Research Article
BibTex RIS Cite
Year 2018, , 1668 - 1679, 12.12.2017
https://doi.org/10.18186/journal-of-thermal-engineering.364889

Abstract

References

  • [1]Gifford, W. E., & Longsworth, R. C. (1964). Pulse-Tube Refrigeration. Transactions of the ASME Journal of Engeenering for Industry, 86(3), 264–268.
  • [2]Mikulin, E. I., Tarasov, A. A., & Shkrebyonock, M. P. (1984). Low-temperature expansion pulse tubes. In Advances in cryogenic engineering, 629-637.
  • [3]Shaowei, Z., Peiyi, W., & Zhongqi, C. (1990). Double inlet pulse tube refrigerators: an important improvement. Cryogenics, 30(6), 514–520.
  • [4]Chopra, K., Sahni, V., & Mishra, R. S. (2015). Energy, Exergy and Sustainability Analysis of Two-stage Vapour Compression Refrigeration System. Journal of Thermal Engineering, 1(4), 440-445. [5]Arora, A., Dixit, M., & Kaushik, S. (2016). Computation of Optimum Parameters of a Half Effect Water-Lithium. Journal of Thermal Engineering, 2(2), 683–692.
  • [6]Radebaugh, R. (2000). Development of the Pulse Tube Refrigerator as an Efficient and Reliable Cryocooler. Institute of Refrigeration, 1999.
  • [7]Liang, J., Ravex, A., & Rolland, P. (1996). Study on pulse tube refrigeration Part 1: Thermodynamic nonsymmetry effect. Cryogenics, 36(2), 87–93.
  • [8]Cha, J. S., Ghiaasiaan, S. M., Desai, P. V., Harvey, J. P., & Kirkconnell, C. S. (2005). CFD simulation of multi-dimensional effects in an Inertance tube pulse tube refrigerator. Cryocoolers, 13, 285-292.
  • [9]Zhang, X. B., Zhang, K. H., Qiu, L. M., Gan, Z. H., Shen, X., & Xiang, S. J. (2013). A pulse tube cryocooler with a cold reservoir. Cryogenics, 54, 30-36.
  • [10]Banjare, Y. P., Sahoo, R. K., & Sarangi, S. K. (2009). CFD simulation of a Gifford-McMahon type pulse tube refrigerator. International Journal of Thermal Sciences, 48(12), 2280–2287.
  • [11]Chen, L., Zhang, Y., Luo, E., Li, T., & Wei, X. (2010). CFD analysis of thermodynamic cycles in a pulse tube refrigerator. Cryogenics, 50(11–12), 743–749.
  • [12]Boroujerdi, A. A., Ashrafizadeh, A., & Mousavi Naeenian, S. M. (2011). Numerical analysis of stirling type Pulse Tube Cryocoolers. Cryogenics, 51(9), 521–529.
  • [13]Antao, D. S., & Farouk, B. (2013). Experimental and numerical investigations of an orifice type cryogenic pulse tube refrigerator. In Applied Thermal Engineering (Vol. 50, pp. 112–123).
  • [14]Dai, Q., Chen, Y., & Yang, L. (2015). CFD investigation on characteristics of oscillating flow and heat transfer in 3D pulse tube. International Journal of Heat and Mass Transfer, 84, 401–408.
  • [15]Park, J., Ko, J., Cha, J., & Jeong, S. (2016). Stirling-type pulse tube refrigerator (PTR) with cold compression: Cold compressor, colder expander. Cryogenics, 74, 66–72.
  • [16] Zhang, X. B., Qiu, L. M., Gan, Z. H., & He, Y. L. (2007). CFD study of a simple orifice pulse tube cooler. Cryogenics, 47(5–6), 315–321.
  • [17]Neveu, P., & Babo, C. (2000). Simplified model for pulse tube refrigeration. Cryogenics, 40(3), 191–201.
  • [18]Roy, P. C. Some Theoretical and Experimental Studies on Pulse Tube Refrigeration System. MS Thesis, Department of Mechanical Engineering, I.I.T. Kharagpur, India, 2004.
  • [19]Qiu, L. M., Zhi, X. Q., Gan, Z. H., Zhang, X. B., & Zhang, X. J. (2014). Function of gas parcels in the pulse tube. International Journal of Refrigeration, 38(1), 358–366.

THERMODYNAMIC MODELING OF A PULSE TUBE REFRIGERATION SYSTEM

Year 2018, , 1668 - 1679, 12.12.2017
https://doi.org/10.18186/journal-of-thermal-engineering.364889

Abstract

Thermodynamic model of the pulse tube refrigeration (PTR) system has
been developed
based on
the ideal gas behaviour
to study the cooling effect at
the cold end of the refrigerator.  Compression
and expansion processes of the gas column have been assumed to be isothermal.
Mass flow in the regenerator has
been evaluated through Ergun's law. Mass flow through the orifice and double
inlet valve has been assumed a nozzle flow with a correction factor.
Model predicted results have been validated with in-house
experimental results as qualitative basis.
Model predicted results in compression and
expansion processes are also validated with that of the experimental data.
Model predicted results are presented to understand the basic phenomenon for
the refrigeration effect in various pulse tube refrigerators (BPTR, OPTR and
DIPTR). Time duration for expansion process is more than the compression
process in case of OPTR and DIPTR, which leads to lower pressure during the
expansion and more cooling capacity obtained compared to the BPTR.
A distinct comparison among three types of PTRs has been done based
on the
work done at the
cold end
. It has been clearly observed that a DIPTR
shows better cooling capacity compared to OPTR or BPTR.

References

  • [1]Gifford, W. E., & Longsworth, R. C. (1964). Pulse-Tube Refrigeration. Transactions of the ASME Journal of Engeenering for Industry, 86(3), 264–268.
  • [2]Mikulin, E. I., Tarasov, A. A., & Shkrebyonock, M. P. (1984). Low-temperature expansion pulse tubes. In Advances in cryogenic engineering, 629-637.
  • [3]Shaowei, Z., Peiyi, W., & Zhongqi, C. (1990). Double inlet pulse tube refrigerators: an important improvement. Cryogenics, 30(6), 514–520.
  • [4]Chopra, K., Sahni, V., & Mishra, R. S. (2015). Energy, Exergy and Sustainability Analysis of Two-stage Vapour Compression Refrigeration System. Journal of Thermal Engineering, 1(4), 440-445. [5]Arora, A., Dixit, M., & Kaushik, S. (2016). Computation of Optimum Parameters of a Half Effect Water-Lithium. Journal of Thermal Engineering, 2(2), 683–692.
  • [6]Radebaugh, R. (2000). Development of the Pulse Tube Refrigerator as an Efficient and Reliable Cryocooler. Institute of Refrigeration, 1999.
  • [7]Liang, J., Ravex, A., & Rolland, P. (1996). Study on pulse tube refrigeration Part 1: Thermodynamic nonsymmetry effect. Cryogenics, 36(2), 87–93.
  • [8]Cha, J. S., Ghiaasiaan, S. M., Desai, P. V., Harvey, J. P., & Kirkconnell, C. S. (2005). CFD simulation of multi-dimensional effects in an Inertance tube pulse tube refrigerator. Cryocoolers, 13, 285-292.
  • [9]Zhang, X. B., Zhang, K. H., Qiu, L. M., Gan, Z. H., Shen, X., & Xiang, S. J. (2013). A pulse tube cryocooler with a cold reservoir. Cryogenics, 54, 30-36.
  • [10]Banjare, Y. P., Sahoo, R. K., & Sarangi, S. K. (2009). CFD simulation of a Gifford-McMahon type pulse tube refrigerator. International Journal of Thermal Sciences, 48(12), 2280–2287.
  • [11]Chen, L., Zhang, Y., Luo, E., Li, T., & Wei, X. (2010). CFD analysis of thermodynamic cycles in a pulse tube refrigerator. Cryogenics, 50(11–12), 743–749.
  • [12]Boroujerdi, A. A., Ashrafizadeh, A., & Mousavi Naeenian, S. M. (2011). Numerical analysis of stirling type Pulse Tube Cryocoolers. Cryogenics, 51(9), 521–529.
  • [13]Antao, D. S., & Farouk, B. (2013). Experimental and numerical investigations of an orifice type cryogenic pulse tube refrigerator. In Applied Thermal Engineering (Vol. 50, pp. 112–123).
  • [14]Dai, Q., Chen, Y., & Yang, L. (2015). CFD investigation on characteristics of oscillating flow and heat transfer in 3D pulse tube. International Journal of Heat and Mass Transfer, 84, 401–408.
  • [15]Park, J., Ko, J., Cha, J., & Jeong, S. (2016). Stirling-type pulse tube refrigerator (PTR) with cold compression: Cold compressor, colder expander. Cryogenics, 74, 66–72.
  • [16] Zhang, X. B., Qiu, L. M., Gan, Z. H., & He, Y. L. (2007). CFD study of a simple orifice pulse tube cooler. Cryogenics, 47(5–6), 315–321.
  • [17]Neveu, P., & Babo, C. (2000). Simplified model for pulse tube refrigeration. Cryogenics, 40(3), 191–201.
  • [18]Roy, P. C. Some Theoretical and Experimental Studies on Pulse Tube Refrigeration System. MS Thesis, Department of Mechanical Engineering, I.I.T. Kharagpur, India, 2004.
  • [19]Qiu, L. M., Zhi, X. Q., Gan, Z. H., Zhang, X. B., & Zhang, X. J. (2014). Function of gas parcels in the pulse tube. International Journal of Refrigeration, 38(1), 358–366.
There are 18 citations in total.

Details

Journal Section Articles
Authors

Prokash C. Roy This is me

B. Kundu This is me

Publication Date December 12, 2017
Submission Date June 14, 2016
Published in Issue Year 2018

Cite

APA Roy, P. C., & Kundu, B. (2017). THERMODYNAMIC MODELING OF A PULSE TUBE REFRIGERATION SYSTEM. Journal of Thermal Engineering, 4(1), 1668-1679. https://doi.org/10.18186/journal-of-thermal-engineering.364889
AMA Roy PC, Kundu B. THERMODYNAMIC MODELING OF A PULSE TUBE REFRIGERATION SYSTEM. Journal of Thermal Engineering. December 2017;4(1):1668-1679. doi:10.18186/journal-of-thermal-engineering.364889
Chicago Roy, Prokash C., and B. Kundu. “THERMODYNAMIC MODELING OF A PULSE TUBE REFRIGERATION SYSTEM”. Journal of Thermal Engineering 4, no. 1 (December 2017): 1668-79. https://doi.org/10.18186/journal-of-thermal-engineering.364889.
EndNote Roy PC, Kundu B (December 1, 2017) THERMODYNAMIC MODELING OF A PULSE TUBE REFRIGERATION SYSTEM. Journal of Thermal Engineering 4 1 1668–1679.
IEEE P. C. Roy and B. Kundu, “THERMODYNAMIC MODELING OF A PULSE TUBE REFRIGERATION SYSTEM”, Journal of Thermal Engineering, vol. 4, no. 1, pp. 1668–1679, 2017, doi: 10.18186/journal-of-thermal-engineering.364889.
ISNAD Roy, Prokash C. - Kundu, B. “THERMODYNAMIC MODELING OF A PULSE TUBE REFRIGERATION SYSTEM”. Journal of Thermal Engineering 4/1 (December 2017), 1668-1679. https://doi.org/10.18186/journal-of-thermal-engineering.364889.
JAMA Roy PC, Kundu B. THERMODYNAMIC MODELING OF A PULSE TUBE REFRIGERATION SYSTEM. Journal of Thermal Engineering. 2017;4:1668–1679.
MLA Roy, Prokash C. and B. Kundu. “THERMODYNAMIC MODELING OF A PULSE TUBE REFRIGERATION SYSTEM”. Journal of Thermal Engineering, vol. 4, no. 1, 2017, pp. 1668-79, doi:10.18186/journal-of-thermal-engineering.364889.
Vancouver Roy PC, Kundu B. THERMODYNAMIC MODELING OF A PULSE TUBE REFRIGERATION SYSTEM. Journal of Thermal Engineering. 2017;4(1):1668-79.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering