Research Article
BibTex RIS Cite
Year 2021, , 635 - 649, 01.03.2021
https://doi.org/10.18186/thermal.888496

Abstract

References

  • [1] Mahulikar SP, Herwig H, Hausner O. Study of gas microconvection for synthesis of rarefaction and nonrarefaction effects. J Microelectromech S 2007;16:1543-56. doi:10.1109/JMEMS.2007.908434.
  • [2] Gad-el-Hak M. The fluid mechanics of microdevices—the Freeman scholar lecture. J Fluids Eng 1999;121:5-33. doi:10.1115/1.2822013.
  • [3] Kandlikar S, Garimella S, Li D, Colin S, King MR. Heat Transfer and Fluid Flow in Minichannels and Microchannels. Elsevier; 2005.
  • [4] Karniadakis G, Beskok A, Aluru N. Microflows and Nanoflows: Fundamentals and Simulation. Springer Science & Business Media; 2006.
  • [5] Megregany M, Nagarkar P, Senturia SD, Lang JH. Operation of microfabricated harmonic and ordinary side-drive motors. In IEEE Proceedings on Micro Electro Mechanical Systems, An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots. 1990. pp. 1-8.
  • [6] Gulhane NP, Mahulikar SP. Numerical study of compressible convective heat transfer with variations in all fluid properties. Int J Therm Sci 2010;49:786-96. doi:10.1016/j.ijthermalsci.2009.11.001.
  • [7] Ebert WA, Sparrow EM. Slip flow in rectangular and annular ducts. J Basic Eng 1965;87: 1018-1024. doi:10.1115/1.3650793.
  • [8] Choi HI, Lee D, Maeng JS. Computation of slip flow in microchannels using Langmuir slip condition. Numer Heat Transf Part A Appl 2003;44:59-71. doi:10.1080/713838170.
  • [9] Dongari N, Agrawal A, Agrawal A. Analytical solution of gaseous slip flow in long microchannels. Int J Heat Mass Transf 2007;50:3411-21. doi:10.1016/j.ijheatmasstransfer.2007.01.048.
  • [10] Yu S, Ameel TA. Slip-flow heat transfer in rectangular microchannels. Int J Heat Mass Transf 2001;44:4225-34. doi:10.1016/S0017-9310(01)00075-8.
  • [11] Ameel TA, Wang X, Barron RF, Warrington RO. Laminar forced convection in a circular tube with constant heat flux and slip flow. Microscale Thermophysical Engineering 1997;1:303-20. doi:10.1080/108939597200160.
  • [12] Sun W, Kakac S, Yazicioglu AG. A numerical study of single-phase convective heat transfer in microtubes for slip flow. Int J Therm Sci 2007;46:1084-94. doi:10.1016/j.ijthermalsci.2007.01.020.
  • [13] Arkilic EB, Schmidt MA, Breuer KS. Gaseous slip flow in long microchannels. J Microelectromech S 1997;6:167-78. doi:10.1109/84.585795.
  • [14] Hadjiconstantinou NG, Simek O. Constant-wall-temperature Nusselt number in micro and nano-channels. J Heat Transfer 2002;124:356-64. doi:10.1115/1.1447931.
  • [15] Renksizbulut M, Niazmand H, Tercan G. Slip-flow and heat transfer in rectangular microchannels with constant wall temperature. Int J Therm Sci 2006;45:870-81. doi:10.1016/j.ijthermalsci.2005.12.008.
  • [16] Hettiarachchi HM, Golubovic M, Worek WM, Minkowycz WJ. Three-dimensional laminar slip-flow and heat transfer in a rectangular microchannel with constant wall temperature. Int J Heat Mass Transf 2008;51:5088-96. doi:10.1016/j.ijheatmasstransfer.2008.02.049.
  • [17] Duan Z, Muzychka YS. Slip flow in the hydrodynamic entrance region of circular and noncircular microchannels. J Fluids Eng 2010;132: 011201. doi:10.1115/1.4000692.
  • [18] Kavehpour HP, Faghri M, Asako Y. Effects of compressibility and rarefaction on gaseous flows in microchannels. Numer Heat Transf Part A Appl 1997;32:677-96. doi:10.1080/10407789708913912.
  • [19] Hooman K. A superposition approach to study slip-flow forced convection in straight microchannels of uniform but arbitrary cross-section. Int J Heat Mass Transf 2008;51:3753-62. doi:10.1016/j.ijheatmasstransfer.2007.12.014.
  • [20] Hooman K. Entropy generation for microscale forced convection: effects of different thermal boundary conditions, velocity slip, temperature jump, viscous dissipation, and duct geometry. Int Commun Heat Mass 2007;34:945-57. doi:10.1016/j.icheatmasstransfer.2007.05.019.
  • [21] Hooman K. Heat transfer and entropy generation for forced convection through a microduct of rectangular cross-section: effects of velocity slip, temperature jump, and duct geometry. Int Commun Heat Mass 2008;35(9):1065-8. doi:10.1016/j.icheatmasstransfer.2008.05.015.
  • [22] Hooman K. Slip flow forced convection in a microporous duct of rectangular cross-section. Appl Therm Eng 2009;29:1012-9. doi:10.1016/j.applthermaleng.2008.05.007.
  • [23] Hooman K, Hooman F, Famouri M. Scaling effects for flow in micro-channels: variable property, viscous heating, velocity slip, and temperature jump. Int Commun Heat Mass 2009;36:192-6. doi:10.1016/j.icheatmasstransfer.2008.10.003.
  • [24] Hooman K, Ejlali A. Effects of viscous heating, fluid property variation, velocity slip, and temperature jump on convection through parallel plate and circular microchannels. Int Commun Heat Mass 2010;37(1):34-8. doi:10.1016/j.icheatmasstransfer.2009.09.011.
  • [25] Languri EM, Hooman K. Slip flow forced convection in a microchannel with semi-circular cross-section. Int Commun Heat Mass 2011;38:139-43. doi:10.1016/j.icheatmasstransfer.2010.11.021.
  • [26] Hooman K, Li J, Dahari M. Slip flow forced convection through microducts of arbitrary cross-section: Heat and momentum analogy. Int Commun Heat Mass 2016;71:176-9. doi:10.1016/j.icheatmasstransfer.2015.12.027.
  • [27] Van Rij J, Ameel T, Harman T. The effect of viscous dissipation and rarefaction on rectangular microchannel convective heat transfer. Int J Therm Sci 2009;48:271-81. doi:10.1016/j.ijthermalsci.2008.07.010.
  • [28] Van Rij J, Ameel T, Harman T. An evaluation of secondary effects on microchannel frictional and convective heat transfer characteristics. Int J Heat Mass Transf 2009;52:2792-801. doi:10.1016/j.ijheatmasstransfer.2009.01.001.
  • [29] Beskok A, Karniadakis GE, Trimmer W. Rarefaction and compressibility effects in gas microflows. J Fluids Eng 1996;118: 448-56. doi:10.1115/1.2817779.
  • [30] Bahrami M, Tamayol A, Taheri P. Slip-flow pressure drop in microchannels of general cross section. J Fluids Eng 2009;131: 031201. doi:10.1115/1.3059699.
  • [31] Zade AQ, Renksizbulut M, Friedman J. Heat transfer characteristics of developing gaseous slip-flow in rectangular microchannels with variable physical properties. Int J Heat Fluid Fl 2011;32:117-27. doi:10.1016/j.ijheatfluidflow.2010.10.004.
  • [32] Kushwaha HM, Sahu SK. Analysis of gaseous flow in a micropipe with second order velocity slip and temperature jump boundary conditions. Heat Mass Transfer 2014;50:1649-59. doi:10.1007/s00231-014-1368-3.
  • [33] Sieder EN, Tate GE. Heat transfer and pressure drop of liquids in tubes. Ind Eng Chem 1936;28:1429-35. doi:10.1021/ie50324a027.
  • [34] Kakac S. The effect of temperature-dependent fluid properties on convective heat transfer. Handbook of Single-Phase Convective Heat Transfer.Wiley, New York, 1987. Chapter 18.
  • [35] Herwig H. The effect of variable properties on momentum and heat transfer in a tube with constant heat flux across the wall. Int J Heat Mass Transf 1985;28:423-31. doi:10.1016/0017-9310(85)90075-4.
  • [36] Herwig H, Voigt M, Bauhaus FJ. The effect of variable properties on momentum and heat transfer in a tube with constant wall temperature. Int J Heat Mass Transf 1989;32:1907-15. doi:10.1016/0017-9310(89)90160-9.
  • [37] Li J, Peterson GP, Cheng P. Three-dimensional analysis of heat transfer in a micro-heat sink with single phase flow. Int J Heat Mass Transf 2004;47:4215-31. doi:10.1016/j.ijheatmasstransfer.2004.04.018.
  • [38] Nonino C, Del Giudice S, Savino S. Temperature dependent viscosity effects on laminar forced convection in the entrance region of straight ducts. Int J Heat Mass Transf 2006;49:4469-81. doi:10.1016/j.ijheatmasstransfer.2006.05.021.
  • [39] Nonino C, Del Giudice S, Savino S. Temperature-dependent viscosity and viscous dissipation effects in microchannel flows with uniform wall heat flux. Heat Transfer Eng 2010;31:682-91. doi:10.1080/01457630903466670.
  • [40] Del Giudice S, Savino S, Nonino C. Temperature dependent viscosity and thermal conductivity effects on the laminar forced convection in straight microchannels. J Heat Transfer 2013;135:101003. doi:10.1115/1.4024496.
  • [41] Mahulikar SP, Herwig H. Theoretical investigation of scaling effects from macro-to-microscale convection due to variations in incompressible fluid properties. Appl Phys Lett 2005;86:014105. doi:10.1063/1.1845597.
  • [42] Mahulikar SP, Herwig H. Physical effects in laminar microconvection due to variations in incompressible fluid properties. Phys Fluids 2006;18:073601. doi:10.1063/1.2210027.
  • [43] Herwig H, Mahulikar SP. Variable property effects in single-phase incompressible flows through microchannels. Int J Therm Sci 2006;45:977-81. doi:10.1016/j.ijthermalsci.2006.01.002.
  • [44] Gulhane NP, Mahulikar SP. Variations in gas properties in laminar micro-convection with entrance effect. Int J Heat Mass Transf 2009;52:1980-90. doi:10.1016/j.ijheatmasstransfer.2008.08.037.
  • [45] Kumar R, Mahulikar SP. Effect of temperature-dependent viscosity variation on fully developed laminar microconvective flow. Int J Therm Sci 2015;98:179-91. doi:10.1016/j.ijthermalsci.2015.07.011.
  • [46] Kumar R, Mahulikar SP. Frictional flow characteristics of microconvective flow for variable fluid properties. Fluid Dyn Res 2015;47:065501. doi:10.1088/0169-5983/47/6/065501.
  • [47] Kumar R, Mahulikar SP. Physical effects of variable thermophysical fluid properties on flow and thermal development in micro-channel. Heat Transfer Eng 2018;39:374-90. doi:10.1080/01457632.2017.1305841.
  • [48] Kumar R, Mahulikar SP. Physical effects of variable fluid properties on laminar gas microconvective flow. Heat Tran Asian Res 2017;46:1029-40. doi:10.1002/htj.21256.
  • [49] Bird RB, Stewart WE, Lightfoot EN. Transport Phenomena (revised second ed.) New York: John Wiley & Sons; 2007.
  • [50] Maxwell JC. VII. On stresses in rarified gases arising from inequalities of temperature. Philosophical Transactions of the Royal Society of London. 1879;31:231-56. doi:10.1098/rstl.1879.0067.
  • [51] Anderson Jr, JD. Hypersonic and high-temperature gas dynamics. Singapore: McGraw Hill; 2006.
  • [52] Eckert ER, Drake Jr RM. Analysis of Heat and Mass Transfer. Washington: Hemisphere; 1987.
  • [53] Mahulikar SP, Gulhane NP, Pradhan SD, Hrisheekesh K, Prabhu SV. Pressure drop characteristics in continuum-based laminar compressible microconvective flow. Nanoscale Microscale Thermophys Eng 2012;16:181-97. doi:10.1080/15567265.2012.683934.

PHYSICAL EFFECTS OF VARIABLE FLUID PROPERTIES ON GASEOUS SLIP-FLOW THROUGH A MICRO-CHANNEL HEAT SINK

Year 2021, , 635 - 649, 01.03.2021
https://doi.org/10.18186/thermal.888496

Abstract

Physical effects induced in micro-convective gaseous slip-flow due to variation in fluid properties are numerically examined in this paper. The problem is particularly simulated for slip-flow through a micro-channel heat sink (MCHS) having constant heat flux supplied from the wall under hydrodynamically and thermally fully developed flow (FDF) conditions. It is observed that the Nusselt number (Nu) for slip-flow is significantly higher than the no-slip-flow condition and Nu is significantly affected due to variable fluid properties (VFP). Four different cases of VFP are studied in order to investigate their effects individually. Pressure and temperature dependent density (ρ(p, T)) variation flattens the axial velocity profile in radial direction (u(r)) profile which promotes faster-moving particles close to the wall which considerably enhances Nu. The incorporation of temperature-dependent viscosity (μ(T)) variation marginally enhances Nu along the flow. Incorporation of temperature-dependent thermal conductivity (k(T)) variation highly augments Nu due to higher ρ and higher k fluid near to the wall and the incorporation of temperature-dependent specific heat at constant pressure (Cp(T)) variation reduces Nu due to lower k fluid near to the wall. The investigation also shows that the pressure drop significantly deviates from no-slip to slip condition. Furthermore, the effects of VFP on the gauge static pressure drop (Δpg) and slip velocity are also examined. The incorporation of μ(T) and k(T) variations trivially affects the Δpg and slip velocity. However, the incorporation of Cp(T) variation significantly affects the Δpg and slip velocity.

References

  • [1] Mahulikar SP, Herwig H, Hausner O. Study of gas microconvection for synthesis of rarefaction and nonrarefaction effects. J Microelectromech S 2007;16:1543-56. doi:10.1109/JMEMS.2007.908434.
  • [2] Gad-el-Hak M. The fluid mechanics of microdevices—the Freeman scholar lecture. J Fluids Eng 1999;121:5-33. doi:10.1115/1.2822013.
  • [3] Kandlikar S, Garimella S, Li D, Colin S, King MR. Heat Transfer and Fluid Flow in Minichannels and Microchannels. Elsevier; 2005.
  • [4] Karniadakis G, Beskok A, Aluru N. Microflows and Nanoflows: Fundamentals and Simulation. Springer Science & Business Media; 2006.
  • [5] Megregany M, Nagarkar P, Senturia SD, Lang JH. Operation of microfabricated harmonic and ordinary side-drive motors. In IEEE Proceedings on Micro Electro Mechanical Systems, An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots. 1990. pp. 1-8.
  • [6] Gulhane NP, Mahulikar SP. Numerical study of compressible convective heat transfer with variations in all fluid properties. Int J Therm Sci 2010;49:786-96. doi:10.1016/j.ijthermalsci.2009.11.001.
  • [7] Ebert WA, Sparrow EM. Slip flow in rectangular and annular ducts. J Basic Eng 1965;87: 1018-1024. doi:10.1115/1.3650793.
  • [8] Choi HI, Lee D, Maeng JS. Computation of slip flow in microchannels using Langmuir slip condition. Numer Heat Transf Part A Appl 2003;44:59-71. doi:10.1080/713838170.
  • [9] Dongari N, Agrawal A, Agrawal A. Analytical solution of gaseous slip flow in long microchannels. Int J Heat Mass Transf 2007;50:3411-21. doi:10.1016/j.ijheatmasstransfer.2007.01.048.
  • [10] Yu S, Ameel TA. Slip-flow heat transfer in rectangular microchannels. Int J Heat Mass Transf 2001;44:4225-34. doi:10.1016/S0017-9310(01)00075-8.
  • [11] Ameel TA, Wang X, Barron RF, Warrington RO. Laminar forced convection in a circular tube with constant heat flux and slip flow. Microscale Thermophysical Engineering 1997;1:303-20. doi:10.1080/108939597200160.
  • [12] Sun W, Kakac S, Yazicioglu AG. A numerical study of single-phase convective heat transfer in microtubes for slip flow. Int J Therm Sci 2007;46:1084-94. doi:10.1016/j.ijthermalsci.2007.01.020.
  • [13] Arkilic EB, Schmidt MA, Breuer KS. Gaseous slip flow in long microchannels. J Microelectromech S 1997;6:167-78. doi:10.1109/84.585795.
  • [14] Hadjiconstantinou NG, Simek O. Constant-wall-temperature Nusselt number in micro and nano-channels. J Heat Transfer 2002;124:356-64. doi:10.1115/1.1447931.
  • [15] Renksizbulut M, Niazmand H, Tercan G. Slip-flow and heat transfer in rectangular microchannels with constant wall temperature. Int J Therm Sci 2006;45:870-81. doi:10.1016/j.ijthermalsci.2005.12.008.
  • [16] Hettiarachchi HM, Golubovic M, Worek WM, Minkowycz WJ. Three-dimensional laminar slip-flow and heat transfer in a rectangular microchannel with constant wall temperature. Int J Heat Mass Transf 2008;51:5088-96. doi:10.1016/j.ijheatmasstransfer.2008.02.049.
  • [17] Duan Z, Muzychka YS. Slip flow in the hydrodynamic entrance region of circular and noncircular microchannels. J Fluids Eng 2010;132: 011201. doi:10.1115/1.4000692.
  • [18] Kavehpour HP, Faghri M, Asako Y. Effects of compressibility and rarefaction on gaseous flows in microchannels. Numer Heat Transf Part A Appl 1997;32:677-96. doi:10.1080/10407789708913912.
  • [19] Hooman K. A superposition approach to study slip-flow forced convection in straight microchannels of uniform but arbitrary cross-section. Int J Heat Mass Transf 2008;51:3753-62. doi:10.1016/j.ijheatmasstransfer.2007.12.014.
  • [20] Hooman K. Entropy generation for microscale forced convection: effects of different thermal boundary conditions, velocity slip, temperature jump, viscous dissipation, and duct geometry. Int Commun Heat Mass 2007;34:945-57. doi:10.1016/j.icheatmasstransfer.2007.05.019.
  • [21] Hooman K. Heat transfer and entropy generation for forced convection through a microduct of rectangular cross-section: effects of velocity slip, temperature jump, and duct geometry. Int Commun Heat Mass 2008;35(9):1065-8. doi:10.1016/j.icheatmasstransfer.2008.05.015.
  • [22] Hooman K. Slip flow forced convection in a microporous duct of rectangular cross-section. Appl Therm Eng 2009;29:1012-9. doi:10.1016/j.applthermaleng.2008.05.007.
  • [23] Hooman K, Hooman F, Famouri M. Scaling effects for flow in micro-channels: variable property, viscous heating, velocity slip, and temperature jump. Int Commun Heat Mass 2009;36:192-6. doi:10.1016/j.icheatmasstransfer.2008.10.003.
  • [24] Hooman K, Ejlali A. Effects of viscous heating, fluid property variation, velocity slip, and temperature jump on convection through parallel plate and circular microchannels. Int Commun Heat Mass 2010;37(1):34-8. doi:10.1016/j.icheatmasstransfer.2009.09.011.
  • [25] Languri EM, Hooman K. Slip flow forced convection in a microchannel with semi-circular cross-section. Int Commun Heat Mass 2011;38:139-43. doi:10.1016/j.icheatmasstransfer.2010.11.021.
  • [26] Hooman K, Li J, Dahari M. Slip flow forced convection through microducts of arbitrary cross-section: Heat and momentum analogy. Int Commun Heat Mass 2016;71:176-9. doi:10.1016/j.icheatmasstransfer.2015.12.027.
  • [27] Van Rij J, Ameel T, Harman T. The effect of viscous dissipation and rarefaction on rectangular microchannel convective heat transfer. Int J Therm Sci 2009;48:271-81. doi:10.1016/j.ijthermalsci.2008.07.010.
  • [28] Van Rij J, Ameel T, Harman T. An evaluation of secondary effects on microchannel frictional and convective heat transfer characteristics. Int J Heat Mass Transf 2009;52:2792-801. doi:10.1016/j.ijheatmasstransfer.2009.01.001.
  • [29] Beskok A, Karniadakis GE, Trimmer W. Rarefaction and compressibility effects in gas microflows. J Fluids Eng 1996;118: 448-56. doi:10.1115/1.2817779.
  • [30] Bahrami M, Tamayol A, Taheri P. Slip-flow pressure drop in microchannels of general cross section. J Fluids Eng 2009;131: 031201. doi:10.1115/1.3059699.
  • [31] Zade AQ, Renksizbulut M, Friedman J. Heat transfer characteristics of developing gaseous slip-flow in rectangular microchannels with variable physical properties. Int J Heat Fluid Fl 2011;32:117-27. doi:10.1016/j.ijheatfluidflow.2010.10.004.
  • [32] Kushwaha HM, Sahu SK. Analysis of gaseous flow in a micropipe with second order velocity slip and temperature jump boundary conditions. Heat Mass Transfer 2014;50:1649-59. doi:10.1007/s00231-014-1368-3.
  • [33] Sieder EN, Tate GE. Heat transfer and pressure drop of liquids in tubes. Ind Eng Chem 1936;28:1429-35. doi:10.1021/ie50324a027.
  • [34] Kakac S. The effect of temperature-dependent fluid properties on convective heat transfer. Handbook of Single-Phase Convective Heat Transfer.Wiley, New York, 1987. Chapter 18.
  • [35] Herwig H. The effect of variable properties on momentum and heat transfer in a tube with constant heat flux across the wall. Int J Heat Mass Transf 1985;28:423-31. doi:10.1016/0017-9310(85)90075-4.
  • [36] Herwig H, Voigt M, Bauhaus FJ. The effect of variable properties on momentum and heat transfer in a tube with constant wall temperature. Int J Heat Mass Transf 1989;32:1907-15. doi:10.1016/0017-9310(89)90160-9.
  • [37] Li J, Peterson GP, Cheng P. Three-dimensional analysis of heat transfer in a micro-heat sink with single phase flow. Int J Heat Mass Transf 2004;47:4215-31. doi:10.1016/j.ijheatmasstransfer.2004.04.018.
  • [38] Nonino C, Del Giudice S, Savino S. Temperature dependent viscosity effects on laminar forced convection in the entrance region of straight ducts. Int J Heat Mass Transf 2006;49:4469-81. doi:10.1016/j.ijheatmasstransfer.2006.05.021.
  • [39] Nonino C, Del Giudice S, Savino S. Temperature-dependent viscosity and viscous dissipation effects in microchannel flows with uniform wall heat flux. Heat Transfer Eng 2010;31:682-91. doi:10.1080/01457630903466670.
  • [40] Del Giudice S, Savino S, Nonino C. Temperature dependent viscosity and thermal conductivity effects on the laminar forced convection in straight microchannels. J Heat Transfer 2013;135:101003. doi:10.1115/1.4024496.
  • [41] Mahulikar SP, Herwig H. Theoretical investigation of scaling effects from macro-to-microscale convection due to variations in incompressible fluid properties. Appl Phys Lett 2005;86:014105. doi:10.1063/1.1845597.
  • [42] Mahulikar SP, Herwig H. Physical effects in laminar microconvection due to variations in incompressible fluid properties. Phys Fluids 2006;18:073601. doi:10.1063/1.2210027.
  • [43] Herwig H, Mahulikar SP. Variable property effects in single-phase incompressible flows through microchannels. Int J Therm Sci 2006;45:977-81. doi:10.1016/j.ijthermalsci.2006.01.002.
  • [44] Gulhane NP, Mahulikar SP. Variations in gas properties in laminar micro-convection with entrance effect. Int J Heat Mass Transf 2009;52:1980-90. doi:10.1016/j.ijheatmasstransfer.2008.08.037.
  • [45] Kumar R, Mahulikar SP. Effect of temperature-dependent viscosity variation on fully developed laminar microconvective flow. Int J Therm Sci 2015;98:179-91. doi:10.1016/j.ijthermalsci.2015.07.011.
  • [46] Kumar R, Mahulikar SP. Frictional flow characteristics of microconvective flow for variable fluid properties. Fluid Dyn Res 2015;47:065501. doi:10.1088/0169-5983/47/6/065501.
  • [47] Kumar R, Mahulikar SP. Physical effects of variable thermophysical fluid properties on flow and thermal development in micro-channel. Heat Transfer Eng 2018;39:374-90. doi:10.1080/01457632.2017.1305841.
  • [48] Kumar R, Mahulikar SP. Physical effects of variable fluid properties on laminar gas microconvective flow. Heat Tran Asian Res 2017;46:1029-40. doi:10.1002/htj.21256.
  • [49] Bird RB, Stewart WE, Lightfoot EN. Transport Phenomena (revised second ed.) New York: John Wiley & Sons; 2007.
  • [50] Maxwell JC. VII. On stresses in rarified gases arising from inequalities of temperature. Philosophical Transactions of the Royal Society of London. 1879;31:231-56. doi:10.1098/rstl.1879.0067.
  • [51] Anderson Jr, JD. Hypersonic and high-temperature gas dynamics. Singapore: McGraw Hill; 2006.
  • [52] Eckert ER, Drake Jr RM. Analysis of Heat and Mass Transfer. Washington: Hemisphere; 1987.
  • [53] Mahulikar SP, Gulhane NP, Pradhan SD, Hrisheekesh K, Prabhu SV. Pressure drop characteristics in continuum-based laminar compressible microconvective flow. Nanoscale Microscale Thermophys Eng 2012;16:181-97. doi:10.1080/15567265.2012.683934.
There are 53 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Rajan Kumar This is me 0000-0002-9929-5915

Publication Date March 1, 2021
Submission Date February 22, 2019
Published in Issue Year 2021

Cite

APA Kumar, R. (2021). PHYSICAL EFFECTS OF VARIABLE FLUID PROPERTIES ON GASEOUS SLIP-FLOW THROUGH A MICRO-CHANNEL HEAT SINK. Journal of Thermal Engineering, 7(3), 635-649. https://doi.org/10.18186/thermal.888496
AMA Kumar R. PHYSICAL EFFECTS OF VARIABLE FLUID PROPERTIES ON GASEOUS SLIP-FLOW THROUGH A MICRO-CHANNEL HEAT SINK. Journal of Thermal Engineering. March 2021;7(3):635-649. doi:10.18186/thermal.888496
Chicago Kumar, Rajan. “PHYSICAL EFFECTS OF VARIABLE FLUID PROPERTIES ON GASEOUS SLIP-FLOW THROUGH A MICRO-CHANNEL HEAT SINK”. Journal of Thermal Engineering 7, no. 3 (March 2021): 635-49. https://doi.org/10.18186/thermal.888496.
EndNote Kumar R (March 1, 2021) PHYSICAL EFFECTS OF VARIABLE FLUID PROPERTIES ON GASEOUS SLIP-FLOW THROUGH A MICRO-CHANNEL HEAT SINK. Journal of Thermal Engineering 7 3 635–649.
IEEE R. Kumar, “PHYSICAL EFFECTS OF VARIABLE FLUID PROPERTIES ON GASEOUS SLIP-FLOW THROUGH A MICRO-CHANNEL HEAT SINK”, Journal of Thermal Engineering, vol. 7, no. 3, pp. 635–649, 2021, doi: 10.18186/thermal.888496.
ISNAD Kumar, Rajan. “PHYSICAL EFFECTS OF VARIABLE FLUID PROPERTIES ON GASEOUS SLIP-FLOW THROUGH A MICRO-CHANNEL HEAT SINK”. Journal of Thermal Engineering 7/3 (March 2021), 635-649. https://doi.org/10.18186/thermal.888496.
JAMA Kumar R. PHYSICAL EFFECTS OF VARIABLE FLUID PROPERTIES ON GASEOUS SLIP-FLOW THROUGH A MICRO-CHANNEL HEAT SINK. Journal of Thermal Engineering. 2021;7:635–649.
MLA Kumar, Rajan. “PHYSICAL EFFECTS OF VARIABLE FLUID PROPERTIES ON GASEOUS SLIP-FLOW THROUGH A MICRO-CHANNEL HEAT SINK”. Journal of Thermal Engineering, vol. 7, no. 3, 2021, pp. 635-49, doi:10.18186/thermal.888496.
Vancouver Kumar R. PHYSICAL EFFECTS OF VARIABLE FLUID PROPERTIES ON GASEOUS SLIP-FLOW THROUGH A MICRO-CHANNEL HEAT SINK. Journal of Thermal Engineering. 2021;7(3):635-49.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering