Research Article
BibTex RIS Cite
Year 2020, , 592 - 603, 01.07.2020
https://doi.org/10.18186/thermal.764300

Abstract

References

  • [1] Stephan K, Abdelsalam M. Heat-transfer correlations for natural convection boiling. Int J Heat Mass Trans 1980; 23:73-87. DOI: 10.1016/0017-9310(80)90140-4.
  • [2] Madani K. Numerical investigation of cooling a ribbed microchannel using nanofluid. J Therm Eng 2018;4(6):2408-22. DOI: 10.18186/thermal.465650.
  • [3] Vassallo P, Kumar R, D’Amico S. Pool boiling heat transfer experiments in silica–water nano-fluids. Int J Heat Mass Trans 2004;47(2):407-11. DOI: 10.1016/S0017-9310(03)00361-2.
  • [4] Lazarek G, Black S. Evaporative heat transfer, pressure drop and critical heat flux in a small vertical tube with R-113. Int J Heat Mass Trans 1982;25(7):945-60. DOI: 10.1016/0017-9310(82)90070-9.
  • [5] Zahmatkesh I. Effect of magnetic field orientation on nanofluid free convection in a porous cavity: a heat visualization study. J Therm Eng 2020;6(1):170-86. DOI: 10.18186/thermal.672297.
  • [6] Almakki M, Mondal H, Sibanda P. Entropy generation in MHD flow of viscoelastic nanofluids with homogeneous-heterogeneous reaction, partial slip and nonlinear thermal radiation. J Therm Eng 2020;6(3):327-45. DOI: 10.18186/thermal.712452.
  • [7] Liang G, Mudawar I. Review of pool boiling enhancement with additives and nanofluids. Int. J. Heat Mass Trans 2018; 124:423-53. DOI: 10.1016/j.ijheatmasstransfer.2018.03.046
  • [8] Lazarus G, Roy S, Kunhappan D, Cephas E, Wongwises S. Heat transfer performance of silver/water nanofluid in a solar flat-plate collector. J Therm Eng 2015;1(2):104-12. DOI: 10.18186/jte.29475.
  • [9] Sarafraz M. Experimental investigation on pool boiling heat transfer to formic acid, propanol and 2-butanol pure liquids under the atmospheric pressure. J Appl Fluid Mech 20136(1):73-79. DOI: 10.36884/jafm.6.01.19494.
  • [10] Sarafraz M, Nikkhah V, Nakhjavani M, Arya A. Fouling formation and thermal performance of aqueous carbon nanotube nanofluid in a heat sink with rectangular parallel microchannel. App Therm Eng 2017; 123:29-39. DOI: 10.1016/j.applthermaleng.2017.05.056.
  • [11] Sarafraz M, Peyghambarzadeh S, Alavifazel S. Enhancement of nucleate pool boiling heat transfer to dilute binary mixtures using endothermic chemical reactions around the smoothed horizontal cylinder. Heat Mass Trans 2012;48(10):1755-65. DOI: 10.1007/s00231-012-1019-5.
  • [12] Drummond KP, Back D, Sinanis MD, Janes DB, Peroulis D, Weibel JA, et al. A hierarchical manifold microchannel heat sink array for high-heat-flux two-phase cooling of electronics. Int J Heat Mass Trans 2018; 117:319-30. DOI: 10.1016/j.ijheatmasstransfer.2017.10.015.
  • [13] Sarafraz MM, Pourmehran O, Yang B, Arjomandi M, Ellahi R. Pool boiling heat transfer characteristics of iron oxide nano-suspension under constant magnetic field. Int J Therm Sci 2020; 147:106131. DOI: 10.1016/j.ijthermalsci.2019.106131.
  • [14] Sarafraz MM, Peyghambarzadeh SM. Nucleate pool boiling heat transfer to Al2O3-water and TiO2-water nanofluids on horizontal smooth tubes with dissimilar homogeneous materials. Chem Biochem Eng Q 2012;26(3):199-206. DOI: 10.15255/CABEQ.2014.127.
  • [15] Arya A, Sarafraz M, Shahmiri S, Madani S, Nikkhah V, Nakhjavani S. Thermal performance analysis of a flat heat pipe working with carbon nanotube-water nanofluid for cooling of a high heat flux heater. Heat Mass Trans 2018;54(4):985-97. DOI: 10.1016/j.ijheatmasstransfer.2012.06.086.
  • [16] Nakhjavani M, Nikkhah V, Sarafraz M, Shoja S, Sarafraz M. Green synthesis of silver nanoparticles using green tea leaves: Experimental study on the morphological, rheological and antibacterial behaviour. Heat Mass Trans 2017;53(10):3201-9. DOI: 10.1007/s00231-017-2065-9.
  • [17] Nikkhah V, Sarafraz M, Hormozi F. Application of spherical copper oxide (II) water nano-fluid as a potential coolant in a boiling annular heat exchanger. Chem Biochem Eng Q 2015;29(3):405-15. DOI: 10.15255/CABEQ.2014.2069.
  • [18] Peyghambarzadeh S, Sarafraz M, Vaeli N, Ameri E, Vatani A, Jamialahmadi M. Forced convective and subcooled flow boiling heat transfer to pure water and n-heptane in an annular heat exchanger. Annals Nuc Ene 2013; 53:401-10. DOI: 10.1016/j.anucene.2012.07.037.
  • [19] Salari E, Peyghambarzadeh S, Sarafraz M, Hormozi F, Nikkhah V. Thermal behavior of aqueous iron oxide nano-fluid as a coolant on a flat disc heater under the pool boiling condition. Heat Mass Transfer 2017;53(1):265-75. DOI: 10.1007/s00231-016-1823-4.
  • [20] Kamel MS, Lezsovits F, Hussein AM, Mahian O, Wongwises S. Latest developments in boiling critical heat flux using nanofluids: A concise review. Int Commun Heat Mass Trans 2018; 98:59-66. DOI: 10.1016/j.icheatmasstransfer.2018.08.009.
  • [21] Bhattad A, Sarkar J, Ghosh P. Improving the performance of refrigeration systems by using nanofluids: A comprehensive review. Rene Sus Ene Rev 2018; 82:3656-69. DOI: 10.1016/j.rser.2017.10.097.
  • [22] Parlak N. Experimental validation of LMTD method for microscale heat transfer. J Therm Eng 2017;3(2):1181-95. DOI: 10.18186/thermal.298619.
  • [23] Sharma B. Effect of flow structure on heat transfer in compact heat exchanger by using finite thickness winglet at acute angle. J Therm Eng 2017;3(2):1149-62. DOI: 10.18186/thermal.298616.
  • [24] Belhadj A. Numerical investigation on of forced convection of nanofluid in microchannels heat sinks. J Therm Eng 2018;4(5):2263-73. DOI: 10.18186/thermal.438480. [25] Akinshilo A, Ilegbusi AO. Investigation of Lorentz force effect on steady nanofluid flow and heat transfer through parallel plates. J Thermal Eng. 2019; 5:482-97. DOI: 10.18186/thermal.625919.
  • [26] Bayareh M. Numerical simulation and analysis of heat transfer for different geometries of corrugated tubes in a double pipe heat exchanger. J Therm Eng 2019;5(4):293-301. DOI: 10.18186/thermal.581775.
  • [27] Ekiciler R, Aydeniz E, Arslan K. A CFD investigation of al2o3/water flow in a duct having backward-facing step. J Therm Eng 2019;5(1):31-41. DOI: 10.18186/thermal.512999.
  • [28] Ravisankar R, Venkatachalapathy VSK, Alagumurthi N. Application of nanotechnology to improve the performance of tractor radiator using cu-water nanofluid. J Therm Eng 2018;4(4):2188-200. DOI: 10.18186/journal-of-thermal-engineering.434036.
  • [29] Han D, He W, Asif F. Experimental study of heat transfer enhancement using nanofluid in double tube heat exchanger. Energy Procedia. 2017; 142:2547-53. DOI: 10.1016/j.egypro.2017.12.090.
  • [30] Ali HM, Babar H, Shah TR, Sajid MU, Qasim MA, Javed S. Preparation techniques of TiO2 nanofluids and challenges: a review. Appl Sci 2018;8(4):587. DOI: /10.3390/app8040587.
  • [31] Vakili M, Mohebbi A, Hashemipour H. Experimental study on convective heat transfer of TiO2 nanofluids. Heat Mass Transfer 2013;49(8):1159-65. DOI: /10.1016/j.icheatmasstransfer.2012.01.004.
  • [32] Azmi W, Hamid KA, Usri N, Mamat R, Mohamad M. Heat transfer and friction factor of water and ethylene glycol mixture based TiO2 and Al2O3 nanofluids under turbulent flow. INT COMMUN HEAT MASS 2016; 76:24-32. DOI: 10.1016/j.icheatmasstransfer.2016.05.010
  • [33] Karthikeyan A, Coulombe S, Kietzig A. Boiling heat transfer enhancement with stable nanofluids and laser textured copper surfaces. Int J Heat Mass Transf 2018; 126:287-96. DOI: 10.1016/j.ijheatmasstransfer.2018.05.118.
  • [34] Sarafraz M, Arya A, Nikkhah V, Hormozi F. Thermal performance and viscosity of biologically produced silver/coconut oil Nanofluids. Chem Biochem Eng Q 2017;30(4):489-500. DOI: 10.15255/CABEQ.2015.2203.
  • [35] Sarafraz M, Hormozi F. Application of thermodynamic models to estimating the convective flow boiling heat transfer coefficient of mixtures. Exp Therm Fluid Sci 2014; 53:70-85. DOI: 10.1016/j.expthermflusci.2013.11.004.
  • [36] Sarafraz M, Hormozi F, Kamalgharibi M. Sedimentation and convective boiling heat transfer of CuO-water/ethylene glycol nanofluids. Heat Mass Transfer 2014;50(9):1237-49. DOI: 10.1007/s00231-014-1336-y.
  • [37] Sarafraz M, Hormozi F, Peyghambarzadeh S, Vaeli N. Upward Flow Boiling to DI-Water and Cuo Nanofluids Inside the Concentric Annuli. J Appl Fluid Mech J APPL FLUID MECH 2015;8(4). DOI: 10.18869/acadpub.jafm.67.223.19404.
  • [38] Sarafraz M, Nikkhah V, Nakhjavani M, Arya A. Thermal performance of a heat sink microchannel working with biologically produced silver-water nanofluid: experimental assessment. Exp Therm Fluid Sci 2018; 91:509-19. DOI: 10.1016/j.expthermflusci.2017.11.007.
  • [39] Aouanouk AS. Numerical study of milk fouling thickness in the channel of plate heat exchanger. J Therm Eng 2018;4(6):2464-70. DOI: 10.18186/thermal.465692.
  • [40] Sarafraz M, Arjomandi M. Demonstration of plausible application of gallium nano-suspension in microchannel solar thermal receiver: Experimental assessment of thermo-hydraulic performance of microchannel. INT COMMUN HEAT MASS 2018; 94:39-46. DOI: 10.1016/j.icheatmasstransfer.2018.03.013.
  • [41] Sarafraz M, Arjomandi M. Thermal performance analysis of a microchannel heat sink cooling with Copper Oxide-Indium (CuO/In) nano-suspensions at high-temperatures. Appl Therm Eng 2018; 137:700-9. DOI: 10.1016/j.applthermaleng.2018.04.024.
  • [42] Sarafraz M, Arya H, Arjomandi M. Thermal and hydraulic analysis of a rectangular microchannel with gallium-copper oxide nano-suspension. J Mol Liq 2018; 263:382-9. DOI: 10.1016/j.molliq.2018.05.026.
  • [43] Tong LS. Boiling heat transfer and two-phase flow: Routledge; 2018.
  • [44] Alhashan T, Addali A, Teixeira JA, Naid A. Experimental investigation of the influences of different liquid types on acoustic emission energy levels during the bubble formation process. Int J Energy Environ Eng 2018;9(1):13-20. DOI: 10.1007/s40095-017-0245-5.
  • [45] Babu RV, Verma KA, Charan M, Kanagaraj S. Tweaking the diameter and concentration of carbon nanotubes and sintering duration in Copper based composites for heat transfer applications. Adv Powder Technol 2018;20(10):2356-67. DOI: 10.1016/j.apt.2018.06.015.
  • [46] Huang D, Wu Z, Sunden B. Effects of hybrid nanofluid mixture in plate heat exchangers. Exp Therm Fluid Sci 2016; 72:190-6. DOI: 10.1016/j.expthermflusci.2015.11.009.
  • [47] Sarafraz M, Peyghambarzadeh S. Influence of thermodynamic models on the prediction of pool boiling heat transfer coefficient of dilute binary mixtures. INT COMMUN HEAT MASS 2012;39(8):1303-10. DOI: 10.1016/j.icheatmasstransfer.2012.06.020.
  • [48] Sarafraz MM, Peyghambarzadeh SM. Experimental study on subcooled flow boiling heat transfer to water–diethylene glycol mixtures as a coolant inside a vertical annulus. Exp Therm Fluid Sci 2013; 50:154-62. DOI: 10.1016/j.expthermflusci.2013.06.003.
  • [49] Nikkhah V, Sarafraz MM, Hormozi F, Peyghambarzadeh SM. Particulate fouling of CuO–water nanofluid at isothermal diffusive condition inside the conventional heat exchanger-experimental and modeling. Exp Therm Fluid Sci 2015; 60:83-95. DOI: 10.1016/j.expthermflusci.2014.08.009
  • [50] Kline S, McClintock F. Jan., 1953," Describing the uncertainties in experimental results". Exp Therm Fluid Sci 1988; 1:3-17. DOI: 10.1016/0894-1777(88)90043-X.
  • [51] Sarafraz M, Peyghambarzadeh S, Alavi Fazel S, Vaeli N. Nucleate pool boiling heat transfer of binary nano mixtures under atmospheric pressure around a smooth horizontal cylinder. Period. Polytech Chem Eng 2013;57(1-2):71-7. DOI: 10.3311/PPch.2173.
  • [52] Sarafraz M, Peyghambarzadeh S, Vaeli N. Subcooled flow boiling heat transfer of ethanol aqueous solutions in vertical annulus space. Chem Ind Chem Eng Q 2012;18(2):315-27. DOI: 10.2298/CICEQ111020008S.
  • [53] Sarafraz MM, Hormozi F. Forced convective and nucleate flow boiling heat transfer to alumnia nanofluids. Period Polytech Chem Eng 2014;58(1):37-46. DOI: 10.3311/PPch.2206.
  • [54] Sarafraz M, Arya A, Hormozi F, Nikkhah V. On the convective thermal performance of a CPU cooler working with liquid gallium and CuO/water nanofluid: A comparative study. Appl Therm Eng 2017; 112:1373-81. DOI: 10.1016/j.applthermaleng.2016.10.196.
  • [55] Sarafraz M, Arya H, Saeedi M, Ahmadi D. Flow boiling heat transfer to MgO-therminol 66 heat transfer fluid: Experimental assessment and correlation development. Appl Therm Eng 2018;138:552-62. DOI: 10.1016/j.applthermaleng.2018.04.075.
  • [56] Sarafraz M, Hart J, Shrestha E, Arya H, Arjomandi M. Experimental thermal energy assessment of a liquid metal eutectic in a microchannel heat exchanger equipped with a (10 Hz/50 Hz) resonator. Appl Therm Eng 2019; 148:578-90. DOI: 10.1016/j.applthermaleng.2018.11.073.
  • [57] Hocaoglu S, Ozkan DB. The effect of system parameters on the condensation performance of heat pump system using R290. J Therm Eng 2018;4(5):2248-62. DOI: 10.18186/journal-of-thermal-engineering.436137.
  • [58] Peyghambarzadeh S, Vatani A, Jamialahmadi M. Experimental study of micro-particle fouling under forced convective heat transfer. Braz J Chem Eng 2012;29(4):713-24. DOI: 10.1590/S0104-66322012000400004.
  • [59] Huo X, Chen L, Tian Y, Karayiannis T. Flow boiling and flow regimes in small diameter tubes. Appl Therm Eng 2004;24(8-9):1225-39. DOI: 10.1016/j.applthermaleng.2003.11.027

FLOW BOILING HEAT TRANSFER CHARACTERISTICS OF TITANIUM OXIDE/WATER NANOFLUID (TIO2/DI WATER) IN AN ANNULAR HEAT EXCHANGER

Year 2020, , 592 - 603, 01.07.2020
https://doi.org/10.18186/thermal.764300

Abstract

A range of experiments was conducted to measure the heat transfer characteristics of titanium oxide/deionized water nanofluid (NF) inside a steel-made Pyrex annular system. A set of experiments was designed and performed at inlet temperature (IT) of the NF (333 K-363 K), the applied heat flux (AHF) (4.98 kW/m2 to 112 kW/m2), 1988 < Re < 13,588 and dispersion concentration of wt.%=0.05 to wt.%=0.15) on the average heat transfer coefficient (HTC) and boiling section’s average pressure drop (PD). It was demonstrated that the increase in the volume flow and the AHF can increase the HTC while increasing the weight concentration of the NF, initially increased the HTC such that the maximum enhancement in the HTC was 35.7% at wt.%=0.15 and Re=13500, however, over the time, the HTC of the NF decreased. The reduction in HTC was attributed to the formation of continual sedimentation on the boiling surface after 1000 minutes of the operation. The IT of the NF slightly increased the HTC, which was due to the enhancement in the thermal and physical properties such as thermal conductivity. The maximum enhancement in HTC due to increase of the IT from 333 K to 363 K was 4.2% at wt.%=0.15 and Re=13500. The bubble formation was also found to be a strong function of the applied HF such that with increasing the HF, the rate of the bubble formation increased, which was also the reason behind the augmentation in the HTC at larger AHFs. Also, the PD was augmented due to the increase in the velocity and flow and also weight concentration of NF. The highest value measured for PD was 9 kPa recorded at a weight fraction of 0.15 and Re=13500, which was 28% larger than that of measured for the base fluid. It was also found that a continual fouling layer of nanoparticles (NPs) was formed on the boiling surface, which induced a thermal resistance against the boiling heat transfer. The fouling formation reduced the HTC of the NF such that the maximum reduction in the HTC was 21.6% after 1000 minutes of the operation of the heater.

References

  • [1] Stephan K, Abdelsalam M. Heat-transfer correlations for natural convection boiling. Int J Heat Mass Trans 1980; 23:73-87. DOI: 10.1016/0017-9310(80)90140-4.
  • [2] Madani K. Numerical investigation of cooling a ribbed microchannel using nanofluid. J Therm Eng 2018;4(6):2408-22. DOI: 10.18186/thermal.465650.
  • [3] Vassallo P, Kumar R, D’Amico S. Pool boiling heat transfer experiments in silica–water nano-fluids. Int J Heat Mass Trans 2004;47(2):407-11. DOI: 10.1016/S0017-9310(03)00361-2.
  • [4] Lazarek G, Black S. Evaporative heat transfer, pressure drop and critical heat flux in a small vertical tube with R-113. Int J Heat Mass Trans 1982;25(7):945-60. DOI: 10.1016/0017-9310(82)90070-9.
  • [5] Zahmatkesh I. Effect of magnetic field orientation on nanofluid free convection in a porous cavity: a heat visualization study. J Therm Eng 2020;6(1):170-86. DOI: 10.18186/thermal.672297.
  • [6] Almakki M, Mondal H, Sibanda P. Entropy generation in MHD flow of viscoelastic nanofluids with homogeneous-heterogeneous reaction, partial slip and nonlinear thermal radiation. J Therm Eng 2020;6(3):327-45. DOI: 10.18186/thermal.712452.
  • [7] Liang G, Mudawar I. Review of pool boiling enhancement with additives and nanofluids. Int. J. Heat Mass Trans 2018; 124:423-53. DOI: 10.1016/j.ijheatmasstransfer.2018.03.046
  • [8] Lazarus G, Roy S, Kunhappan D, Cephas E, Wongwises S. Heat transfer performance of silver/water nanofluid in a solar flat-plate collector. J Therm Eng 2015;1(2):104-12. DOI: 10.18186/jte.29475.
  • [9] Sarafraz M. Experimental investigation on pool boiling heat transfer to formic acid, propanol and 2-butanol pure liquids under the atmospheric pressure. J Appl Fluid Mech 20136(1):73-79. DOI: 10.36884/jafm.6.01.19494.
  • [10] Sarafraz M, Nikkhah V, Nakhjavani M, Arya A. Fouling formation and thermal performance of aqueous carbon nanotube nanofluid in a heat sink with rectangular parallel microchannel. App Therm Eng 2017; 123:29-39. DOI: 10.1016/j.applthermaleng.2017.05.056.
  • [11] Sarafraz M, Peyghambarzadeh S, Alavifazel S. Enhancement of nucleate pool boiling heat transfer to dilute binary mixtures using endothermic chemical reactions around the smoothed horizontal cylinder. Heat Mass Trans 2012;48(10):1755-65. DOI: 10.1007/s00231-012-1019-5.
  • [12] Drummond KP, Back D, Sinanis MD, Janes DB, Peroulis D, Weibel JA, et al. A hierarchical manifold microchannel heat sink array for high-heat-flux two-phase cooling of electronics. Int J Heat Mass Trans 2018; 117:319-30. DOI: 10.1016/j.ijheatmasstransfer.2017.10.015.
  • [13] Sarafraz MM, Pourmehran O, Yang B, Arjomandi M, Ellahi R. Pool boiling heat transfer characteristics of iron oxide nano-suspension under constant magnetic field. Int J Therm Sci 2020; 147:106131. DOI: 10.1016/j.ijthermalsci.2019.106131.
  • [14] Sarafraz MM, Peyghambarzadeh SM. Nucleate pool boiling heat transfer to Al2O3-water and TiO2-water nanofluids on horizontal smooth tubes with dissimilar homogeneous materials. Chem Biochem Eng Q 2012;26(3):199-206. DOI: 10.15255/CABEQ.2014.127.
  • [15] Arya A, Sarafraz M, Shahmiri S, Madani S, Nikkhah V, Nakhjavani S. Thermal performance analysis of a flat heat pipe working with carbon nanotube-water nanofluid for cooling of a high heat flux heater. Heat Mass Trans 2018;54(4):985-97. DOI: 10.1016/j.ijheatmasstransfer.2012.06.086.
  • [16] Nakhjavani M, Nikkhah V, Sarafraz M, Shoja S, Sarafraz M. Green synthesis of silver nanoparticles using green tea leaves: Experimental study on the morphological, rheological and antibacterial behaviour. Heat Mass Trans 2017;53(10):3201-9. DOI: 10.1007/s00231-017-2065-9.
  • [17] Nikkhah V, Sarafraz M, Hormozi F. Application of spherical copper oxide (II) water nano-fluid as a potential coolant in a boiling annular heat exchanger. Chem Biochem Eng Q 2015;29(3):405-15. DOI: 10.15255/CABEQ.2014.2069.
  • [18] Peyghambarzadeh S, Sarafraz M, Vaeli N, Ameri E, Vatani A, Jamialahmadi M. Forced convective and subcooled flow boiling heat transfer to pure water and n-heptane in an annular heat exchanger. Annals Nuc Ene 2013; 53:401-10. DOI: 10.1016/j.anucene.2012.07.037.
  • [19] Salari E, Peyghambarzadeh S, Sarafraz M, Hormozi F, Nikkhah V. Thermal behavior of aqueous iron oxide nano-fluid as a coolant on a flat disc heater under the pool boiling condition. Heat Mass Transfer 2017;53(1):265-75. DOI: 10.1007/s00231-016-1823-4.
  • [20] Kamel MS, Lezsovits F, Hussein AM, Mahian O, Wongwises S. Latest developments in boiling critical heat flux using nanofluids: A concise review. Int Commun Heat Mass Trans 2018; 98:59-66. DOI: 10.1016/j.icheatmasstransfer.2018.08.009.
  • [21] Bhattad A, Sarkar J, Ghosh P. Improving the performance of refrigeration systems by using nanofluids: A comprehensive review. Rene Sus Ene Rev 2018; 82:3656-69. DOI: 10.1016/j.rser.2017.10.097.
  • [22] Parlak N. Experimental validation of LMTD method for microscale heat transfer. J Therm Eng 2017;3(2):1181-95. DOI: 10.18186/thermal.298619.
  • [23] Sharma B. Effect of flow structure on heat transfer in compact heat exchanger by using finite thickness winglet at acute angle. J Therm Eng 2017;3(2):1149-62. DOI: 10.18186/thermal.298616.
  • [24] Belhadj A. Numerical investigation on of forced convection of nanofluid in microchannels heat sinks. J Therm Eng 2018;4(5):2263-73. DOI: 10.18186/thermal.438480. [25] Akinshilo A, Ilegbusi AO. Investigation of Lorentz force effect on steady nanofluid flow and heat transfer through parallel plates. J Thermal Eng. 2019; 5:482-97. DOI: 10.18186/thermal.625919.
  • [26] Bayareh M. Numerical simulation and analysis of heat transfer for different geometries of corrugated tubes in a double pipe heat exchanger. J Therm Eng 2019;5(4):293-301. DOI: 10.18186/thermal.581775.
  • [27] Ekiciler R, Aydeniz E, Arslan K. A CFD investigation of al2o3/water flow in a duct having backward-facing step. J Therm Eng 2019;5(1):31-41. DOI: 10.18186/thermal.512999.
  • [28] Ravisankar R, Venkatachalapathy VSK, Alagumurthi N. Application of nanotechnology to improve the performance of tractor radiator using cu-water nanofluid. J Therm Eng 2018;4(4):2188-200. DOI: 10.18186/journal-of-thermal-engineering.434036.
  • [29] Han D, He W, Asif F. Experimental study of heat transfer enhancement using nanofluid in double tube heat exchanger. Energy Procedia. 2017; 142:2547-53. DOI: 10.1016/j.egypro.2017.12.090.
  • [30] Ali HM, Babar H, Shah TR, Sajid MU, Qasim MA, Javed S. Preparation techniques of TiO2 nanofluids and challenges: a review. Appl Sci 2018;8(4):587. DOI: /10.3390/app8040587.
  • [31] Vakili M, Mohebbi A, Hashemipour H. Experimental study on convective heat transfer of TiO2 nanofluids. Heat Mass Transfer 2013;49(8):1159-65. DOI: /10.1016/j.icheatmasstransfer.2012.01.004.
  • [32] Azmi W, Hamid KA, Usri N, Mamat R, Mohamad M. Heat transfer and friction factor of water and ethylene glycol mixture based TiO2 and Al2O3 nanofluids under turbulent flow. INT COMMUN HEAT MASS 2016; 76:24-32. DOI: 10.1016/j.icheatmasstransfer.2016.05.010
  • [33] Karthikeyan A, Coulombe S, Kietzig A. Boiling heat transfer enhancement with stable nanofluids and laser textured copper surfaces. Int J Heat Mass Transf 2018; 126:287-96. DOI: 10.1016/j.ijheatmasstransfer.2018.05.118.
  • [34] Sarafraz M, Arya A, Nikkhah V, Hormozi F. Thermal performance and viscosity of biologically produced silver/coconut oil Nanofluids. Chem Biochem Eng Q 2017;30(4):489-500. DOI: 10.15255/CABEQ.2015.2203.
  • [35] Sarafraz M, Hormozi F. Application of thermodynamic models to estimating the convective flow boiling heat transfer coefficient of mixtures. Exp Therm Fluid Sci 2014; 53:70-85. DOI: 10.1016/j.expthermflusci.2013.11.004.
  • [36] Sarafraz M, Hormozi F, Kamalgharibi M. Sedimentation and convective boiling heat transfer of CuO-water/ethylene glycol nanofluids. Heat Mass Transfer 2014;50(9):1237-49. DOI: 10.1007/s00231-014-1336-y.
  • [37] Sarafraz M, Hormozi F, Peyghambarzadeh S, Vaeli N. Upward Flow Boiling to DI-Water and Cuo Nanofluids Inside the Concentric Annuli. J Appl Fluid Mech J APPL FLUID MECH 2015;8(4). DOI: 10.18869/acadpub.jafm.67.223.19404.
  • [38] Sarafraz M, Nikkhah V, Nakhjavani M, Arya A. Thermal performance of a heat sink microchannel working with biologically produced silver-water nanofluid: experimental assessment. Exp Therm Fluid Sci 2018; 91:509-19. DOI: 10.1016/j.expthermflusci.2017.11.007.
  • [39] Aouanouk AS. Numerical study of milk fouling thickness in the channel of plate heat exchanger. J Therm Eng 2018;4(6):2464-70. DOI: 10.18186/thermal.465692.
  • [40] Sarafraz M, Arjomandi M. Demonstration of plausible application of gallium nano-suspension in microchannel solar thermal receiver: Experimental assessment of thermo-hydraulic performance of microchannel. INT COMMUN HEAT MASS 2018; 94:39-46. DOI: 10.1016/j.icheatmasstransfer.2018.03.013.
  • [41] Sarafraz M, Arjomandi M. Thermal performance analysis of a microchannel heat sink cooling with Copper Oxide-Indium (CuO/In) nano-suspensions at high-temperatures. Appl Therm Eng 2018; 137:700-9. DOI: 10.1016/j.applthermaleng.2018.04.024.
  • [42] Sarafraz M, Arya H, Arjomandi M. Thermal and hydraulic analysis of a rectangular microchannel with gallium-copper oxide nano-suspension. J Mol Liq 2018; 263:382-9. DOI: 10.1016/j.molliq.2018.05.026.
  • [43] Tong LS. Boiling heat transfer and two-phase flow: Routledge; 2018.
  • [44] Alhashan T, Addali A, Teixeira JA, Naid A. Experimental investigation of the influences of different liquid types on acoustic emission energy levels during the bubble formation process. Int J Energy Environ Eng 2018;9(1):13-20. DOI: 10.1007/s40095-017-0245-5.
  • [45] Babu RV, Verma KA, Charan M, Kanagaraj S. Tweaking the diameter and concentration of carbon nanotubes and sintering duration in Copper based composites for heat transfer applications. Adv Powder Technol 2018;20(10):2356-67. DOI: 10.1016/j.apt.2018.06.015.
  • [46] Huang D, Wu Z, Sunden B. Effects of hybrid nanofluid mixture in plate heat exchangers. Exp Therm Fluid Sci 2016; 72:190-6. DOI: 10.1016/j.expthermflusci.2015.11.009.
  • [47] Sarafraz M, Peyghambarzadeh S. Influence of thermodynamic models on the prediction of pool boiling heat transfer coefficient of dilute binary mixtures. INT COMMUN HEAT MASS 2012;39(8):1303-10. DOI: 10.1016/j.icheatmasstransfer.2012.06.020.
  • [48] Sarafraz MM, Peyghambarzadeh SM. Experimental study on subcooled flow boiling heat transfer to water–diethylene glycol mixtures as a coolant inside a vertical annulus. Exp Therm Fluid Sci 2013; 50:154-62. DOI: 10.1016/j.expthermflusci.2013.06.003.
  • [49] Nikkhah V, Sarafraz MM, Hormozi F, Peyghambarzadeh SM. Particulate fouling of CuO–water nanofluid at isothermal diffusive condition inside the conventional heat exchanger-experimental and modeling. Exp Therm Fluid Sci 2015; 60:83-95. DOI: 10.1016/j.expthermflusci.2014.08.009
  • [50] Kline S, McClintock F. Jan., 1953," Describing the uncertainties in experimental results". Exp Therm Fluid Sci 1988; 1:3-17. DOI: 10.1016/0894-1777(88)90043-X.
  • [51] Sarafraz M, Peyghambarzadeh S, Alavi Fazel S, Vaeli N. Nucleate pool boiling heat transfer of binary nano mixtures under atmospheric pressure around a smooth horizontal cylinder. Period. Polytech Chem Eng 2013;57(1-2):71-7. DOI: 10.3311/PPch.2173.
  • [52] Sarafraz M, Peyghambarzadeh S, Vaeli N. Subcooled flow boiling heat transfer of ethanol aqueous solutions in vertical annulus space. Chem Ind Chem Eng Q 2012;18(2):315-27. DOI: 10.2298/CICEQ111020008S.
  • [53] Sarafraz MM, Hormozi F. Forced convective and nucleate flow boiling heat transfer to alumnia nanofluids. Period Polytech Chem Eng 2014;58(1):37-46. DOI: 10.3311/PPch.2206.
  • [54] Sarafraz M, Arya A, Hormozi F, Nikkhah V. On the convective thermal performance of a CPU cooler working with liquid gallium and CuO/water nanofluid: A comparative study. Appl Therm Eng 2017; 112:1373-81. DOI: 10.1016/j.applthermaleng.2016.10.196.
  • [55] Sarafraz M, Arya H, Saeedi M, Ahmadi D. Flow boiling heat transfer to MgO-therminol 66 heat transfer fluid: Experimental assessment and correlation development. Appl Therm Eng 2018;138:552-62. DOI: 10.1016/j.applthermaleng.2018.04.075.
  • [56] Sarafraz M, Hart J, Shrestha E, Arya H, Arjomandi M. Experimental thermal energy assessment of a liquid metal eutectic in a microchannel heat exchanger equipped with a (10 Hz/50 Hz) resonator. Appl Therm Eng 2019; 148:578-90. DOI: 10.1016/j.applthermaleng.2018.11.073.
  • [57] Hocaoglu S, Ozkan DB. The effect of system parameters on the condensation performance of heat pump system using R290. J Therm Eng 2018;4(5):2248-62. DOI: 10.18186/journal-of-thermal-engineering.436137.
  • [58] Peyghambarzadeh S, Vatani A, Jamialahmadi M. Experimental study of micro-particle fouling under forced convective heat transfer. Braz J Chem Eng 2012;29(4):713-24. DOI: 10.1590/S0104-66322012000400004.
  • [59] Huo X, Chen L, Tian Y, Karayiannis T. Flow boiling and flow regimes in small diameter tubes. Appl Therm Eng 2004;24(8-9):1225-39. DOI: 10.1016/j.applthermaleng.2003.11.027
There are 58 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Shima Nakhjavani This is me 0000-0003-1583-1934

Amin Zadeh This is me 0000-0003-0544-4981

Publication Date July 1, 2020
Submission Date August 19, 2018
Published in Issue Year 2020

Cite

APA Nakhjavani, S., & Zadeh, A. (2020). FLOW BOILING HEAT TRANSFER CHARACTERISTICS OF TITANIUM OXIDE/WATER NANOFLUID (TIO2/DI WATER) IN AN ANNULAR HEAT EXCHANGER. Journal of Thermal Engineering, 6(4), 592-603. https://doi.org/10.18186/thermal.764300
AMA Nakhjavani S, Zadeh A. FLOW BOILING HEAT TRANSFER CHARACTERISTICS OF TITANIUM OXIDE/WATER NANOFLUID (TIO2/DI WATER) IN AN ANNULAR HEAT EXCHANGER. Journal of Thermal Engineering. July 2020;6(4):592-603. doi:10.18186/thermal.764300
Chicago Nakhjavani, Shima, and Amin Zadeh. “FLOW BOILING HEAT TRANSFER CHARACTERISTICS OF TITANIUM OXIDE/WATER NANOFLUID (TIO2/DI WATER) IN AN ANNULAR HEAT EXCHANGER”. Journal of Thermal Engineering 6, no. 4 (July 2020): 592-603. https://doi.org/10.18186/thermal.764300.
EndNote Nakhjavani S, Zadeh A (July 1, 2020) FLOW BOILING HEAT TRANSFER CHARACTERISTICS OF TITANIUM OXIDE/WATER NANOFLUID (TIO2/DI WATER) IN AN ANNULAR HEAT EXCHANGER. Journal of Thermal Engineering 6 4 592–603.
IEEE S. Nakhjavani and A. Zadeh, “FLOW BOILING HEAT TRANSFER CHARACTERISTICS OF TITANIUM OXIDE/WATER NANOFLUID (TIO2/DI WATER) IN AN ANNULAR HEAT EXCHANGER”, Journal of Thermal Engineering, vol. 6, no. 4, pp. 592–603, 2020, doi: 10.18186/thermal.764300.
ISNAD Nakhjavani, Shima - Zadeh, Amin. “FLOW BOILING HEAT TRANSFER CHARACTERISTICS OF TITANIUM OXIDE/WATER NANOFLUID (TIO2/DI WATER) IN AN ANNULAR HEAT EXCHANGER”. Journal of Thermal Engineering 6/4 (July 2020), 592-603. https://doi.org/10.18186/thermal.764300.
JAMA Nakhjavani S, Zadeh A. FLOW BOILING HEAT TRANSFER CHARACTERISTICS OF TITANIUM OXIDE/WATER NANOFLUID (TIO2/DI WATER) IN AN ANNULAR HEAT EXCHANGER. Journal of Thermal Engineering. 2020;6:592–603.
MLA Nakhjavani, Shima and Amin Zadeh. “FLOW BOILING HEAT TRANSFER CHARACTERISTICS OF TITANIUM OXIDE/WATER NANOFLUID (TIO2/DI WATER) IN AN ANNULAR HEAT EXCHANGER”. Journal of Thermal Engineering, vol. 6, no. 4, 2020, pp. 592-03, doi:10.18186/thermal.764300.
Vancouver Nakhjavani S, Zadeh A. FLOW BOILING HEAT TRANSFER CHARACTERISTICS OF TITANIUM OXIDE/WATER NANOFLUID (TIO2/DI WATER) IN AN ANNULAR HEAT EXCHANGER. Journal of Thermal Engineering. 2020;6(4):592-603.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering