Research Article
BibTex RIS Cite
Year 2021, , 1016 - 1029, 01.05.2021
https://doi.org/10.18186/thermal.931364

Abstract

References

  • [1] Philippe A. JAVET, Pierre LERCH, Eric PLATTNER. Introduction à la chimie pour ingénieurs, Deuxième Edition, Presses polytechniques et universitaires romandes, 1995.
  • [2] A. Bejan. A study of entropy generation in fundamental convective heat transfer, J. Heat Transfer, 101, 718-725, 1979. doi.org/10.1115/1.3451063
  • [3] A. Bejan. The thermodynamic design of heat and mass transfer processes and devices, J. Heat and Fluid Flow, 8, 258-275, 1987. doi.org/10.1016/0142-727X(87)90062-2
  • [4] B. S. Yilbas. Natural Convection and Entropy Generation in a Square Cavity, International Journal of Entropy Research, Res, 22, 1275-1290, 1998. doi.org/10.1002/(SICI)1099-114X(199811)22:14<1275::AID-ER453>3.0.CO;2-B
  • [5] A. C. Baytaç. Entropy generation for natural convection an inclined porous cavity, International Journal of Heat and Mass transfer, Vol 43, pp 2089-2099, 1999. doi.org/10.1016/S0017-9310(99)00291-4
  • [6] S. Z. Shuja, B. S. Yilbas, M. O. Iqbal. Mixed convection in a square cavity due to heat generation rectangular body, International Journal of Numerical Method for Heat & Flow, Vol 10, pp 824-841, 2000. DOI: 10.1108/09615530010359120
  • [7] B. S. Yilbas, S. Z. Shuja, M. O. Iqbal. Energy and entropy analysis in a square cavity with protruding body: effect of protruding body aspect ratio, International Journal of Energy Reserch, Vol 26, 851-866, 2002. doi.org/10.1002/er.824
  • [8] M. Magheribi, H.Abbassi, A. Ben Brahim. Entropy generation at the onset of natural convection, International Journal of Heat and Mass, Vol 46, pp 3444-3450, 2003. https://doi.org/10.1016/S0017-9310(03)00133-9
  • [9] G.E. Ovando-Chacon. Entropy generation due to mixed convection in an enclosure with heated corners, International Journal of Heat and Mass Transfer, Volume 55, Issue 4, pp 695-700, 2012. https://doi.org/10.1016/j.ijheatmasstransfer.2011.10.041
  • [10] Abd el malik Bouchoucha and a. Natural Convection And Entropy Generation Of Nanofluids In A Square Cavity, International Journal Of Heat And Technology,vol.33 No.4, pp.1-10, 2015. DOI: 10.18280/ijht.330401
  • [11] Fatih Selimefendigil, Hakan F. Oztop. Mixed convection and entropy generation of nanofluid flow in a vented cavity under the influence of inclined magnetic field, Technical Paper, pp1-12, 2019. DOI: 10.1007/s00542-019-04350-1
  • [12] Almakki, M., Mondal, H., & Sibanda, P. Entropy Generation in MHD Flow of Viscoelastic Nanofluids with Homogeneous-Heterogeneous Reaction, Partial Slip and Nonlinear Thermal Radiation. Journal of Thermal Engineering, 6(3), 327-345, 2020. DOI: 10.18186/thermal.712452
  • [13] Öğüt, E. B. Second Law Analysis Of Mixed Convection Of Magnetohydrodynamic Flow In An Inclined Square Lid-Driven Enclosure. Journal of Thermal Engineering, 5(6), 240-251, 2019. DOI: 10.18186/thermal.655023
  • [14] Karakurt, Sinan, and Umit Gunes. "A New Approach For Evaluating The Rankine Cycle Through Entropy Generation." Journal of Thermal Engineering 5, no. 6: 141-148. DOI: 10.18186/thermal.651508
  • [15] Rout, S. K. Experimental investigation and performance optimization of a cross flow heat exchanger by entropy generation minimization approach. Journal of Thermal Engineering, 5(2), 1-12, 2019. DOI: 10.18186/thermal.519128
  • [16] Mansoor, S. Entropy Generation Rate In A Microscale Thin Film. Journal of Thermal Engineering, 5(5), 405-413, 2019. DOI: 10.18186/thermal.623211
  • [17] Ana-Maria Bianchi. Transferts thermiques, 1ère edition, Press polytechniques et universitaires romandes, 2004.
  • [18] Ana-Maria Bianchi, Transferts thermiques, 1ère ed, Press polytechniques et universitaires romandes.
  • [19] Clement Kleinstreuer. Modern Fluid Dynamics, Springer Verlag, USA, 2009.
  • [20] S. A. Gandjalikhan Nassab, A. Bahrami, R. Moosavi. Entropy generation in convection over an inclined backward-facing step with bleeding, International Journal of Science and Technology Education Research, Vol 2(5), pp 88-97, 2011. DOI: 10.1016/j.enconman.2007.10.031
  • [21] T. Kawamura, H. Takami, K. Kuwahara. New higher-order upwind scheme for incompressible Navier-Stokes equations, Numerical Method in Fluid Dynamics, Lecture Notes in Physics, vol, 218, pp. 291-295, 1985. DOI: 10.1007/3-540-13917-6_152
  • [22] Dale A. Anderson, John C.Tannehill, Richard H. Plether. Computational Fluid Mechanics and Heat Transfer, Hemisphere Publishing Corporation, United states, 1984.
  • [23] John Wiley & Sons. Applied Numerical methods, Copyright, by John Wiley & Sons, 1962.
  • [24] Menni, Y., Ghazvini, M., Ameur, H., Ahmadi, M. H., Sharifpur, M., & Sadeghzadeh, M. Numerical calculations of the thermal-aerodynamic characteristics in a solar duct with multiple V-baffles. Engineering Applications of Computational Fluid Mechanics, 14(1), 1173-1197, 2000. Doi.org/10.1080/19942060.2020.18155886
  • [25] Ameur, H., Sahel, D., & Menni, Y. Enhancement of the cooling of shear-thinning fluids in channel heat exchangers by using the V-baffling technique. Thermal Science and Engineering Progress, 100534, 2020. doi.org/10.1016/j.tsep.2020.100534
  • [26] Ameur, H., & Menni, Y. Laminar cooling of shear thinning fluids in horizontal and baffled tubes: Effect of perforation in baffles. Thermal Science and Engineering Progress, 14, 100430, 2019. doi.org/10.1016/j.tsep.2019.100430
  • [27] Ameur, H., Sahel, D., & Menni, Y. Numerical investigation of the performance of perforated baffles in a plate-fin heat exchanger. Thermal Science, (00), 90-90, 2020. DOI: 10.2298/TSCI190316090A
  • [28] Menni, Y., Ameur, H., Chamkha, A. J., Inc, M., & Almohsen, B. Heat and mass transfer of oils in baffled and finned ducts. Thermal Science, 24(Suppl. 1), 267-276, 2020. DOI: 10.2298/TSCI20267M
  • [29] Laidoudi, H., & Ameur, H. Investigation of the mixed convection of power-law fluids between two horizontal concentric cylinders: Effect of various operating conditions. Thermal Science and Engineering Progress, 20, 100731, 2020. doi.org/10.1016/j.tsep.2020.100731
  • [30] Aydin, O., & Yang, W. J. Natural convection in enclosures with localized heating from below and symmetrical cooling from sides. International Journal of Numerical Methods for Heat & Fluid Flow. Vo10, 5, pp.518-529, 2000. doi.org/10.1108/09615530010338196

NUMERICAL SIMULATION OF PRANDTL NUMBER EFFECT ON ENTROPY GENERATION IN A SQUARE CAVITY

Year 2021, , 1016 - 1029, 01.05.2021
https://doi.org/10.18186/thermal.931364

Abstract

In this study, entropy generation in laminar mixed convection in a square fluid-filled cavity is numerically studied. The middle of the lower wall of the cavity is heated to a constant temperature Th while the side-walls are maintained at a constant temperature Tc, and moving upper ward at a constant velocity to understand the effects of irreversibility distribution on the entropy generation for different engineering applications. For the studied control surface, remaining parts of lower and upper walls are adiabatic. The finite difference method is used to solve the governing equation. The entropy analysis is carried out to determine the irreversibility which is generated in the cavity for different Prandtl number (Pr=0.0212, 0.71 and 6.35), the effect of the irreversibility distribution ratio on entropy generation was investigated. It seen that effect of irreversibility distribution ratio (γ=10-2 and 10-4) have play important role on the total entropy for different Prandtl number. Also it is clear that, for all Prandtl number, the total entropy generation increase by increasing the irreversibility distribution ratio and the increase of Prandtl number regardless the values of Ri=1 and Re=100 because of the increase of the velocity gradients.

References

  • [1] Philippe A. JAVET, Pierre LERCH, Eric PLATTNER. Introduction à la chimie pour ingénieurs, Deuxième Edition, Presses polytechniques et universitaires romandes, 1995.
  • [2] A. Bejan. A study of entropy generation in fundamental convective heat transfer, J. Heat Transfer, 101, 718-725, 1979. doi.org/10.1115/1.3451063
  • [3] A. Bejan. The thermodynamic design of heat and mass transfer processes and devices, J. Heat and Fluid Flow, 8, 258-275, 1987. doi.org/10.1016/0142-727X(87)90062-2
  • [4] B. S. Yilbas. Natural Convection and Entropy Generation in a Square Cavity, International Journal of Entropy Research, Res, 22, 1275-1290, 1998. doi.org/10.1002/(SICI)1099-114X(199811)22:14<1275::AID-ER453>3.0.CO;2-B
  • [5] A. C. Baytaç. Entropy generation for natural convection an inclined porous cavity, International Journal of Heat and Mass transfer, Vol 43, pp 2089-2099, 1999. doi.org/10.1016/S0017-9310(99)00291-4
  • [6] S. Z. Shuja, B. S. Yilbas, M. O. Iqbal. Mixed convection in a square cavity due to heat generation rectangular body, International Journal of Numerical Method for Heat & Flow, Vol 10, pp 824-841, 2000. DOI: 10.1108/09615530010359120
  • [7] B. S. Yilbas, S. Z. Shuja, M. O. Iqbal. Energy and entropy analysis in a square cavity with protruding body: effect of protruding body aspect ratio, International Journal of Energy Reserch, Vol 26, 851-866, 2002. doi.org/10.1002/er.824
  • [8] M. Magheribi, H.Abbassi, A. Ben Brahim. Entropy generation at the onset of natural convection, International Journal of Heat and Mass, Vol 46, pp 3444-3450, 2003. https://doi.org/10.1016/S0017-9310(03)00133-9
  • [9] G.E. Ovando-Chacon. Entropy generation due to mixed convection in an enclosure with heated corners, International Journal of Heat and Mass Transfer, Volume 55, Issue 4, pp 695-700, 2012. https://doi.org/10.1016/j.ijheatmasstransfer.2011.10.041
  • [10] Abd el malik Bouchoucha and a. Natural Convection And Entropy Generation Of Nanofluids In A Square Cavity, International Journal Of Heat And Technology,vol.33 No.4, pp.1-10, 2015. DOI: 10.18280/ijht.330401
  • [11] Fatih Selimefendigil, Hakan F. Oztop. Mixed convection and entropy generation of nanofluid flow in a vented cavity under the influence of inclined magnetic field, Technical Paper, pp1-12, 2019. DOI: 10.1007/s00542-019-04350-1
  • [12] Almakki, M., Mondal, H., & Sibanda, P. Entropy Generation in MHD Flow of Viscoelastic Nanofluids with Homogeneous-Heterogeneous Reaction, Partial Slip and Nonlinear Thermal Radiation. Journal of Thermal Engineering, 6(3), 327-345, 2020. DOI: 10.18186/thermal.712452
  • [13] Öğüt, E. B. Second Law Analysis Of Mixed Convection Of Magnetohydrodynamic Flow In An Inclined Square Lid-Driven Enclosure. Journal of Thermal Engineering, 5(6), 240-251, 2019. DOI: 10.18186/thermal.655023
  • [14] Karakurt, Sinan, and Umit Gunes. "A New Approach For Evaluating The Rankine Cycle Through Entropy Generation." Journal of Thermal Engineering 5, no. 6: 141-148. DOI: 10.18186/thermal.651508
  • [15] Rout, S. K. Experimental investigation and performance optimization of a cross flow heat exchanger by entropy generation minimization approach. Journal of Thermal Engineering, 5(2), 1-12, 2019. DOI: 10.18186/thermal.519128
  • [16] Mansoor, S. Entropy Generation Rate In A Microscale Thin Film. Journal of Thermal Engineering, 5(5), 405-413, 2019. DOI: 10.18186/thermal.623211
  • [17] Ana-Maria Bianchi. Transferts thermiques, 1ère edition, Press polytechniques et universitaires romandes, 2004.
  • [18] Ana-Maria Bianchi, Transferts thermiques, 1ère ed, Press polytechniques et universitaires romandes.
  • [19] Clement Kleinstreuer. Modern Fluid Dynamics, Springer Verlag, USA, 2009.
  • [20] S. A. Gandjalikhan Nassab, A. Bahrami, R. Moosavi. Entropy generation in convection over an inclined backward-facing step with bleeding, International Journal of Science and Technology Education Research, Vol 2(5), pp 88-97, 2011. DOI: 10.1016/j.enconman.2007.10.031
  • [21] T. Kawamura, H. Takami, K. Kuwahara. New higher-order upwind scheme for incompressible Navier-Stokes equations, Numerical Method in Fluid Dynamics, Lecture Notes in Physics, vol, 218, pp. 291-295, 1985. DOI: 10.1007/3-540-13917-6_152
  • [22] Dale A. Anderson, John C.Tannehill, Richard H. Plether. Computational Fluid Mechanics and Heat Transfer, Hemisphere Publishing Corporation, United states, 1984.
  • [23] John Wiley & Sons. Applied Numerical methods, Copyright, by John Wiley & Sons, 1962.
  • [24] Menni, Y., Ghazvini, M., Ameur, H., Ahmadi, M. H., Sharifpur, M., & Sadeghzadeh, M. Numerical calculations of the thermal-aerodynamic characteristics in a solar duct with multiple V-baffles. Engineering Applications of Computational Fluid Mechanics, 14(1), 1173-1197, 2000. Doi.org/10.1080/19942060.2020.18155886
  • [25] Ameur, H., Sahel, D., & Menni, Y. Enhancement of the cooling of shear-thinning fluids in channel heat exchangers by using the V-baffling technique. Thermal Science and Engineering Progress, 100534, 2020. doi.org/10.1016/j.tsep.2020.100534
  • [26] Ameur, H., & Menni, Y. Laminar cooling of shear thinning fluids in horizontal and baffled tubes: Effect of perforation in baffles. Thermal Science and Engineering Progress, 14, 100430, 2019. doi.org/10.1016/j.tsep.2019.100430
  • [27] Ameur, H., Sahel, D., & Menni, Y. Numerical investigation of the performance of perforated baffles in a plate-fin heat exchanger. Thermal Science, (00), 90-90, 2020. DOI: 10.2298/TSCI190316090A
  • [28] Menni, Y., Ameur, H., Chamkha, A. J., Inc, M., & Almohsen, B. Heat and mass transfer of oils in baffled and finned ducts. Thermal Science, 24(Suppl. 1), 267-276, 2020. DOI: 10.2298/TSCI20267M
  • [29] Laidoudi, H., & Ameur, H. Investigation of the mixed convection of power-law fluids between two horizontal concentric cylinders: Effect of various operating conditions. Thermal Science and Engineering Progress, 20, 100731, 2020. doi.org/10.1016/j.tsep.2020.100731
  • [30] Aydin, O., & Yang, W. J. Natural convection in enclosures with localized heating from below and symmetrical cooling from sides. International Journal of Numerical Methods for Heat & Fluid Flow. Vo10, 5, pp.518-529, 2000. doi.org/10.1108/09615530010338196
There are 30 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Nawal Ferroudj This is me 0000-0001-7743-0971

Hasan Köten This is me 0000-0002-1907-9420

Publication Date May 1, 2021
Submission Date October 28, 2020
Published in Issue Year 2021

Cite

APA Ferroudj, N., & Köten, H. (2021). NUMERICAL SIMULATION OF PRANDTL NUMBER EFFECT ON ENTROPY GENERATION IN A SQUARE CAVITY. Journal of Thermal Engineering, 7(4), 1016-1029. https://doi.org/10.18186/thermal.931364
AMA Ferroudj N, Köten H. NUMERICAL SIMULATION OF PRANDTL NUMBER EFFECT ON ENTROPY GENERATION IN A SQUARE CAVITY. Journal of Thermal Engineering. May 2021;7(4):1016-1029. doi:10.18186/thermal.931364
Chicago Ferroudj, Nawal, and Hasan Köten. “NUMERICAL SIMULATION OF PRANDTL NUMBER EFFECT ON ENTROPY GENERATION IN A SQUARE CAVITY”. Journal of Thermal Engineering 7, no. 4 (May 2021): 1016-29. https://doi.org/10.18186/thermal.931364.
EndNote Ferroudj N, Köten H (May 1, 2021) NUMERICAL SIMULATION OF PRANDTL NUMBER EFFECT ON ENTROPY GENERATION IN A SQUARE CAVITY. Journal of Thermal Engineering 7 4 1016–1029.
IEEE N. Ferroudj and H. Köten, “NUMERICAL SIMULATION OF PRANDTL NUMBER EFFECT ON ENTROPY GENERATION IN A SQUARE CAVITY”, Journal of Thermal Engineering, vol. 7, no. 4, pp. 1016–1029, 2021, doi: 10.18186/thermal.931364.
ISNAD Ferroudj, Nawal - Köten, Hasan. “NUMERICAL SIMULATION OF PRANDTL NUMBER EFFECT ON ENTROPY GENERATION IN A SQUARE CAVITY”. Journal of Thermal Engineering 7/4 (May 2021), 1016-1029. https://doi.org/10.18186/thermal.931364.
JAMA Ferroudj N, Köten H. NUMERICAL SIMULATION OF PRANDTL NUMBER EFFECT ON ENTROPY GENERATION IN A SQUARE CAVITY. Journal of Thermal Engineering. 2021;7:1016–1029.
MLA Ferroudj, Nawal and Hasan Köten. “NUMERICAL SIMULATION OF PRANDTL NUMBER EFFECT ON ENTROPY GENERATION IN A SQUARE CAVITY”. Journal of Thermal Engineering, vol. 7, no. 4, 2021, pp. 1016-29, doi:10.18186/thermal.931364.
Vancouver Ferroudj N, Köten H. NUMERICAL SIMULATION OF PRANDTL NUMBER EFFECT ON ENTROPY GENERATION IN A SQUARE CAVITY. Journal of Thermal Engineering. 2021;7(4):1016-29.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering