heat transfer from a porous plate by cooling of air and
surface with transpiration cooling. Effects of Reynolds number of hot air (Re=
3035, 3200, 3300, 3580), effects of flow rate of water as a coolant (ṁwater=
0.000083, 0.000116, 0.000166, 0.000249 kg/s) on local wall temperature and
cooling efficiency of porous flat and the system inside a rectangular channel
with air as a hot gas stream and water as a coolant were investigated
numerically. In this study; different from the literature, transpiration
cooling was used as a cooling mechanism of air. It was observed from the
results that increasing Reynolds number causes an increase on surface
temperature and a decrease on cooling efficiency of porous plate and system.
Increase of Reynolds number from Re=3035 to 9430 causes a decrease of
efficiency of the system of 13.7%. Increasing water flow rate nine times causes
not only a decrease on average surface temperature of 1.1% but also an increase
of 6.5% on efficiency of porous plate and an increase of 19.1% on cooling efficiency
of the system. Numerical results prepared by RNG k-ε turbulence model generally
have a good approximation with experimental results.

References

  • [1] Polezhaev, J. The transpiration cooling for blades of high temperatures gas turbine. Energ. Convers Manage, 1997, 38, 1123-1133.
  • [2] Trevino, C.; Medina, A. Analysis of transpiration cooling of a thin porous plate in a hot laminar convective flow. Eur. J. Mech., 1997, 2, 245-260.
  • [3] Andoh, Y.H.; Lips, B. Prediction of porous walls thermal protection by effusion or transpiration cooling An analytic approach. Appl. Therm. Eng., 2003, 23, 1947-1958.
  • [4] Cerri, G.; Giovannelli, A.; Battisti, L.; Fedrizzi, R. Advances in effusive cooling techniques of gas turbines. Appl. Therm. Eng., 2007, 27, 692-698.
  • [5] Liu, Y.Q.; Xiong, Y.B.; Jiang, P.X.; Wang, Y.P.; Sun, J.G. Effects of local geometry and boundary conditions on transpiration cooling. Int. J. Heat Mass Tran., 2013, 62, 362-372.
  • [6] He, F.; Wang, J. Numerical investigation on critical heat flux and coolant volume required for transpiration cooling with phase change. Energ. Convers Manage, 2014, 80, 591-597.
  • [7] Huang, Z.; Zhu, Y.; Xiong Y.; Jiang P. Investigation of transpiration cooling for sintered metal porous struts in supersonic flow. Appl. Therm. Eng., 2014, 70, 240-249.
  • [8] Shi, J.; Wang, J. Optimized structure of two layer porous media with genetic algorithm for transpiration cooling. Int. J. Therm. Sci., 2008, 47, 1595-1601.
  • [9] Song, C.H.; Lee, D.Y.; Sung, T.R. Cooling enhancement in an air cooled finned heat exchanger by thin water film evaporation. . Int. J. Heat Mass Tran. 2002, 46, 1241-1249.
  • [10] Leu, J.S.; Jang, J.Y.; Chou, W.C. Convection heat transfer along a vertical heated plate with film evaporation in a non-Darcian porous medium. Int. J. Heat Mass Tran., 2009, 52, 5447-5450.
  • [11] Hsyan, S.M.; Jer, H.M.; Kuang, C.C. A study of the liquid evaporation with Darcian resistance effect on mixed convection in porous media. Int. Commun. Heat Mass, 2005, 32, 685-694.
  • [12] Maity, S. Thermocapillary flow of thin liquid film over a porous stretching sheet in presence of suction/injection. Int. J. Heat Mass Tran., 2014, 70, 819-826.
  • [13] Xin, C.; Rao, Z.; You, X.; Song, Z.; Han, D. Numerical Investigation of Vapor-liquid heat and mass transfer in porous media. Energ. Convers Manage, 2014, 78, 1-7.
  • [14] Sun, Y.; Zhang, L.; Xu, H.; Zhong, X. Flow boiling enhancement of FC-72 from microporous surface in mini channels. Exp. Therm. and Fluid Sci., 2011, 35, 1418-1426.
  • [15] Jiang, P.X.; Yu, L.; Sun, J.G.; Wang, J. Experimental and numerical investigation of convection heat transfer in transpiration cooling. Appl. Therm. Eng.,, 2004, 24, 1271-1289.
  • [16] Liu, Y.Q.; Jiang, P.X.; Jin, S.S.; Sun, J.G. Transpiration cooling of a nose cone by various foreign gases. Int. J. Heat Mass Tran., 2010, 53, 5364-5372.
  • [17] Liu, Y.Q.; Jiang, P.X.; Xiong, Y.B; Wang, Y.P. Experimental and numerical investigation of transpiration for sintered porous flat plates. Appl. Therm. Eng., 2013, 50, 997-1007.
  • [18] Arai, M.; Suidzu, T. Porous ceramic coating for transpiration cooling of gas turbine blade. J. Therm. Spray Tech., 2012, 22, 690-698.
  • [19] He, F.; Wang, J.; Xu, L. Wang X., Modeling and simulation of transpiration cooling with phase change. Appl. Therm. Eng., 2013, 58,173-180.
  • [20] Wang, j.; Zhao, L.; Wang, X.; Ma, J.; Lin, J. An experimental investigation on transpiration cooling of wedge shaped nose cone with liquid coolant. . Int. J. Heat Mass Tran., 2014, 75, 442-449.
  • [21] Tsai, G.; Lin, Y.C.; Wang, H.W.; Lin, Y.F.; Su, Y.C.; Yang, T.J. Cooling transient in a sudden-expansion channel with varied rates of wall transpiration. Int. J. Heat Mass Tran., 2009, 52, 5990-5999.
  • [22] Langener, T.; Wolserdorf, J.; Selzer, M.; Hald, H. Experimental investigations cooling applied to C/C material. Int. J. Therm. Sci., 2012, 54, 70-81.
  • [23] Zhao, L.; Wang, J.; Ma, J.; Lin, J.; Peng, J.; Qu, D.; Chen, L. An experimental investigation on transpiration cooling under supersonic condition using a nose cone model. Int. J. Therm. Sci., 2014, 84, 207-213.
  • [24] Tsai, Y.Y; Lee, C.H. Experimental study of evaporative heat transfer in sintered powder structure at low superheat levels. Exp. Therm. Fluid Sci., 2014, 52, 230-238.
  • [25] Tsai, Y.Y; Lee, C.H. Effect of sintered structural parameters on reducing the superheat level in heat pipe evaporators. Int. J. Therm. Sci., 2014, 74, 225-234.
  • [26] He, S.; Guan, Z.; Gurgenci, H.; Hooman, K.; Lu, Y.; Alkhedhair, A.M. Experimental study of film media used for evaporative pre-cooling air. Energ. Convers Manage, 2014, 87, 874-884.
  • [27] Mills, A.F., Mass Transfer; 2nd ed., Prentica-Hall Inc.: New Jersey, 2001; pp. 153-169.
  • [28] Cengel, Y.A.; Ghajar, A.J. Heat and Mass Transfer; 4th ed., McGrew-Hill Education: New York, 2011; pp. 465-508.
There are 28 citations in total.

Details

Journal Section Articles
Authors

Mustafa Kılıç

Publication Date December 5, 2017
Submission Date June 16, 2016
Published in Issue Year 2018

Cite

APA Kılıç, M. (2017). NUMERICAL INVESTIGATION OF HEAT TRANSFER FROM A POROUS PLATE WITH TRANSPIRATION COOLING. Journal of Thermal Engineering, 4(1), 1632-1647. https://doi.org/10.18186/journal-of-thermal-engineering.362048
AMA Kılıç M. NUMERICAL INVESTIGATION OF HEAT TRANSFER FROM A POROUS PLATE WITH TRANSPIRATION COOLING. Journal of Thermal Engineering. December 2017;4(1):1632-1647. doi:10.18186/journal-of-thermal-engineering.362048
Chicago Kılıç, Mustafa. “NUMERICAL INVESTIGATION OF HEAT TRANSFER FROM A POROUS PLATE WITH TRANSPIRATION COOLING”. Journal of Thermal Engineering 4, no. 1 (December 2017): 1632-47. https://doi.org/10.18186/journal-of-thermal-engineering.362048.
EndNote Kılıç M (December 1, 2017) NUMERICAL INVESTIGATION OF HEAT TRANSFER FROM A POROUS PLATE WITH TRANSPIRATION COOLING. Journal of Thermal Engineering 4 1 1632–1647.
IEEE M. Kılıç, “NUMERICAL INVESTIGATION OF HEAT TRANSFER FROM A POROUS PLATE WITH TRANSPIRATION COOLING”, Journal of Thermal Engineering, vol. 4, no. 1, pp. 1632–1647, 2017, doi: 10.18186/journal-of-thermal-engineering.362048.
ISNAD Kılıç, Mustafa. “NUMERICAL INVESTIGATION OF HEAT TRANSFER FROM A POROUS PLATE WITH TRANSPIRATION COOLING”. Journal of Thermal Engineering 4/1 (December 2017), 1632-1647. https://doi.org/10.18186/journal-of-thermal-engineering.362048.
JAMA Kılıç M. NUMERICAL INVESTIGATION OF HEAT TRANSFER FROM A POROUS PLATE WITH TRANSPIRATION COOLING. Journal of Thermal Engineering. 2017;4:1632–1647.
MLA Kılıç, Mustafa. “NUMERICAL INVESTIGATION OF HEAT TRANSFER FROM A POROUS PLATE WITH TRANSPIRATION COOLING”. Journal of Thermal Engineering, vol. 4, no. 1, 2017, pp. 1632-47, doi:10.18186/journal-of-thermal-engineering.362048.
Vancouver Kılıç M. NUMERICAL INVESTIGATION OF HEAT TRANSFER FROM A POROUS PLATE WITH TRANSPIRATION COOLING. Journal of Thermal Engineering. 2017;4(1):1632-47.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering