Research Article
BibTex RIS Cite
Year 2021, , 134 - 161, 01.02.2021
https://doi.org/10.18186/thermal.871348

Abstract

References

  • [1] Choi SU, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. Argonne National Lab., IL (United States); 1995 Oct 1. DOI:10.1115/1.1532008.
  • [2] Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Siavashi M, Taylor RA, Niazmand H, Wongwises S. Recent advances in modeling and simulation of nanofluid flows-Part I: Fundamentals and theory. Physics reports. 2019 Feb 3;790:1-48. https://doi.org/10.1016/j.physrep.2018.11.004.
  • [3] Ghadimi A, Saidur R, Metselaar HS. A review of nanofluid stability properties and characterization in stationary conditions. International journal of heat and mass transfer. 2011 Aug 1;54(17-18):4051-68. https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.014.
  • [4] Mahian O, Kianifar A, Heris SZ, Wen D, Sahin AZ, Wongwises S. Nanofluids effects on the evaporation rate in a solar still equipped with a heat exchanger. Nano Energy. 2017 Jun 1;36:134-55. https://doi.org/10.1016/j.nanoen.2017.04.025.
  • [5] Menni Y, Chamkha AJ, Lorenzini G, Kaid N, Ameur H, Bensafi M. Advances of nanofluids in solar collectors—a review of numerical studies advances of nanofluids in solar collectors—a review of numerical studies. Math Model Eng Probl. 2019;6(3):415-27. https://doi.org/10.18280/mmep.060313.
  • [6] Zhang Z, Cai J, Chen F, Li H, Zhang W, Qi W. Progress in enhancement of CO2 absorption by nanofluids: A mini review of mechanisms and current status. Renewable Energy. 2018 Apr 1;118:527-35. https://doi.org/10.1016/j.renene.2017.11.031.
  • [7] Taylor R, Coulombe S, Otanicar T, Phelan P, Gunawan A, Lv W, Rosengarten G, Prasher R, Tyagi H. Small particles, big impacts: a review of the diverse applications of nanofluids. Journal of applied physics. 2013 Jan 7;113(1):1. https://doi.org/10.1063/1.4754271.
  • [8] Prasher R, Phelan PE, Bhattacharya P. Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid). Nano letters. 2006 Jul 12;6(7):1529-34. https://doi.org/10.1021/nl060992s.
  • [9] Du M, Tang GH. Optical property of nanofluids with particle agglomeration. solar energy. 2015 Dec 1;122:864-72. https://doi.org/10.1016/j.solener.2015.10.009.
  • [10] Song D, Wang Y, Jing D, Geng J. Investigation and prediction of optical properties of alumina nanofluids with different aggregation properties. International Journal of Heat and Mass Transfer. 2016 May 1;96:430-7. https://doi.org/10.1016/j.ijheatmasstransfer.2016.01.049.
  • [11] Sheikholeslami M. Numerical approach for MHD Al2O3-water nanofluid transportation inside a permeable medium using innovative computer method. Computer Methods in Applied Mechanics and Engineering. 2019 Feb 1;344:306-18. https://doi.org/10.1016/j.cma.2018.09.042.
  • [12] Haq RU, Soomro FA, Mekkaoui T, Al-Mdallal QM. MHD natural convection flow enclosure in a corrugated cavity filled with a porous medium. International Journal of Heat and Mass Transfer. 2018 Jun 1;121:1168-78. https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.063.
  • [13] Ghadikolaei SS, Hosseinzadeh K, Ganji DD, Hatami M. Fe3O4–(CH2OH) 2 nanofluid analysis in a porous medium under MHD radiative boundary layer and dusty fluid. Journal of Molecular Liquids. 2018 May 15;258:172-85. https://doi.org/10.1016/j.molliq.2018.02.106.
  • [14] Hatami M, Song D, Jing D. Optimization of a circular-wavy cavity filled by nanofluid under the natural convection heat transfer condition. International Journal of Heat and Mass Transfer. 2016 Jul 1;98:758-67. https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.063.
  • [15] Song D, Hatami M, Wang Y, Jing D, Yang Y. Prediction of hydrodynamic and optical properties of TiO2/water suspension considering particle size distribution. International Journal of Heat and Mass Transfer. 2016 Jan 1;92:864-76. https://doi.org/10.1016/j.ijheatmasstransfer.2015.08.101.
  • [16] Hatami M. Nanoparticles migration around the heated cylinder during the RSM optimization of a wavy-wall enclosure. Advanced Powder Technology. 2017 Mar 1;28(3):890-9. https://doi.org/10.1016/j.apt.2016.12.015.
  • [17] Tang W, Hatami M, Zhou J, Jing D. Natural convection heat transfer in a nanofluid-filled cavity with double sinusoidal wavy walls of various phase deviations. International Journal of Heat and Mass Transfer. 2017 Dec 1;115:430-40. https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.057.
  • [18] Hatami M, Jing D. Optimization of wavy direct absorber solar collector (WDASC) using Al2O3-water nanofluid and RSM analysis. Applied Thermal Engineering. 2017 Jul 5;121:1040-50. https://doi.org/10.1016/j.applthermaleng.2017.04.137.
  • [19] Hatami M, Zhou J, Geng J, Song D, Jing D. Optimization of a lid-driven T-shaped porous cavity to improve the nanofluids mixed convection heat transfer. Journal of Molecular Liquids. 2017 Apr 1;231:620-31. https://doi.org/10.1016/j.molliq.2017.02.048.
  • [20] Zhou J, Hatami M, Song D, Jing D. Design of microchannel heat sink with wavy channel and its time-efficient optimization with combined RSM and FVM methods. International Journal of Heat and Mass Transfer. 2016 Dec 1;103:715-24. https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.100.
  • [21] Afrand M, Najafabadi KN, Sina N, Safaei MR, Kherbeet AS, Wongwises S, Dahari M. Prediction of dynamic viscosity of a hybrid nano-lubricant by an optimal artificial neural network. International Communications in Heat and Mass Transfer. 2016 Aug 1;76:209-14. https://doi.org/10.1016/j.icheatmasstransfer.2016.05.023.
  • [22] Asadi A, Asadi M, Rezaniakolaei A, Rosendahl LA, Afrand M, Wongwises S. Heat transfer efficiency of Al2O3-MWCNT/thermal oil hybrid nanofluid as a cooling fluid in thermal and energy management applications: An experimental and theoretical investigation. International Journal of Heat and Mass Transfer. 2018 Feb 1;117:474-86. https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.036.
  • [23] Esfe MH, Esfandeh S. Investigation of rheological behavior of hybrid oil based nanolubricant-coolant applied in car engines and cooling equipments. Applied Thermal Engineering. 2018 Feb 25;131:1026-33. https://doi.org/10.1016/j.applthermaleng.2017.11.105.
  • [24] Ali MK, Xianjun H, Abdelkareem MA, Gulzar M, Elsheikh AH. Novel approach of the graphene nanolubricant for energy saving via anti-friction/wear in automobile engines. Tribology International. 2018 Aug 1;124:209-29. https://doi.org/10.1016/j.triboint.2018.04.004.
  • [25] Ali MK, Fuming P, Younus HA, Abdelkareem MA, Essa FA, Elagouz A, Xianjun H. Fuel economy in gasoline engines using Al2O3/TiO2 nanomaterials as nanolubricant additives. Applied energy. 2018 Feb 1;211:461-78. https://doi.org/10.1016/j.apenergy.2017.11.013.
  • [26] Sharif MZ, Azmi WH, Redhwan AA, Mamat R, Yusof TM. Performance analysis of SiO2/PAG nanolubricant in automotive air conditioning system. international journal of refrigeration. 2017 Mar 1;75:204-16. https://doi.org/10.1016/j.ijrefrig.2017.01.004.
  • [27] Xia W, Zhao J, Wu H, Zhao X, Zhang X, Xu J, Jiao S, Wang X, Zhou C, Jiang Z. Effects of oil-in-water based nanolubricant containing TiO2 nanoparticles in hot rolling of 304 stainless steel. Journal of Materials Processing Technology. 2018 Dec 1;262:149-56. https://doi.org/10.1016/j.jmatprotec.2018.06.020.
  • [28] Wu H, Jia F, Zhao J, Huang S, Wang L, Jiao S, Huang H, Jiang Z. Effect of water-based nanolubricant containing nano-TiO2 on friction and wear behaviour of chrome steel at ambient and elevated temperatures. Wear. 2019 Apr 30;426:792-804. https://doi.org/10.1016/j.wear.2018.11.023.
  • [29] Ali FH, Hamzah HK, Abdulkadhim A. Numerical study of mixed convection nanofluid in an annulus enclosure between outer rotating cylinder and inner corrugation cylinder. Heat Transfer—Asian Research. 2019 Jan;48(1):343-60. https://doi.org/10.1002/htj.21387.
  • [30] Saleh H, Alsabery AI, Hashim I. Natural convection in polygonal enclosures with inner circular cylinder. Advances in Mechanical Engineering. 2015 Dec 17;7(12):1687814015622899. https://doi.org/10.1177%2F1687814015622899.
  • [31] Bao Y, Sun J, Kong L. Effects of nano-SiO2 as water-based lubricant additive on surface qualities of strips after hot rolling. Tribology International. 2017 Oct 1;114:257-63. https://doi.org/10.1016/j.triboint.2017.04.026.
  • [32] Xie H, Dang S, Jiang B, Xiang L, Zhou S, Sheng H, Yang T, Pan F. Tribological performances of SiO2/graphene combinations as water-based lubricant additives for magnesium alloy rolling. Applied Surface Science. 2019 May 1;475:847-56. https://doi.org/10.1016/j.apsusc.2019.01.062.
  • [33] Ajeel RK, Salim WI, Hasnan K. Influences of geometrical parameters on the heat transfer characteristics through symmetry trapezoidal-corrugated channel using SiO2-water nanofluid. International Communications in Heat and Mass Transfer. 2019 Feb 1;101:1-9. https://doi.org/10.1016/j.icheatmasstransfer.2018.12.016.
  • [34] Vajjha RS, Das DK, Kulkarni DP. Development of new correlations for convective heat transfer and friction factor in turbulent regime for nanofluids. International journal of heat and mass transfer. 2010 Oct 1;53(21-22):4607-18. https://doi.org/10.1016/j.ijheatmasstransfer.2010.06.032.
  • [35] Jumpholkul C, Mahian O, Kasaeian A, Dalkilic AS, Wongwises S. An experimental study to determine the maximum efficiency index in turbulent flow of SiO2/water nanofluids. International Journal of Heat and Mass Transfer. 2017 Sep 1;112:1113-21. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.007.
  • [36] Zolper T, Li Z, Chen C, Jungk M, Marks T, Chung YW, Wang Q. Lubrication properties of polyalphaolefin and polysiloxane lubricants: molecular structure–tribology relationships. Tribology letters. 2012 Dec 1;48(3):355-65. http://dx.doi.org/10.1007/s11249-013-0103-4.
  • [37] Hajmohammadi MR. Assessment of a lubricant based nanofluid application in a rotary system. Energy Conversion and Management. 2017 Aug 15;146:78-86. https://doi.org/10.1016/j.enconman.2017.04.071.
  • [38] Ghajar AJ, Tang WC, Beam JE. Methodology for comparison of hydraulic and thermal performance of alternative heat transfer fluids in complex systems. Heat transfer engineering. 1995 Jan 1;16(1):60-72. https://doi.org/10.1080/01457639508939846.
  • [39] Yu L, Liu D, Botz F. Laminar convective heat transfer of alumina-polyalphaolefin nanofluids containing spherical and non-spherical nanoparticles. Experimental thermal and fluid science. 2012 Feb 1;37:72-83. https://doi.org/10.1016/j.expthermflusci.2011.10.005.
  • [40] O.K.C.R.L. Hamilton, IEC Fundamentals, 2, 1962.
  • [41] Vu T, Tran TN, Xu J. Single-phase flow and heat transfer characteristics of ethanol/polyalphaolefin nanoemulsion fluids in circular minichannels. International Journal of Heat and Mass Transfer. 2017 Oct 1;113:324-31. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.088.
  • [42] Sajid MU, Ali HM, Sufyan A, Rashid D, Zahid SU, Rehman WU. Experimental investigation of TiO 2–water nanofluid flow and heat transfer inside wavy mini-channel heat sinks. Journal of Thermal Analysis and Calorimetry. 2019 Aug 30;137(4):1279-94. https://doi.org/10.1007/s10973-019-08043-9.
  • [43] Javed S, Ali HM, Babar H, Khan MS, Janjua MM, Bashir MA. Internal convective heat transfer of nanofluids in different flow regimes: A comprehensive review. Physica A: Statistical Mechanics and its Applications. 2020 Jan 15;538:122783. https://doi.org/10.1016/j.physa.2019.122783.
  • [44] Abbas N, Awan MB, Amer M, Ammar SM, Sajjad U, Ali HM, Zahra N, Hussain M, Badshah MA, Jafry AT. Applications of nanofluids in photovoltaic thermal systems: a review of recent advances. Physica A: Statistical Mechanics and its Applications. 2019 Aug 28:122513. https://doi.org/10.1016/j.physa.2019.122513.
  • [45] Hussein AK, Kolsi L, Almeshaal MA, Li D, Ali HM, Ahmed IS. Mixed convection in a cubical cavity with active lateral walls and filled with hybrid graphene–platinum nanofluid. Journal of Thermal Science and Engineering Applications. 2019 Aug 1;11(4). https://doi.org/10.1115/1.4043758.
  • [46] Wahab A, Hassan A, Qasim MA, Ali HM, Babar H, Sajid MU. Solar energy systems–Potential of nanofluids. Journal of Molecular Liquids. 2019 Jun 3:111049. https://doi.org/10.1016/j.molliq.2019.111049.
  • [47] Shah TR, Ali HM. Applications of hybrid nanofluids in solar energy, practical limitations and challenges: a critical review. Solar Energy. 2019 May 1;183:173-203. https://doi.org/10.1016/j.solener.2019.03.012.
  • [48] Sajid MU, Ali HM. Recent advances in application of nanofluids in heat transfer devices: a critical review. Renewable and Sustainable Energy Reviews. 2019 Apr 1;103:556-92. https://doi.org/10.1016/j.rser.2018.12.057.
  • [49] Shashikumar NS, Gireesha BJ, Mahanthesh B, Prasannakumara BC, Chamkha AJ. Entropy generation analysis of magneto-nanoliquids embedded with aluminium and titanium alloy nanoparticles in microchannel with partial slips and convective conditions. International Journal of Numerical Methods for Heat & Fluid Flow. 2019 Oct 7. https://doi.org/10.1108/HFF-06-2018-0301.
  • [50] Selimefendigil F, Öztop HF, Chamkha AJ. Mixed Convection of Pulsating Ferrofluid Flow Over a Backward-Facing Step. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering. 2019 Dec 1;43(4):593-612. https://doi.org/10.1007/s40997-018-0238-x.
  • [51] Kumar B, Seth GS, Nandkeolyar R, Chamkha AJ. Outlining the impact of induced magnetic field and thermal radiation on magneto-convection flow of dissipative fluid. International Journal of Thermal Sciences. 2019 Dec 1;146:106101. https://doi.org/10.1016/j.ijthermalsci.2019.106101.
  • [52] Alsabery AI, Saleh H, Ghalambaz M, Chamkha AJ, Hashim I. Fluid-structure interaction analysis of transient convection heat transfer in a cavity containing inner solid cylinder and flexible right wall. International Journal of Numerical Methods for Heat & Fluid Flow. 2019 Jul 11. https://doi.org/10.1108/HFF-10-2018-0593.
  • [53] Tayebi T, Chamkha AJ, Djezzar M. Natural convection of CNT-water nanofluid in an annular space between confocal elliptic cylinders with constant heat flux on inner wall. Scientia Iranica. Transaction B, Mechanical Engineering. 2019 Oct 1;26(5):2770-83.
  • [54] Alsabery AI, Selimefendigil F, Hashim I, Chamkha AJ, Ghalambaz M. Fluid-structure interaction analysis of entropy generation and mixed convection inside a cavity with flexible right wall and heated rotating cylinder. International Journal of Heat and Mass Transfer. 2019 Sep 1;140:331-45. https://doi.org/10.1016/j.ijheatmasstransfer.2019.06.003.
  • [55] Dogonchi AS, Armaghani T, Chamkha AJ, Ganji DD. Natural convection analysis in a cavity with an inclined elliptical heater subject to shape factor of nanoparticles and magnetic field. Arabian Journal for Science and Engineering. 2019 Sep 1;44(9):7919-31. https://doi.org/10.1007/s13369-019-03956-x.
  • [56] Ghalambaz M, Chamkha AJ, Wen D. Natural convective flow and heat transfer of nano-encapsulated phase change materials (NEPCMs) in a cavity. International Journal of Heat and Mass Transfer. 2019 Aug 1;138:738-49. https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.037.
  • [57] Sadeghi HM, Babayan M, Chamkha A. Investigation of using multi-layer PCMs in the tubular heat exchanger with periodic heat transfer boundary condition. International Journal of Heat and Mass Transfer. 2020 Feb 1;147:118970. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118970.
  • [58] Ghalambaz M, Tahmasebi A, Chamkha AJ, Wen D. Conjugate local thermal non-equilibrium heat transfer in a cavity filled with a porous medium: Analysis of the element location. International Journal of Heat and Mass Transfer. 2019 Aug 1;138:941-60. https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.073.
  • [59] Hoseinzadeh S, Moafi A, Shirkhani A, Chamkha AJ. Numerical validation heat transfer of rectangular cross-section porous fins. Journal of Thermophysics and Heat Transfer. 2019 Jul;33(3):698-704. https://doi.org/10.2514/1.T5583.
  • [60] Chamkha AJ, Sazegar S, Jamesahar E, Ghalambaz M. Thermal non-equilibrium heat transfer modeling of hybrid nanofluids in a structure composed of the layers of solid and porous media and free nanofluids. Energies. 2019 Jan;12(3):541. https://doi.org/10.3390/en12030541.
  • [61] Ayoubloo KA, Ghalambaz M, Armaghani T, Noghrehabadi A, Chamkha AJ. Pseudoplastic natural convection flow and heat transfer in a cylindrical vertical cavity partially filled with a porous layer. International Journal of Numerical Methods for Heat & Fluid Flow. 2019 Sep 30. https://doi.org/10.1108/HFF-06-2019-0464.
  • [62] Ghalambaz M, Mehryan SA, Ismael MA, Chamkha A, Wen D. Fluid–structure interaction of free convection in a square cavity divided by a flexible membrane and subjected to sinusoidal temperature heating. International Journal of Numerical Methods for Heat & Fluid Flow. 2019 Jun 6. https://doi.org/10.1108/HFF-12-2018-0826.
  • [63] Alsabery AI, Ismael MA, Chamkha AJ, Hashim I. Effect of nonhomogeneous nanofluid model on transient natural convection in a non-Darcy porous cavity containing an inner solid body. International Communications in Heat and Mass Transfer. 2020 Jan 1;110:104442. https://doi.org/10.1016/j.icheatmasstransfer.2019.104442.
  • [64] Ishak MS, Alsabery AI, Chamkha A, Hashim I. Effect of finite wall thickness on entropy generation and natural convection in a nanofluid-filled partially heated square cavity. International Journal of Numerical Methods for Heat & Fluid Flow. 2019 Nov 1. https://doi.org/10.1108/HFF-06-2019-0505.
  • [65] Tayebi T, Chamkha AJ. Entropy generation analysis during MHD natural convection flow of hybrid nanofluid in a square cavity containing a corrugated conducting block. International Journal of Numerical Methods for Heat & Fluid Flow. 2019 Sep 12. https://doi.org/10.1108/HFF-04-2019-0350.
  • [66] Alsabery AI, Gedik E, Chamkha AJ, Hashim I. Impacts of heated rotating inner cylinder and two-phase nanofluid model on entropy generation and mixed convection in a square cavity. Heat and Mass Transfer. 2020 Jan;56(1):321-38. https://doi.org/10.1007/s00231-019-02698-8.
  • [67] Alsabery AI, Armaghani T, Chamkha AJ, Hashim I. Two-phase nanofluid model and magnetic field effects on mixed convection in a lid-driven cavity containing heated triangular wall. Alexandria Engineering Journal. 2020 Feb 1;59(1):129-48. https://doi.org/10.1016/j.aej.2019.12.017.
  • [68] Hoseinzadeh S, Heyns PS, Chamkha AJ, Shirkhani A. Thermal analysis of porous fins enclosure with the comparison of analytical and numerical methods. Journal of Thermal Analysis and Calorimetry. 2019 Oct 1;138(1):727-35. https://doi.org/10.1007/s10973-019-08203-x.
  • [69] Alsabery AI, Mohebbi R, Chamkha AJ, Hashim I. Impacts of magnetic field and non-homogeneous nanofluid model on convective heat transfer and entropy generation in a cavity with heated trapezoidal body. Journal of Thermal Analysis and Calorimetry. 2019 Oct 1;138(2):1371-94. https://doi.org/10.1007/s10973-019-08249-x.
  • [70] Mehryan SA, Izadi M, Namazian Z, Chamkha AJ. Natural convection of multi-walled carbon nanotube–Fe 3 O 4/water magnetic hybrid nanofluid flowing in porous medium considering the impacts of magnetic field-dependent viscosity. Journal of Thermal Analysis and Calorimetry. 2019 Oct 1;138(2):1541-55. https://doi.org/10.1007/s10973-019-08164-1.
  • [71] Ghalambaz M, Mehryan SA, Izadpanahi E, Chamkha AJ, Wen D. MHD natural convection of Cu–Al 2 O 3 water hybrid nanofluids in a cavity equally divided into two parts by a vertical flexible partition membrane. Journal of Thermal Analysis and Calorimetry. 2019 Oct 1;138(2):1723-43. https://doi.org/10.1007/s10973-019-08258-w.
  • [72] Rejvani M, Saedodin S, Vahedi SM, Wongwises S, Chamkha AJ. Experimental investigation of hybrid nano-lubricant for rheological and thermal engineering applications. Journal of Thermal Analysis and Calorimetry. 2019 Oct 1;138(2):1823-39. https://doi.org/10.1007/s10973-019-08225-5.
  • [73] Mehryan SA, Izadpanahi E, Ghalambaz M, Chamkha AJ. Mixed convection flow caused by an oscillating cylinder in a square cavity filled with Cu–Al 2 O 3/water hybrid nanofluid. Journal of Thermal Analysis and Calorimetry. 2019 Aug 15;137(3):965-82. https://doi.org/10.1007/s10973-019-08012-2.
  • [74] Alsabery AI, Mohebbi R, Chamkha AJ, Hashim I. Effect of local thermal non-equilibrium model on natural convection in a nanofluid-filled wavy-walled porous cavity containing inner solid cylinder. Chemical Engineering Science. 2019 Jun 29;201:247-63. https://doi.org/10.1016/j.ces.2019.03.006.
  • [75] Ghalambaz M, Doostani A, Izadpanahi E, Chamkha AJ. Conjugate natural convection flow of Ag–MgO/water hybrid nanofluid in a square cavity. Journal of Thermal Analysis and Calorimetry. 2020 Feb 1;139(3):2321-36. https://doi.org/10.1007/s10973-019-08617-7.
  • [76] Dogonchi AS, Tayebi T, Chamkha AJ, Ganji DD. Natural convection analysis in a square enclosure with a wavy circular heater under magnetic field and nanoparticles. Journal of Thermal Analysis and Calorimetry. 2020 Jan;139(1):661-71. https://doi.org/10.1007/s10973-019-08408-0.
  • [77] Javadi MA, Hoseinzadeh S, Ghasemiasl R, Heyns PS, Chamkha AJ. Sensitivity analysis of combined cycle parameters on exergy, economic, and environmental of a power plant. Journal of Thermal Analysis and Calorimetry. 2020 Jan;139(1):519-25. https://doi.org/10.1007/s10973-019-08399-y.
  • [78] Hashemi-Tilehnoee M, Dogonchi AS, Seyyedi SM, Chamkha AJ, Ganji DD. Magnetohydrodynamic natural convection and entropy generation analyses inside a nanofluid-filled incinerator-shaped porous cavity with wavy heater block. Journal of Thermal Analysis and Calorimetry. 2020 Jan 11:1-3. https://doi.org/10.1007/s10973-019-09220-6.
  • [79] Menni Y, Chamkha AJ, Azzi A. NANOFLUID TRANSPORT IN POROUS MEDIA: A REVIEW. Special Topics & Reviews in Porous Media: An International Journal. 2019;10(1).
  • [80] Menni Y, Chamkha AJ, Azzi A. Nanofluid flow in complex geometries—a review. Journal of Nanofluids. 2019 May 1;8(5):893-916. https://doi.org/10.1166/jon.2019.1663.
  • [81] Menni Y, Chamkha AJ, Lorenzini G, Kaid N, Ameur H, Bensafi M. Advances of nanofluids in solar collectors—a review of numerical studies advances of nanofluids in solar collectors—a review of numerical studies. Math Model Eng Probl. 2019;6(3):415-27. https://doi.org/10.18280/mmep.060313.
  • [82] Menni Y, Chamkha A, Zidani C, Benyoucef B. Heat and nanofluid transfer through baffled channels in different outlet models. Math Model Eng Probl. 2019;6(1):21-8.
  • [83] Menni Y, Chamkha AJ, Zidani C, Benyoucef B. Numerical analysis of heat and nanofluid mass transfer in a channel with detached and attached baffle plates Numerical analysis of heat and nanofluid mass transfer in a channel with detached and attached baffle plates. https://doi.org/10.18280/mmep.060107.
  • [84] Menni Y, Chamkha AJ, Massarotti N, Ameur H, Kaid N, Bensafi M. Hydrodynamic and thermal analysis of water, ethylene glycol and water-ethylene glycol as base fluids dispersed by aluminum oxide nano-sized solid particles. International Journal of Numerical Methods for Heat & Fluid Flow. 2020 Jan 2. https://doi.org/10.1108/HFF-10-2019-0739.
  • [85] Ismail T. A new analytical investigation of natural convection of non-Newtonian nanofluids flow between two vertical flat plates by the generalized decomposition method (GDM). Journal of Thermal Engineering. 2018 Oct 1;4(6):2496-508. https://doi.org/10.18186/thermal.465731.
  • [86] Belhadj A. Numerical investigation of forced convection of nanofluid in microchannels heat sinks. Journal of Thermal Engineering. 2018 Jul 1;4(5):2263-73. https://doi.org/10.18186/thermal.438480.
  • [87] Ravisankar R, Venkatachalapathy VS, Alagumurthi N. Application of nanotechnology to improve the performance of tractor radiator using cu-water nanofluid. Journal of Thermal Engineering. 2018 Jun 1;4(4):2188-200. https://doi.org/10.18186/journal-of-thermal-engineering.434036.
  • [88] Abbassi MA, Djebali R, Guedri K. Effects of heater dimensions on nanofluid natural convection in a heated incinerator shaped cavity containing a heated block. Journal of Thermal Engineering. 2018 Apr 1;4(3). https://doi.org/10.18186/journal-of-thermal-engineering.411434.

MIXED CONVECTION HEAT TRANSFER OF SIO2-WATER AND ALUMINA-PAO NANO-LUBRICANTS USED IN A MECHANICAL BALL BEARING

Year 2021, , 134 - 161, 01.02.2021
https://doi.org/10.18186/thermal.871348

Abstract

In this study, the mixed convection heat transfer in a mechanical ball bearing filled with nano-lubricants were investigated theoretically. In our case, the bearing including eight balls revolving in counter clockwise while the inner shaft rotates in clockwise direction and the inner and outer walls of bearing were kept at constant hot and cold temperatures, respectively. Two kinds of nano-lubricants SiO2-water and Alumina- Polyalphaolefin (PAO) with different shapes of nanoparticles were considered. The governing equations including velocity, pressure, and temperature formulation were solved based on the Galerkin finite element method. The governing parameters such as nanoparticle volume fraction, Reynolds and Rayleigh numbers, etc., were discussed. It turns out that the average Nusselt number increases by increasing the nanoparticle volume fraction (averagely 15% for each 0.02 increase) and the oil-based nano-lubricant has greater Nusselt number than the water based one. More importantly, the Nono-rod Alumina was found to show much greater heat transfer performance (averagely 5%) than the spherical alumina nanoparticles and nano-rod Alumina-PAO has the best performance and maximum Nusselt numbers for the heat transfer.

References

  • [1] Choi SU, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. Argonne National Lab., IL (United States); 1995 Oct 1. DOI:10.1115/1.1532008.
  • [2] Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Siavashi M, Taylor RA, Niazmand H, Wongwises S. Recent advances in modeling and simulation of nanofluid flows-Part I: Fundamentals and theory. Physics reports. 2019 Feb 3;790:1-48. https://doi.org/10.1016/j.physrep.2018.11.004.
  • [3] Ghadimi A, Saidur R, Metselaar HS. A review of nanofluid stability properties and characterization in stationary conditions. International journal of heat and mass transfer. 2011 Aug 1;54(17-18):4051-68. https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.014.
  • [4] Mahian O, Kianifar A, Heris SZ, Wen D, Sahin AZ, Wongwises S. Nanofluids effects on the evaporation rate in a solar still equipped with a heat exchanger. Nano Energy. 2017 Jun 1;36:134-55. https://doi.org/10.1016/j.nanoen.2017.04.025.
  • [5] Menni Y, Chamkha AJ, Lorenzini G, Kaid N, Ameur H, Bensafi M. Advances of nanofluids in solar collectors—a review of numerical studies advances of nanofluids in solar collectors—a review of numerical studies. Math Model Eng Probl. 2019;6(3):415-27. https://doi.org/10.18280/mmep.060313.
  • [6] Zhang Z, Cai J, Chen F, Li H, Zhang W, Qi W. Progress in enhancement of CO2 absorption by nanofluids: A mini review of mechanisms and current status. Renewable Energy. 2018 Apr 1;118:527-35. https://doi.org/10.1016/j.renene.2017.11.031.
  • [7] Taylor R, Coulombe S, Otanicar T, Phelan P, Gunawan A, Lv W, Rosengarten G, Prasher R, Tyagi H. Small particles, big impacts: a review of the diverse applications of nanofluids. Journal of applied physics. 2013 Jan 7;113(1):1. https://doi.org/10.1063/1.4754271.
  • [8] Prasher R, Phelan PE, Bhattacharya P. Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid). Nano letters. 2006 Jul 12;6(7):1529-34. https://doi.org/10.1021/nl060992s.
  • [9] Du M, Tang GH. Optical property of nanofluids with particle agglomeration. solar energy. 2015 Dec 1;122:864-72. https://doi.org/10.1016/j.solener.2015.10.009.
  • [10] Song D, Wang Y, Jing D, Geng J. Investigation and prediction of optical properties of alumina nanofluids with different aggregation properties. International Journal of Heat and Mass Transfer. 2016 May 1;96:430-7. https://doi.org/10.1016/j.ijheatmasstransfer.2016.01.049.
  • [11] Sheikholeslami M. Numerical approach for MHD Al2O3-water nanofluid transportation inside a permeable medium using innovative computer method. Computer Methods in Applied Mechanics and Engineering. 2019 Feb 1;344:306-18. https://doi.org/10.1016/j.cma.2018.09.042.
  • [12] Haq RU, Soomro FA, Mekkaoui T, Al-Mdallal QM. MHD natural convection flow enclosure in a corrugated cavity filled with a porous medium. International Journal of Heat and Mass Transfer. 2018 Jun 1;121:1168-78. https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.063.
  • [13] Ghadikolaei SS, Hosseinzadeh K, Ganji DD, Hatami M. Fe3O4–(CH2OH) 2 nanofluid analysis in a porous medium under MHD radiative boundary layer and dusty fluid. Journal of Molecular Liquids. 2018 May 15;258:172-85. https://doi.org/10.1016/j.molliq.2018.02.106.
  • [14] Hatami M, Song D, Jing D. Optimization of a circular-wavy cavity filled by nanofluid under the natural convection heat transfer condition. International Journal of Heat and Mass Transfer. 2016 Jul 1;98:758-67. https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.063.
  • [15] Song D, Hatami M, Wang Y, Jing D, Yang Y. Prediction of hydrodynamic and optical properties of TiO2/water suspension considering particle size distribution. International Journal of Heat and Mass Transfer. 2016 Jan 1;92:864-76. https://doi.org/10.1016/j.ijheatmasstransfer.2015.08.101.
  • [16] Hatami M. Nanoparticles migration around the heated cylinder during the RSM optimization of a wavy-wall enclosure. Advanced Powder Technology. 2017 Mar 1;28(3):890-9. https://doi.org/10.1016/j.apt.2016.12.015.
  • [17] Tang W, Hatami M, Zhou J, Jing D. Natural convection heat transfer in a nanofluid-filled cavity with double sinusoidal wavy walls of various phase deviations. International Journal of Heat and Mass Transfer. 2017 Dec 1;115:430-40. https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.057.
  • [18] Hatami M, Jing D. Optimization of wavy direct absorber solar collector (WDASC) using Al2O3-water nanofluid and RSM analysis. Applied Thermal Engineering. 2017 Jul 5;121:1040-50. https://doi.org/10.1016/j.applthermaleng.2017.04.137.
  • [19] Hatami M, Zhou J, Geng J, Song D, Jing D. Optimization of a lid-driven T-shaped porous cavity to improve the nanofluids mixed convection heat transfer. Journal of Molecular Liquids. 2017 Apr 1;231:620-31. https://doi.org/10.1016/j.molliq.2017.02.048.
  • [20] Zhou J, Hatami M, Song D, Jing D. Design of microchannel heat sink with wavy channel and its time-efficient optimization with combined RSM and FVM methods. International Journal of Heat and Mass Transfer. 2016 Dec 1;103:715-24. https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.100.
  • [21] Afrand M, Najafabadi KN, Sina N, Safaei MR, Kherbeet AS, Wongwises S, Dahari M. Prediction of dynamic viscosity of a hybrid nano-lubricant by an optimal artificial neural network. International Communications in Heat and Mass Transfer. 2016 Aug 1;76:209-14. https://doi.org/10.1016/j.icheatmasstransfer.2016.05.023.
  • [22] Asadi A, Asadi M, Rezaniakolaei A, Rosendahl LA, Afrand M, Wongwises S. Heat transfer efficiency of Al2O3-MWCNT/thermal oil hybrid nanofluid as a cooling fluid in thermal and energy management applications: An experimental and theoretical investigation. International Journal of Heat and Mass Transfer. 2018 Feb 1;117:474-86. https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.036.
  • [23] Esfe MH, Esfandeh S. Investigation of rheological behavior of hybrid oil based nanolubricant-coolant applied in car engines and cooling equipments. Applied Thermal Engineering. 2018 Feb 25;131:1026-33. https://doi.org/10.1016/j.applthermaleng.2017.11.105.
  • [24] Ali MK, Xianjun H, Abdelkareem MA, Gulzar M, Elsheikh AH. Novel approach of the graphene nanolubricant for energy saving via anti-friction/wear in automobile engines. Tribology International. 2018 Aug 1;124:209-29. https://doi.org/10.1016/j.triboint.2018.04.004.
  • [25] Ali MK, Fuming P, Younus HA, Abdelkareem MA, Essa FA, Elagouz A, Xianjun H. Fuel economy in gasoline engines using Al2O3/TiO2 nanomaterials as nanolubricant additives. Applied energy. 2018 Feb 1;211:461-78. https://doi.org/10.1016/j.apenergy.2017.11.013.
  • [26] Sharif MZ, Azmi WH, Redhwan AA, Mamat R, Yusof TM. Performance analysis of SiO2/PAG nanolubricant in automotive air conditioning system. international journal of refrigeration. 2017 Mar 1;75:204-16. https://doi.org/10.1016/j.ijrefrig.2017.01.004.
  • [27] Xia W, Zhao J, Wu H, Zhao X, Zhang X, Xu J, Jiao S, Wang X, Zhou C, Jiang Z. Effects of oil-in-water based nanolubricant containing TiO2 nanoparticles in hot rolling of 304 stainless steel. Journal of Materials Processing Technology. 2018 Dec 1;262:149-56. https://doi.org/10.1016/j.jmatprotec.2018.06.020.
  • [28] Wu H, Jia F, Zhao J, Huang S, Wang L, Jiao S, Huang H, Jiang Z. Effect of water-based nanolubricant containing nano-TiO2 on friction and wear behaviour of chrome steel at ambient and elevated temperatures. Wear. 2019 Apr 30;426:792-804. https://doi.org/10.1016/j.wear.2018.11.023.
  • [29] Ali FH, Hamzah HK, Abdulkadhim A. Numerical study of mixed convection nanofluid in an annulus enclosure between outer rotating cylinder and inner corrugation cylinder. Heat Transfer—Asian Research. 2019 Jan;48(1):343-60. https://doi.org/10.1002/htj.21387.
  • [30] Saleh H, Alsabery AI, Hashim I. Natural convection in polygonal enclosures with inner circular cylinder. Advances in Mechanical Engineering. 2015 Dec 17;7(12):1687814015622899. https://doi.org/10.1177%2F1687814015622899.
  • [31] Bao Y, Sun J, Kong L. Effects of nano-SiO2 as water-based lubricant additive on surface qualities of strips after hot rolling. Tribology International. 2017 Oct 1;114:257-63. https://doi.org/10.1016/j.triboint.2017.04.026.
  • [32] Xie H, Dang S, Jiang B, Xiang L, Zhou S, Sheng H, Yang T, Pan F. Tribological performances of SiO2/graphene combinations as water-based lubricant additives for magnesium alloy rolling. Applied Surface Science. 2019 May 1;475:847-56. https://doi.org/10.1016/j.apsusc.2019.01.062.
  • [33] Ajeel RK, Salim WI, Hasnan K. Influences of geometrical parameters on the heat transfer characteristics through symmetry trapezoidal-corrugated channel using SiO2-water nanofluid. International Communications in Heat and Mass Transfer. 2019 Feb 1;101:1-9. https://doi.org/10.1016/j.icheatmasstransfer.2018.12.016.
  • [34] Vajjha RS, Das DK, Kulkarni DP. Development of new correlations for convective heat transfer and friction factor in turbulent regime for nanofluids. International journal of heat and mass transfer. 2010 Oct 1;53(21-22):4607-18. https://doi.org/10.1016/j.ijheatmasstransfer.2010.06.032.
  • [35] Jumpholkul C, Mahian O, Kasaeian A, Dalkilic AS, Wongwises S. An experimental study to determine the maximum efficiency index in turbulent flow of SiO2/water nanofluids. International Journal of Heat and Mass Transfer. 2017 Sep 1;112:1113-21. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.007.
  • [36] Zolper T, Li Z, Chen C, Jungk M, Marks T, Chung YW, Wang Q. Lubrication properties of polyalphaolefin and polysiloxane lubricants: molecular structure–tribology relationships. Tribology letters. 2012 Dec 1;48(3):355-65. http://dx.doi.org/10.1007/s11249-013-0103-4.
  • [37] Hajmohammadi MR. Assessment of a lubricant based nanofluid application in a rotary system. Energy Conversion and Management. 2017 Aug 15;146:78-86. https://doi.org/10.1016/j.enconman.2017.04.071.
  • [38] Ghajar AJ, Tang WC, Beam JE. Methodology for comparison of hydraulic and thermal performance of alternative heat transfer fluids in complex systems. Heat transfer engineering. 1995 Jan 1;16(1):60-72. https://doi.org/10.1080/01457639508939846.
  • [39] Yu L, Liu D, Botz F. Laminar convective heat transfer of alumina-polyalphaolefin nanofluids containing spherical and non-spherical nanoparticles. Experimental thermal and fluid science. 2012 Feb 1;37:72-83. https://doi.org/10.1016/j.expthermflusci.2011.10.005.
  • [40] O.K.C.R.L. Hamilton, IEC Fundamentals, 2, 1962.
  • [41] Vu T, Tran TN, Xu J. Single-phase flow and heat transfer characteristics of ethanol/polyalphaolefin nanoemulsion fluids in circular minichannels. International Journal of Heat and Mass Transfer. 2017 Oct 1;113:324-31. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.088.
  • [42] Sajid MU, Ali HM, Sufyan A, Rashid D, Zahid SU, Rehman WU. Experimental investigation of TiO 2–water nanofluid flow and heat transfer inside wavy mini-channel heat sinks. Journal of Thermal Analysis and Calorimetry. 2019 Aug 30;137(4):1279-94. https://doi.org/10.1007/s10973-019-08043-9.
  • [43] Javed S, Ali HM, Babar H, Khan MS, Janjua MM, Bashir MA. Internal convective heat transfer of nanofluids in different flow regimes: A comprehensive review. Physica A: Statistical Mechanics and its Applications. 2020 Jan 15;538:122783. https://doi.org/10.1016/j.physa.2019.122783.
  • [44] Abbas N, Awan MB, Amer M, Ammar SM, Sajjad U, Ali HM, Zahra N, Hussain M, Badshah MA, Jafry AT. Applications of nanofluids in photovoltaic thermal systems: a review of recent advances. Physica A: Statistical Mechanics and its Applications. 2019 Aug 28:122513. https://doi.org/10.1016/j.physa.2019.122513.
  • [45] Hussein AK, Kolsi L, Almeshaal MA, Li D, Ali HM, Ahmed IS. Mixed convection in a cubical cavity with active lateral walls and filled with hybrid graphene–platinum nanofluid. Journal of Thermal Science and Engineering Applications. 2019 Aug 1;11(4). https://doi.org/10.1115/1.4043758.
  • [46] Wahab A, Hassan A, Qasim MA, Ali HM, Babar H, Sajid MU. Solar energy systems–Potential of nanofluids. Journal of Molecular Liquids. 2019 Jun 3:111049. https://doi.org/10.1016/j.molliq.2019.111049.
  • [47] Shah TR, Ali HM. Applications of hybrid nanofluids in solar energy, practical limitations and challenges: a critical review. Solar Energy. 2019 May 1;183:173-203. https://doi.org/10.1016/j.solener.2019.03.012.
  • [48] Sajid MU, Ali HM. Recent advances in application of nanofluids in heat transfer devices: a critical review. Renewable and Sustainable Energy Reviews. 2019 Apr 1;103:556-92. https://doi.org/10.1016/j.rser.2018.12.057.
  • [49] Shashikumar NS, Gireesha BJ, Mahanthesh B, Prasannakumara BC, Chamkha AJ. Entropy generation analysis of magneto-nanoliquids embedded with aluminium and titanium alloy nanoparticles in microchannel with partial slips and convective conditions. International Journal of Numerical Methods for Heat & Fluid Flow. 2019 Oct 7. https://doi.org/10.1108/HFF-06-2018-0301.
  • [50] Selimefendigil F, Öztop HF, Chamkha AJ. Mixed Convection of Pulsating Ferrofluid Flow Over a Backward-Facing Step. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering. 2019 Dec 1;43(4):593-612. https://doi.org/10.1007/s40997-018-0238-x.
  • [51] Kumar B, Seth GS, Nandkeolyar R, Chamkha AJ. Outlining the impact of induced magnetic field and thermal radiation on magneto-convection flow of dissipative fluid. International Journal of Thermal Sciences. 2019 Dec 1;146:106101. https://doi.org/10.1016/j.ijthermalsci.2019.106101.
  • [52] Alsabery AI, Saleh H, Ghalambaz M, Chamkha AJ, Hashim I. Fluid-structure interaction analysis of transient convection heat transfer in a cavity containing inner solid cylinder and flexible right wall. International Journal of Numerical Methods for Heat & Fluid Flow. 2019 Jul 11. https://doi.org/10.1108/HFF-10-2018-0593.
  • [53] Tayebi T, Chamkha AJ, Djezzar M. Natural convection of CNT-water nanofluid in an annular space between confocal elliptic cylinders with constant heat flux on inner wall. Scientia Iranica. Transaction B, Mechanical Engineering. 2019 Oct 1;26(5):2770-83.
  • [54] Alsabery AI, Selimefendigil F, Hashim I, Chamkha AJ, Ghalambaz M. Fluid-structure interaction analysis of entropy generation and mixed convection inside a cavity with flexible right wall and heated rotating cylinder. International Journal of Heat and Mass Transfer. 2019 Sep 1;140:331-45. https://doi.org/10.1016/j.ijheatmasstransfer.2019.06.003.
  • [55] Dogonchi AS, Armaghani T, Chamkha AJ, Ganji DD. Natural convection analysis in a cavity with an inclined elliptical heater subject to shape factor of nanoparticles and magnetic field. Arabian Journal for Science and Engineering. 2019 Sep 1;44(9):7919-31. https://doi.org/10.1007/s13369-019-03956-x.
  • [56] Ghalambaz M, Chamkha AJ, Wen D. Natural convective flow and heat transfer of nano-encapsulated phase change materials (NEPCMs) in a cavity. International Journal of Heat and Mass Transfer. 2019 Aug 1;138:738-49. https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.037.
  • [57] Sadeghi HM, Babayan M, Chamkha A. Investigation of using multi-layer PCMs in the tubular heat exchanger with periodic heat transfer boundary condition. International Journal of Heat and Mass Transfer. 2020 Feb 1;147:118970. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118970.
  • [58] Ghalambaz M, Tahmasebi A, Chamkha AJ, Wen D. Conjugate local thermal non-equilibrium heat transfer in a cavity filled with a porous medium: Analysis of the element location. International Journal of Heat and Mass Transfer. 2019 Aug 1;138:941-60. https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.073.
  • [59] Hoseinzadeh S, Moafi A, Shirkhani A, Chamkha AJ. Numerical validation heat transfer of rectangular cross-section porous fins. Journal of Thermophysics and Heat Transfer. 2019 Jul;33(3):698-704. https://doi.org/10.2514/1.T5583.
  • [60] Chamkha AJ, Sazegar S, Jamesahar E, Ghalambaz M. Thermal non-equilibrium heat transfer modeling of hybrid nanofluids in a structure composed of the layers of solid and porous media and free nanofluids. Energies. 2019 Jan;12(3):541. https://doi.org/10.3390/en12030541.
  • [61] Ayoubloo KA, Ghalambaz M, Armaghani T, Noghrehabadi A, Chamkha AJ. Pseudoplastic natural convection flow and heat transfer in a cylindrical vertical cavity partially filled with a porous layer. International Journal of Numerical Methods for Heat & Fluid Flow. 2019 Sep 30. https://doi.org/10.1108/HFF-06-2019-0464.
  • [62] Ghalambaz M, Mehryan SA, Ismael MA, Chamkha A, Wen D. Fluid–structure interaction of free convection in a square cavity divided by a flexible membrane and subjected to sinusoidal temperature heating. International Journal of Numerical Methods for Heat & Fluid Flow. 2019 Jun 6. https://doi.org/10.1108/HFF-12-2018-0826.
  • [63] Alsabery AI, Ismael MA, Chamkha AJ, Hashim I. Effect of nonhomogeneous nanofluid model on transient natural convection in a non-Darcy porous cavity containing an inner solid body. International Communications in Heat and Mass Transfer. 2020 Jan 1;110:104442. https://doi.org/10.1016/j.icheatmasstransfer.2019.104442.
  • [64] Ishak MS, Alsabery AI, Chamkha A, Hashim I. Effect of finite wall thickness on entropy generation and natural convection in a nanofluid-filled partially heated square cavity. International Journal of Numerical Methods for Heat & Fluid Flow. 2019 Nov 1. https://doi.org/10.1108/HFF-06-2019-0505.
  • [65] Tayebi T, Chamkha AJ. Entropy generation analysis during MHD natural convection flow of hybrid nanofluid in a square cavity containing a corrugated conducting block. International Journal of Numerical Methods for Heat & Fluid Flow. 2019 Sep 12. https://doi.org/10.1108/HFF-04-2019-0350.
  • [66] Alsabery AI, Gedik E, Chamkha AJ, Hashim I. Impacts of heated rotating inner cylinder and two-phase nanofluid model on entropy generation and mixed convection in a square cavity. Heat and Mass Transfer. 2020 Jan;56(1):321-38. https://doi.org/10.1007/s00231-019-02698-8.
  • [67] Alsabery AI, Armaghani T, Chamkha AJ, Hashim I. Two-phase nanofluid model and magnetic field effects on mixed convection in a lid-driven cavity containing heated triangular wall. Alexandria Engineering Journal. 2020 Feb 1;59(1):129-48. https://doi.org/10.1016/j.aej.2019.12.017.
  • [68] Hoseinzadeh S, Heyns PS, Chamkha AJ, Shirkhani A. Thermal analysis of porous fins enclosure with the comparison of analytical and numerical methods. Journal of Thermal Analysis and Calorimetry. 2019 Oct 1;138(1):727-35. https://doi.org/10.1007/s10973-019-08203-x.
  • [69] Alsabery AI, Mohebbi R, Chamkha AJ, Hashim I. Impacts of magnetic field and non-homogeneous nanofluid model on convective heat transfer and entropy generation in a cavity with heated trapezoidal body. Journal of Thermal Analysis and Calorimetry. 2019 Oct 1;138(2):1371-94. https://doi.org/10.1007/s10973-019-08249-x.
  • [70] Mehryan SA, Izadi M, Namazian Z, Chamkha AJ. Natural convection of multi-walled carbon nanotube–Fe 3 O 4/water magnetic hybrid nanofluid flowing in porous medium considering the impacts of magnetic field-dependent viscosity. Journal of Thermal Analysis and Calorimetry. 2019 Oct 1;138(2):1541-55. https://doi.org/10.1007/s10973-019-08164-1.
  • [71] Ghalambaz M, Mehryan SA, Izadpanahi E, Chamkha AJ, Wen D. MHD natural convection of Cu–Al 2 O 3 water hybrid nanofluids in a cavity equally divided into two parts by a vertical flexible partition membrane. Journal of Thermal Analysis and Calorimetry. 2019 Oct 1;138(2):1723-43. https://doi.org/10.1007/s10973-019-08258-w.
  • [72] Rejvani M, Saedodin S, Vahedi SM, Wongwises S, Chamkha AJ. Experimental investigation of hybrid nano-lubricant for rheological and thermal engineering applications. Journal of Thermal Analysis and Calorimetry. 2019 Oct 1;138(2):1823-39. https://doi.org/10.1007/s10973-019-08225-5.
  • [73] Mehryan SA, Izadpanahi E, Ghalambaz M, Chamkha AJ. Mixed convection flow caused by an oscillating cylinder in a square cavity filled with Cu–Al 2 O 3/water hybrid nanofluid. Journal of Thermal Analysis and Calorimetry. 2019 Aug 15;137(3):965-82. https://doi.org/10.1007/s10973-019-08012-2.
  • [74] Alsabery AI, Mohebbi R, Chamkha AJ, Hashim I. Effect of local thermal non-equilibrium model on natural convection in a nanofluid-filled wavy-walled porous cavity containing inner solid cylinder. Chemical Engineering Science. 2019 Jun 29;201:247-63. https://doi.org/10.1016/j.ces.2019.03.006.
  • [75] Ghalambaz M, Doostani A, Izadpanahi E, Chamkha AJ. Conjugate natural convection flow of Ag–MgO/water hybrid nanofluid in a square cavity. Journal of Thermal Analysis and Calorimetry. 2020 Feb 1;139(3):2321-36. https://doi.org/10.1007/s10973-019-08617-7.
  • [76] Dogonchi AS, Tayebi T, Chamkha AJ, Ganji DD. Natural convection analysis in a square enclosure with a wavy circular heater under magnetic field and nanoparticles. Journal of Thermal Analysis and Calorimetry. 2020 Jan;139(1):661-71. https://doi.org/10.1007/s10973-019-08408-0.
  • [77] Javadi MA, Hoseinzadeh S, Ghasemiasl R, Heyns PS, Chamkha AJ. Sensitivity analysis of combined cycle parameters on exergy, economic, and environmental of a power plant. Journal of Thermal Analysis and Calorimetry. 2020 Jan;139(1):519-25. https://doi.org/10.1007/s10973-019-08399-y.
  • [78] Hashemi-Tilehnoee M, Dogonchi AS, Seyyedi SM, Chamkha AJ, Ganji DD. Magnetohydrodynamic natural convection and entropy generation analyses inside a nanofluid-filled incinerator-shaped porous cavity with wavy heater block. Journal of Thermal Analysis and Calorimetry. 2020 Jan 11:1-3. https://doi.org/10.1007/s10973-019-09220-6.
  • [79] Menni Y, Chamkha AJ, Azzi A. NANOFLUID TRANSPORT IN POROUS MEDIA: A REVIEW. Special Topics & Reviews in Porous Media: An International Journal. 2019;10(1).
  • [80] Menni Y, Chamkha AJ, Azzi A. Nanofluid flow in complex geometries—a review. Journal of Nanofluids. 2019 May 1;8(5):893-916. https://doi.org/10.1166/jon.2019.1663.
  • [81] Menni Y, Chamkha AJ, Lorenzini G, Kaid N, Ameur H, Bensafi M. Advances of nanofluids in solar collectors—a review of numerical studies advances of nanofluids in solar collectors—a review of numerical studies. Math Model Eng Probl. 2019;6(3):415-27. https://doi.org/10.18280/mmep.060313.
  • [82] Menni Y, Chamkha A, Zidani C, Benyoucef B. Heat and nanofluid transfer through baffled channels in different outlet models. Math Model Eng Probl. 2019;6(1):21-8.
  • [83] Menni Y, Chamkha AJ, Zidani C, Benyoucef B. Numerical analysis of heat and nanofluid mass transfer in a channel with detached and attached baffle plates Numerical analysis of heat and nanofluid mass transfer in a channel with detached and attached baffle plates. https://doi.org/10.18280/mmep.060107.
  • [84] Menni Y, Chamkha AJ, Massarotti N, Ameur H, Kaid N, Bensafi M. Hydrodynamic and thermal analysis of water, ethylene glycol and water-ethylene glycol as base fluids dispersed by aluminum oxide nano-sized solid particles. International Journal of Numerical Methods for Heat & Fluid Flow. 2020 Jan 2. https://doi.org/10.1108/HFF-10-2019-0739.
  • [85] Ismail T. A new analytical investigation of natural convection of non-Newtonian nanofluids flow between two vertical flat plates by the generalized decomposition method (GDM). Journal of Thermal Engineering. 2018 Oct 1;4(6):2496-508. https://doi.org/10.18186/thermal.465731.
  • [86] Belhadj A. Numerical investigation of forced convection of nanofluid in microchannels heat sinks. Journal of Thermal Engineering. 2018 Jul 1;4(5):2263-73. https://doi.org/10.18186/thermal.438480.
  • [87] Ravisankar R, Venkatachalapathy VS, Alagumurthi N. Application of nanotechnology to improve the performance of tractor radiator using cu-water nanofluid. Journal of Thermal Engineering. 2018 Jun 1;4(4):2188-200. https://doi.org/10.18186/journal-of-thermal-engineering.434036.
  • [88] Abbassi MA, Djebali R, Guedri K. Effects of heater dimensions on nanofluid natural convection in a heated incinerator shaped cavity containing a heated block. Journal of Thermal Engineering. 2018 Apr 1;4(3). https://doi.org/10.18186/journal-of-thermal-engineering.411434.
There are 88 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

M. Hatami This is me 0000-0001-5657-6445

Farooq Ali This is me 0000-0003-0082-3261

Ammar Alsabery This is me 0000-0002-2970-6600

Songwei Hu This is me 0000-0002-1163-5082

D. Jing This is me 0000-0001-6062-9239

Hameed K. This is me 0000-0003-0983-4776

Publication Date February 1, 2021
Submission Date February 7, 2020
Published in Issue Year 2021

Cite

APA Hatami, M., Ali, F., Alsabery, A., Hu, S., et al. (2021). MIXED CONVECTION HEAT TRANSFER OF SIO2-WATER AND ALUMINA-PAO NANO-LUBRICANTS USED IN A MECHANICAL BALL BEARING. Journal of Thermal Engineering, 7(2), 134-161. https://doi.org/10.18186/thermal.871348
AMA Hatami M, Ali F, Alsabery A, Hu S, Jing D, K. H. MIXED CONVECTION HEAT TRANSFER OF SIO2-WATER AND ALUMINA-PAO NANO-LUBRICANTS USED IN A MECHANICAL BALL BEARING. Journal of Thermal Engineering. February 2021;7(2):134-161. doi:10.18186/thermal.871348
Chicago Hatami, M., Farooq Ali, Ammar Alsabery, Songwei Hu, D. Jing, and Hameed K. “MIXED CONVECTION HEAT TRANSFER OF SIO2-WATER AND ALUMINA-PAO NANO-LUBRICANTS USED IN A MECHANICAL BALL BEARING”. Journal of Thermal Engineering 7, no. 2 (February 2021): 134-61. https://doi.org/10.18186/thermal.871348.
EndNote Hatami M, Ali F, Alsabery A, Hu S, Jing D, K. H (February 1, 2021) MIXED CONVECTION HEAT TRANSFER OF SIO2-WATER AND ALUMINA-PAO NANO-LUBRICANTS USED IN A MECHANICAL BALL BEARING. Journal of Thermal Engineering 7 2 134–161.
IEEE M. Hatami, F. Ali, A. Alsabery, S. Hu, D. Jing, and H. K., “MIXED CONVECTION HEAT TRANSFER OF SIO2-WATER AND ALUMINA-PAO NANO-LUBRICANTS USED IN A MECHANICAL BALL BEARING”, Journal of Thermal Engineering, vol. 7, no. 2, pp. 134–161, 2021, doi: 10.18186/thermal.871348.
ISNAD Hatami, M. et al. “MIXED CONVECTION HEAT TRANSFER OF SIO2-WATER AND ALUMINA-PAO NANO-LUBRICANTS USED IN A MECHANICAL BALL BEARING”. Journal of Thermal Engineering 7/2 (February 2021), 134-161. https://doi.org/10.18186/thermal.871348.
JAMA Hatami M, Ali F, Alsabery A, Hu S, Jing D, K. H. MIXED CONVECTION HEAT TRANSFER OF SIO2-WATER AND ALUMINA-PAO NANO-LUBRICANTS USED IN A MECHANICAL BALL BEARING. Journal of Thermal Engineering. 2021;7:134–161.
MLA Hatami, M. et al. “MIXED CONVECTION HEAT TRANSFER OF SIO2-WATER AND ALUMINA-PAO NANO-LUBRICANTS USED IN A MECHANICAL BALL BEARING”. Journal of Thermal Engineering, vol. 7, no. 2, 2021, pp. 134-61, doi:10.18186/thermal.871348.
Vancouver Hatami M, Ali F, Alsabery A, Hu S, Jing D, K. H. MIXED CONVECTION HEAT TRANSFER OF SIO2-WATER AND ALUMINA-PAO NANO-LUBRICANTS USED IN A MECHANICAL BALL BEARING. Journal of Thermal Engineering. 2021;7(2):134-61.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering