Note
BibTex RIS Cite
Year 2021, , 103 - 116, 01.02.2021
https://doi.org/10.18186/thermal.869237

Abstract

References

  • [1] Xiang W, Zheng K, and Shen X. 5G Mobile communications. Switzerland: Springer; 2017. doi: 10.1007/978-3-319-34208-5
  • [2] Challis LJ. Mechanisms for interaction between RF fields and biological tissue. Bioelectromagnetics Suppl 2005; 7: S98–S106. https://doi.org/10.1002/bem.20119
  • [3] Stuchly MA. Health Effects of Exposure to Electromagnetic Fields. IEEE Aerospace Applications Conference Proceedings 1995; 351–368. doi: 10.1109/AERO.1995.468891
  • [4] Gandhi OP, and Riazi A. Absorption of millimeter waves by human beings and its biological implications. IEEE Trans Microwave Theory Tech 1986; 34(2): 228–235. doi:10.1109/TMTT.1986.1133316
  • [5] Zhadobov M, Chahat N, Sauleau R, Le Quément C, and Le Dréan Y. Millimeter-wave interactions with the human body: State of knowledge and recent advances. Int J Microwave Wireless Technol 2011; 3(2): 237–247. https://doi.org/10.1017/S1759078711000122
  • [6] Gandhi OP, Lazzi G, Furse CM. Electromagnetic absorption in the human head and neck for mobile telephones at 835 and 1900 MHz. IEEE Trans. Microwave Theory Tech 1996; 44: 1884–1897. doi: 10.1109/22.539947
  • [7] Wang J, and Fujiwara O. FDTD computation of temperature rise in the human head for portable telephones. IEEE Trans Microwave Theory Tech 1999; 47 (8): 1528–1534. doi: 10.1109/22.780405
  • [8] Bernardi P, Cavagnaro M, Pisa S, Piuzzi E. Specific absorption rate and temperature elevation in a subject exposed in the far-field of radio-frequency sources operating in the 10-900-MHz range. IEEE Transactions on Biomedical Engineering 2003; 50: 295–304. doi: 10.1109/TBME.2003.808809
  • [9] Bakker JF, Paulides MM, Neufeld E, Christ A, Kuster N, Rhoon GCv. Children and adults exposed to electromagnetic fields at the ICNIRP reference levels: theoretical assessment of the induced peak temperature increase. Phys Med Biol 2011; 56: 4967-4989. doi:10.1088/0031-9155/56/15/020
  • [10] Kojima M, Suzuki Y, Sasaki K, Taki M, Wake K, Watanabe S, Mizuno M, Tasaki T, Sasaki H. Ocular Effects of Exposure to 40, 75, and 95 GHz Millimeter Waves. J Infrared, Milli, Terahz Waves 2018; 39(9): 912–925. https://doi.org/10.1007/s10762-019-00641-w.
  • [11] Stewart DA, Gowrishankar TR and Weaver JC. Skin heating and injury by prolonged millimeter-wave exposure: theory based on a skin model coupled to a whole body model and local biochemical release from cells at supraphysiologic temperatures. IEEE Transactions on Plasma Science 2006; 34(4):1480-93. doi: 10.1109/TPS.2006.878996
  • [12] Sasaki K, Mizuno M, Wake K, Watanabe S. Monte Carlo simulations of skin exposure to electromagnetic field from 10 GHz to 1 THz. Physics in Medicine & Biology 2017; 62(17): 6993-1710. doi: 10.1088/1361-6560/aa81fc
  • [13] Daniels RC and Heath RW Jr. 60 GHz wireless communications: emerging requirements and design recommendations. IEEE Vehicular Technology Magazine 2007; September: 41-50. doi:10.1109/MVT.2008.915320
  • [14] Rappaport TS, Sun S, Mayzus R, Zhao H, Azar Y, Wang K, Wong GN, Schulz JK, Samimi M and Gutierrez F. Millimeter wave mobile communications for 5G cellular: it will work! IEEE Access 2013; 1: 235-49. doi: 10.1109/ACCESS.2013.2260813
  • [15] Thors B, Colombi D, Ying Z, Bolin T, Törnevik C. Exposure to RF emf from array antennas in 5G mobile communication equipment. IEEE Access 2016; 4: 7469-7478. doi: 10.1109/ACCESS.2016.2601145
  • [16] Xu F, Seffen KA, Lu TJ. Non-Fourier analysis of skin biothermomechanics.International Journal of Heat and Mass Transfer 2008; 51(9–10): 2237-2259. https://doi.org/10.1016/j.ijheatmasstransfer.2007.10.024
  • [17] Ozen S, Helhel S, Bilgin S. Temperature and burn injury prediction of human skin exposed to microwaves: a model analysis. Radiat Environ Biophys 2011; 50: 483–489. https://doi.org/10.1007/s00411-011-0364-y
  • [18] Wessapan T, Rattanadecho P. Numerical analysis of specific absorption rate and heat transfer in human head subjected to mobile phone radiation: effects of user age and radiated power. Journal of Heat Transfer 2012; 134: 121101-1-10. doi: 10.1115/1.4006595
  • [19] Wessapan T, Rattanadecho P. Temperature induced in human organs due to near-field and far-field electromagnetic exposure effects. International Journal of Heat and Mass Transfer 2018; 119: 65–76. https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.088
  • [20] Shao Z, Fujise M. An improved FDTD formulation for general linear lumped microwave circuits based on matrix theory. IEEE Transactions on Microwave Theory and Techniques 2005; 53(7): 2261-66.doi:10.1109/TMTT.2005.850450
  • [21] Lindell IV, Sihvola AH. Perfect Electromagnetic Conductor. Journal of Electromagnetic Waves and Applications 2005, 19(7): 861-869. https://doi.org/10.1163/156939305775468741
  • [22] Adair ER, Petersen RC. Biological Effects of Radio-Frequency/Microwave Radiation. IEEE Transactions on Microwave Theory and Techniques 2002; 50(3): 953-962. doi:10.1109/22.989978
  • [23] Kaur J, Khan SA. Thermal changes in human abdomen exposed to microwaves: A model study. Advanced Electromagnetics 2019; 8(3): 64-75. https://doi.org/10.7716/aem.v8i3.1092
  • [24] Nishizawa S, Hashimoto O. Effectiveness analysis of lossy dielectric shields for a three-layered human model. IEEE Transactions on Microwave Theory and Techniques 1999; 47: 277–283. doi: 10.1109/22.750223
  • [25] Ney M, Abdulhalim I. Modeling of reflectometric and ellipsometric spectra from the skin in the terahertz and submillimeter waves region. Journal of Biomedical Optics 2011; 16(6): 067006-1-15. https://doi.org/10.1117/1.3592779
  • [26] Sabbah AI, Dib NI, Al-Nimr MA. Evaluation of specific absorption rate and temperature elevation in a multi-layered human head model exposed to radio frequency radiation using the finite-difference time domain method. IET Microw Antennas Propag 2011; 5: 1073-1080. doi: 10.1049/iet-map.2010.0172
  • [27] Liu XZ, ZhuY, Zhang F, Gong XF. Estimation of temperature elevation generated by ultrasonic irradiation in biological tissues using the thermal wave method. Chin Phys B 2013; 22(2): 024301. DOI: 10.1088/1674-1056/22/2/024301 doi: 10.1088/1674-1056/22/2/024301
  • [28] Kizilova N, Korobov A. (2019). Bioheat equation with Fourier and non-Fourier heat transport laws: applicability to heat transfer in human tissues. Journal of Thermal Engineering 2019; 5(6): 149-161. https://doi.org/10.18186/thermal.653915
  • [29] Pennes HH. Analysis of tissue and arterial blood temperature in the resting human forearm. Journal of Applied Physiology 1948; 1: 93–122. https://doi.org/10.1152/jappl.1948.1.2.93
  • [30] Wessapan T, Srisawatdhisukul S, Rattanadecho P. Specific absorption rate and temperature distributions in human head subjected to mobile phone radiation at different frequencies. Int J Heat Mass Transfer 2011; 55: 347–359. doi: 10.4103/ijpvm.IJPVM_70_17
  • [31] Miklavčič D, Pavšelj N, Hart FX. Electric Properties of Tissues. In Wiley Encyclopedia of Biomedical Engineering, 2006. doi:10.1002/9780471740360.ebs0403. accessed on March 17,2019.
  • [32] Wang Z, Deurenberg P, Wang W, Apietrobelli A, Baumgartner RN, Steven B, Heymsfield SB. Hydration of fat-free body mass: review and critique of a classic body-composition constant. Am. J Clin Nutr 1999; 69: 833–41. https://doi.org/10.1093/ajcn/69.5.833
  • [33] Feldman Y, Puzenko A, Ishai, PB, Caduff A, Davidovich I, Sakran, F, Agranat, AJ. (2009). The electromagnetic response of human skin in the millimetre and submillimetre wave range. Phys Med Biol 2009; 54: 3341–3363. doi: 10.1088/0031-9155/54/11/005
  • [34] Vague J, Garrigues, JC. Recherchesur la composition du tissuadipeuhumain et notammentsateneur en steroids. Ann Endocrin 1955; 16: 805.
  • [35] Mitchell HH, Hamilton TS, Steggerda FR, Bean HW. The chemical composition of the adult human body and its bearing on the biochemistry of growth. J biol Chem 1945; 158: 625-637.
  • [36] Entenman C, Goldwater WH, Ayres NS, Behnke AR Jr. Analysis of adipose tissue in relation to body weight loss in man. J appl Physiol 1958; 13:129-34. https://doi.org/10.1152/jappl.1958.13.1.129

NUMERICAL ANALYSIS OF HEAT TRANSFER IN MULTILAYERED SKIN TISSUE EXPOSED TO 5G MOBILE COMMUNICATION FREQUENCIES

Year 2021, , 103 - 116, 01.02.2021
https://doi.org/10.18186/thermal.869237

Abstract

Rapid growth in wireless communications has triggered the advent of 5G mobile communication systems. The use of millimeter waves (30-300 GHz) in 5G system has generated global concern about its biological safety. In present paper, we have numerically analyzed the heat transfer in a 3D multilayered skin tissue exposed to 5G frequencies. The numerical scheme comprises coupling of solution of Maxwell's equation of wave propagation within tissue to Pennes’ bioheat equation. Temperature variations are analyzed at 28 GHz, 38 GHz, and 60 GHz. Additionally, electric field and specific absorption rate distribution are also studied. Highest values of electric field and specific absorption rateare estimated in epidermis layer of skin tissue. For all considered frequencies, highest transient temperature (37.36°C) is predicted in subcutaneous fat layer of the skin. However, the steady state temperature is nearly same as core body temperature (37°C). The results show that 5G mobile phones do not cause any thermal damage to the skin tissue and can be considered safe.

References

  • [1] Xiang W, Zheng K, and Shen X. 5G Mobile communications. Switzerland: Springer; 2017. doi: 10.1007/978-3-319-34208-5
  • [2] Challis LJ. Mechanisms for interaction between RF fields and biological tissue. Bioelectromagnetics Suppl 2005; 7: S98–S106. https://doi.org/10.1002/bem.20119
  • [3] Stuchly MA. Health Effects of Exposure to Electromagnetic Fields. IEEE Aerospace Applications Conference Proceedings 1995; 351–368. doi: 10.1109/AERO.1995.468891
  • [4] Gandhi OP, and Riazi A. Absorption of millimeter waves by human beings and its biological implications. IEEE Trans Microwave Theory Tech 1986; 34(2): 228–235. doi:10.1109/TMTT.1986.1133316
  • [5] Zhadobov M, Chahat N, Sauleau R, Le Quément C, and Le Dréan Y. Millimeter-wave interactions with the human body: State of knowledge and recent advances. Int J Microwave Wireless Technol 2011; 3(2): 237–247. https://doi.org/10.1017/S1759078711000122
  • [6] Gandhi OP, Lazzi G, Furse CM. Electromagnetic absorption in the human head and neck for mobile telephones at 835 and 1900 MHz. IEEE Trans. Microwave Theory Tech 1996; 44: 1884–1897. doi: 10.1109/22.539947
  • [7] Wang J, and Fujiwara O. FDTD computation of temperature rise in the human head for portable telephones. IEEE Trans Microwave Theory Tech 1999; 47 (8): 1528–1534. doi: 10.1109/22.780405
  • [8] Bernardi P, Cavagnaro M, Pisa S, Piuzzi E. Specific absorption rate and temperature elevation in a subject exposed in the far-field of radio-frequency sources operating in the 10-900-MHz range. IEEE Transactions on Biomedical Engineering 2003; 50: 295–304. doi: 10.1109/TBME.2003.808809
  • [9] Bakker JF, Paulides MM, Neufeld E, Christ A, Kuster N, Rhoon GCv. Children and adults exposed to electromagnetic fields at the ICNIRP reference levels: theoretical assessment of the induced peak temperature increase. Phys Med Biol 2011; 56: 4967-4989. doi:10.1088/0031-9155/56/15/020
  • [10] Kojima M, Suzuki Y, Sasaki K, Taki M, Wake K, Watanabe S, Mizuno M, Tasaki T, Sasaki H. Ocular Effects of Exposure to 40, 75, and 95 GHz Millimeter Waves. J Infrared, Milli, Terahz Waves 2018; 39(9): 912–925. https://doi.org/10.1007/s10762-019-00641-w.
  • [11] Stewart DA, Gowrishankar TR and Weaver JC. Skin heating and injury by prolonged millimeter-wave exposure: theory based on a skin model coupled to a whole body model and local biochemical release from cells at supraphysiologic temperatures. IEEE Transactions on Plasma Science 2006; 34(4):1480-93. doi: 10.1109/TPS.2006.878996
  • [12] Sasaki K, Mizuno M, Wake K, Watanabe S. Monte Carlo simulations of skin exposure to electromagnetic field from 10 GHz to 1 THz. Physics in Medicine & Biology 2017; 62(17): 6993-1710. doi: 10.1088/1361-6560/aa81fc
  • [13] Daniels RC and Heath RW Jr. 60 GHz wireless communications: emerging requirements and design recommendations. IEEE Vehicular Technology Magazine 2007; September: 41-50. doi:10.1109/MVT.2008.915320
  • [14] Rappaport TS, Sun S, Mayzus R, Zhao H, Azar Y, Wang K, Wong GN, Schulz JK, Samimi M and Gutierrez F. Millimeter wave mobile communications for 5G cellular: it will work! IEEE Access 2013; 1: 235-49. doi: 10.1109/ACCESS.2013.2260813
  • [15] Thors B, Colombi D, Ying Z, Bolin T, Törnevik C. Exposure to RF emf from array antennas in 5G mobile communication equipment. IEEE Access 2016; 4: 7469-7478. doi: 10.1109/ACCESS.2016.2601145
  • [16] Xu F, Seffen KA, Lu TJ. Non-Fourier analysis of skin biothermomechanics.International Journal of Heat and Mass Transfer 2008; 51(9–10): 2237-2259. https://doi.org/10.1016/j.ijheatmasstransfer.2007.10.024
  • [17] Ozen S, Helhel S, Bilgin S. Temperature and burn injury prediction of human skin exposed to microwaves: a model analysis. Radiat Environ Biophys 2011; 50: 483–489. https://doi.org/10.1007/s00411-011-0364-y
  • [18] Wessapan T, Rattanadecho P. Numerical analysis of specific absorption rate and heat transfer in human head subjected to mobile phone radiation: effects of user age and radiated power. Journal of Heat Transfer 2012; 134: 121101-1-10. doi: 10.1115/1.4006595
  • [19] Wessapan T, Rattanadecho P. Temperature induced in human organs due to near-field and far-field electromagnetic exposure effects. International Journal of Heat and Mass Transfer 2018; 119: 65–76. https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.088
  • [20] Shao Z, Fujise M. An improved FDTD formulation for general linear lumped microwave circuits based on matrix theory. IEEE Transactions on Microwave Theory and Techniques 2005; 53(7): 2261-66.doi:10.1109/TMTT.2005.850450
  • [21] Lindell IV, Sihvola AH. Perfect Electromagnetic Conductor. Journal of Electromagnetic Waves and Applications 2005, 19(7): 861-869. https://doi.org/10.1163/156939305775468741
  • [22] Adair ER, Petersen RC. Biological Effects of Radio-Frequency/Microwave Radiation. IEEE Transactions on Microwave Theory and Techniques 2002; 50(3): 953-962. doi:10.1109/22.989978
  • [23] Kaur J, Khan SA. Thermal changes in human abdomen exposed to microwaves: A model study. Advanced Electromagnetics 2019; 8(3): 64-75. https://doi.org/10.7716/aem.v8i3.1092
  • [24] Nishizawa S, Hashimoto O. Effectiveness analysis of lossy dielectric shields for a three-layered human model. IEEE Transactions on Microwave Theory and Techniques 1999; 47: 277–283. doi: 10.1109/22.750223
  • [25] Ney M, Abdulhalim I. Modeling of reflectometric and ellipsometric spectra from the skin in the terahertz and submillimeter waves region. Journal of Biomedical Optics 2011; 16(6): 067006-1-15. https://doi.org/10.1117/1.3592779
  • [26] Sabbah AI, Dib NI, Al-Nimr MA. Evaluation of specific absorption rate and temperature elevation in a multi-layered human head model exposed to radio frequency radiation using the finite-difference time domain method. IET Microw Antennas Propag 2011; 5: 1073-1080. doi: 10.1049/iet-map.2010.0172
  • [27] Liu XZ, ZhuY, Zhang F, Gong XF. Estimation of temperature elevation generated by ultrasonic irradiation in biological tissues using the thermal wave method. Chin Phys B 2013; 22(2): 024301. DOI: 10.1088/1674-1056/22/2/024301 doi: 10.1088/1674-1056/22/2/024301
  • [28] Kizilova N, Korobov A. (2019). Bioheat equation with Fourier and non-Fourier heat transport laws: applicability to heat transfer in human tissues. Journal of Thermal Engineering 2019; 5(6): 149-161. https://doi.org/10.18186/thermal.653915
  • [29] Pennes HH. Analysis of tissue and arterial blood temperature in the resting human forearm. Journal of Applied Physiology 1948; 1: 93–122. https://doi.org/10.1152/jappl.1948.1.2.93
  • [30] Wessapan T, Srisawatdhisukul S, Rattanadecho P. Specific absorption rate and temperature distributions in human head subjected to mobile phone radiation at different frequencies. Int J Heat Mass Transfer 2011; 55: 347–359. doi: 10.4103/ijpvm.IJPVM_70_17
  • [31] Miklavčič D, Pavšelj N, Hart FX. Electric Properties of Tissues. In Wiley Encyclopedia of Biomedical Engineering, 2006. doi:10.1002/9780471740360.ebs0403. accessed on March 17,2019.
  • [32] Wang Z, Deurenberg P, Wang W, Apietrobelli A, Baumgartner RN, Steven B, Heymsfield SB. Hydration of fat-free body mass: review and critique of a classic body-composition constant. Am. J Clin Nutr 1999; 69: 833–41. https://doi.org/10.1093/ajcn/69.5.833
  • [33] Feldman Y, Puzenko A, Ishai, PB, Caduff A, Davidovich I, Sakran, F, Agranat, AJ. (2009). The electromagnetic response of human skin in the millimetre and submillimetre wave range. Phys Med Biol 2009; 54: 3341–3363. doi: 10.1088/0031-9155/54/11/005
  • [34] Vague J, Garrigues, JC. Recherchesur la composition du tissuadipeuhumain et notammentsateneur en steroids. Ann Endocrin 1955; 16: 805.
  • [35] Mitchell HH, Hamilton TS, Steggerda FR, Bean HW. The chemical composition of the adult human body and its bearing on the biochemistry of growth. J biol Chem 1945; 158: 625-637.
  • [36] Entenman C, Goldwater WH, Ayres NS, Behnke AR Jr. Analysis of adipose tissue in relation to body weight loss in man. J appl Physiol 1958; 13:129-34. https://doi.org/10.1152/jappl.1958.13.1.129
There are 36 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Jagbir Kaur This is me 0000-0001-8565-5134

Publication Date February 1, 2021
Submission Date January 13, 2019
Published in Issue Year 2021

Cite

APA Kaur, J. (2021). NUMERICAL ANALYSIS OF HEAT TRANSFER IN MULTILAYERED SKIN TISSUE EXPOSED TO 5G MOBILE COMMUNICATION FREQUENCIES. Journal of Thermal Engineering, 7(2), 103-116. https://doi.org/10.18186/thermal.869237
AMA Kaur J. NUMERICAL ANALYSIS OF HEAT TRANSFER IN MULTILAYERED SKIN TISSUE EXPOSED TO 5G MOBILE COMMUNICATION FREQUENCIES. Journal of Thermal Engineering. February 2021;7(2):103-116. doi:10.18186/thermal.869237
Chicago Kaur, Jagbir. “NUMERICAL ANALYSIS OF HEAT TRANSFER IN MULTILAYERED SKIN TISSUE EXPOSED TO 5G MOBILE COMMUNICATION FREQUENCIES”. Journal of Thermal Engineering 7, no. 2 (February 2021): 103-16. https://doi.org/10.18186/thermal.869237.
EndNote Kaur J (February 1, 2021) NUMERICAL ANALYSIS OF HEAT TRANSFER IN MULTILAYERED SKIN TISSUE EXPOSED TO 5G MOBILE COMMUNICATION FREQUENCIES. Journal of Thermal Engineering 7 2 103–116.
IEEE J. Kaur, “NUMERICAL ANALYSIS OF HEAT TRANSFER IN MULTILAYERED SKIN TISSUE EXPOSED TO 5G MOBILE COMMUNICATION FREQUENCIES”, Journal of Thermal Engineering, vol. 7, no. 2, pp. 103–116, 2021, doi: 10.18186/thermal.869237.
ISNAD Kaur, Jagbir. “NUMERICAL ANALYSIS OF HEAT TRANSFER IN MULTILAYERED SKIN TISSUE EXPOSED TO 5G MOBILE COMMUNICATION FREQUENCIES”. Journal of Thermal Engineering 7/2 (February 2021), 103-116. https://doi.org/10.18186/thermal.869237.
JAMA Kaur J. NUMERICAL ANALYSIS OF HEAT TRANSFER IN MULTILAYERED SKIN TISSUE EXPOSED TO 5G MOBILE COMMUNICATION FREQUENCIES. Journal of Thermal Engineering. 2021;7:103–116.
MLA Kaur, Jagbir. “NUMERICAL ANALYSIS OF HEAT TRANSFER IN MULTILAYERED SKIN TISSUE EXPOSED TO 5G MOBILE COMMUNICATION FREQUENCIES”. Journal of Thermal Engineering, vol. 7, no. 2, 2021, pp. 103-16, doi:10.18186/thermal.869237.
Vancouver Kaur J. NUMERICAL ANALYSIS OF HEAT TRANSFER IN MULTILAYERED SKIN TISSUE EXPOSED TO 5G MOBILE COMMUNICATION FREQUENCIES. Journal of Thermal Engineering. 2021;7(2):103-16.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering