Research Article
BibTex RIS Cite

Flow behavior and thermal separation mechanism on vortex tube

Year 2021, , 1090 - 1099, 01.07.2021
https://doi.org/10.18186/thermal.977941

Abstract

Flow behaviour and thermal separation mechanism on vortex tubes have been studied numer-ically. Rapid expansion indicated by high-pressure gradient near the inlet and the exit ports contributes to energy separation on the parallel and the counter flow vortex tubes. It creates a cooling process at the core region and drives an internal and rotational energy transfer to the peripheral region, then increases the gas temperature at the periphery along with friction due to the presence of the confined wall. Static temperature is related to static pressure in such a way that low pressure leads to the low static temperature at the same region inside the vortex tube. On the other hand, the high total temperature is found in the region with the low dynamic velocity. For both vortex tubes, the flow fields are mainly governed by the tangential velocity at the periphery and by the axial velocity at the core region. The maximum Mach number values based on the maximum tangential velocities in the inlet area for the counter and the parallel flow vortex tubes are 0.689 and 0.726, respectively, so both are compressible and subsonic flows. For the same size of geometry and boundary conditions, the parallel flow vortex tube has higher COP than the counter flow vortex tube i.e. 0.26 and 0.25, respectively.

References

  • [1] Ranque GJ. Experiments on Expansion in a Vortex with Simultaneous Exhaust of Hot and Cold Air. Le Journal De Physique et le Radium 1933; 4: 112-114.
  • [2] Hilsch R. The Use of the Expansion of Aires in Centrifugal Field as a Cooling Process. Review of Scientific Instrument 1947; 13: 108-113. https://doi.org/10.1063/1.1740893.
  • [3] Deissler RG, Perlmutter M. Analysis of The Flow and Energy Separation in a Turbulent Vortex. International Journal of Heat and Mass Transfer 1960; 1: 173–191. https://doi.org/10.1016/0017-9310(60)90021-1.
  • [4] Linderstom-Lang, CU. Gas Separation in The Ranque-Hilsch Vortex Tube, International Journal of Heat and Mass Transfer 1964; 7: 1195-1206. https://doi.org/10.1016/0017-9310(64)90061-4.
  • [5] Takahama H, Kawamura H. Performance Characteristic of Energy Separation in a Steam-Operated Vortex Tube. International Journal of Engineering Science 1979; 17: 735-744. https://doi.org/10.1016/0020-7225(79)90048-X.
  • [6] Kurosaka M. Acoustic streaming in swirl flow and the Ranque–Hilsch (vortex-tube) effect. Journal of Fluid Mechanics 1982; 124: 139–172. https://doi.org/10.1017/S0022112082002444.
  • [7] Ahlborn BK, Groves S. Secondary flow in a vortex tube. Fluid Dyn. Res. 1997; 21: 73–86.
  • [8] Frohlingsdorf W, Unger H. Numerical investigations of the compressible flow and the energy separation in Ranque–Hilsch vortex tube. International Journal of Heat and Mass Transfer 1999; 42: 415–422. https://doi.org/10.1016/S0017-9310(98)00191-4.
  • [9] Farouk T, Farouk B. Large eddy simulations of the flow field and temperature separation in the Ranque–Hilsch vortex tube. International Journal of Heat and Mass Transfer 2007; 50: 4724–4735. https://doi.org/10.1016/j.ijheatmasstransfer.2007.03.048.
  • [10] Behera U, Paul PJ, Dinesh K, Jacob S. Numerical investigations on flow behaviour and energy separation in Ranque–Hilsch vortex tube. International Journal of Heat and Mass Transfer 2008; 51: 6077–6089. https://doi.org/10.1016/j.ijheatmasstransfer.2008.03.029.
  • [11] Baghdad M, Ouadha A, Imine O, Addad Y. Numerical study of energy separation in a vortex tube with different RANS models. International Journal of Thermal Sciences 2011; 50: 2377-2385. https://doi.org/10.1016/j.ijthermalsci.2011.07.011.
  • [12] Pouriya HN, Mortaheb HR, Mokhtarani B. Numerical Investigation of a Ranque–Hilsch Vortex Tube Using a Three-Equation Turbulence Model. Chemical Engineering Communications 2016; 204: 327-336. https://doi.org/10.1080/00986445.2016.1155989.
  • [13] Hamdan MO, Omari SAB, Oweimer AS. Experimental study of vortex tube energy separation under different tube design. Experimental Thermal and Fluid Science 2018; 91: 306-311. https://doi.org/10.1016/j.expthermflusci.2017.10.034.
  • [14] Xiangji Guo, Bo Zhang, Bo Liu, Xiang Xu. A critical review on the flow structure studies of Ranque–Hilsch vortex tubes. International Journal of Refrigeration 2019; 104: 51-64. https://doi.org/10.1016/j.ijrefrig.2019.04.030.
  • [15] Bramo AR, Pourmahmoud N. CFD simulation of length to diameter ratio effect on the energy separation in a vortex tube. Thermal Science 2011; 15: 3, 833-848. https://doi.org/10.2298/TSCI101004008B.
  • [16] Pourmahmoud N, Hassanzadeh A, Moutaby O. Numerical analysis of the effect of helical nozzles gap on the cooling capacity of Ranque-Hilsch vortex tube. International Journal of Refrigeration 2012; 35: 1473-1483. https://doi.org/10.1016/j.ijrefrig.2012.03.019.
  • [17] Sky HM, Klein SA, Nellis G. Comparison of CFD Analysis to empirical data in a commercial vortex tube. International Journal of Refrigeration 2006; 29: 71-80. https://doi.org/10.1016/j.ijrefrig.2005.05.004.
  • [18] Noor DZ, Mirmanto H, Sarsetiyanto J, Soedjono DME, Setyawati SB. Numerical study of flow and thermal filed on a parallel flow vortex tube. Engineering 2012; 4: 774-777. doi: 10.4236/eng.2012.411099.
  • [19] Polihronov JG, Straatman AG. Thermodynamics of angular propulsion in fluids. Physical Review Letters 2012, 109. https://doi.org/10.1103/PhysRevLett.109.054504.
Year 2021, , 1090 - 1099, 01.07.2021
https://doi.org/10.18186/thermal.977941

Abstract

References

  • [1] Ranque GJ. Experiments on Expansion in a Vortex with Simultaneous Exhaust of Hot and Cold Air. Le Journal De Physique et le Radium 1933; 4: 112-114.
  • [2] Hilsch R. The Use of the Expansion of Aires in Centrifugal Field as a Cooling Process. Review of Scientific Instrument 1947; 13: 108-113. https://doi.org/10.1063/1.1740893.
  • [3] Deissler RG, Perlmutter M. Analysis of The Flow and Energy Separation in a Turbulent Vortex. International Journal of Heat and Mass Transfer 1960; 1: 173–191. https://doi.org/10.1016/0017-9310(60)90021-1.
  • [4] Linderstom-Lang, CU. Gas Separation in The Ranque-Hilsch Vortex Tube, International Journal of Heat and Mass Transfer 1964; 7: 1195-1206. https://doi.org/10.1016/0017-9310(64)90061-4.
  • [5] Takahama H, Kawamura H. Performance Characteristic of Energy Separation in a Steam-Operated Vortex Tube. International Journal of Engineering Science 1979; 17: 735-744. https://doi.org/10.1016/0020-7225(79)90048-X.
  • [6] Kurosaka M. Acoustic streaming in swirl flow and the Ranque–Hilsch (vortex-tube) effect. Journal of Fluid Mechanics 1982; 124: 139–172. https://doi.org/10.1017/S0022112082002444.
  • [7] Ahlborn BK, Groves S. Secondary flow in a vortex tube. Fluid Dyn. Res. 1997; 21: 73–86.
  • [8] Frohlingsdorf W, Unger H. Numerical investigations of the compressible flow and the energy separation in Ranque–Hilsch vortex tube. International Journal of Heat and Mass Transfer 1999; 42: 415–422. https://doi.org/10.1016/S0017-9310(98)00191-4.
  • [9] Farouk T, Farouk B. Large eddy simulations of the flow field and temperature separation in the Ranque–Hilsch vortex tube. International Journal of Heat and Mass Transfer 2007; 50: 4724–4735. https://doi.org/10.1016/j.ijheatmasstransfer.2007.03.048.
  • [10] Behera U, Paul PJ, Dinesh K, Jacob S. Numerical investigations on flow behaviour and energy separation in Ranque–Hilsch vortex tube. International Journal of Heat and Mass Transfer 2008; 51: 6077–6089. https://doi.org/10.1016/j.ijheatmasstransfer.2008.03.029.
  • [11] Baghdad M, Ouadha A, Imine O, Addad Y. Numerical study of energy separation in a vortex tube with different RANS models. International Journal of Thermal Sciences 2011; 50: 2377-2385. https://doi.org/10.1016/j.ijthermalsci.2011.07.011.
  • [12] Pouriya HN, Mortaheb HR, Mokhtarani B. Numerical Investigation of a Ranque–Hilsch Vortex Tube Using a Three-Equation Turbulence Model. Chemical Engineering Communications 2016; 204: 327-336. https://doi.org/10.1080/00986445.2016.1155989.
  • [13] Hamdan MO, Omari SAB, Oweimer AS. Experimental study of vortex tube energy separation under different tube design. Experimental Thermal and Fluid Science 2018; 91: 306-311. https://doi.org/10.1016/j.expthermflusci.2017.10.034.
  • [14] Xiangji Guo, Bo Zhang, Bo Liu, Xiang Xu. A critical review on the flow structure studies of Ranque–Hilsch vortex tubes. International Journal of Refrigeration 2019; 104: 51-64. https://doi.org/10.1016/j.ijrefrig.2019.04.030.
  • [15] Bramo AR, Pourmahmoud N. CFD simulation of length to diameter ratio effect on the energy separation in a vortex tube. Thermal Science 2011; 15: 3, 833-848. https://doi.org/10.2298/TSCI101004008B.
  • [16] Pourmahmoud N, Hassanzadeh A, Moutaby O. Numerical analysis of the effect of helical nozzles gap on the cooling capacity of Ranque-Hilsch vortex tube. International Journal of Refrigeration 2012; 35: 1473-1483. https://doi.org/10.1016/j.ijrefrig.2012.03.019.
  • [17] Sky HM, Klein SA, Nellis G. Comparison of CFD Analysis to empirical data in a commercial vortex tube. International Journal of Refrigeration 2006; 29: 71-80. https://doi.org/10.1016/j.ijrefrig.2005.05.004.
  • [18] Noor DZ, Mirmanto H, Sarsetiyanto J, Soedjono DME, Setyawati SB. Numerical study of flow and thermal filed on a parallel flow vortex tube. Engineering 2012; 4: 774-777. doi: 10.4236/eng.2012.411099.
  • [19] Polihronov JG, Straatman AG. Thermodynamics of angular propulsion in fluids. Physical Review Letters 2012, 109. https://doi.org/10.1103/PhysRevLett.109.054504.
There are 19 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Dedy Noor This is me 0000-0002-5260-1866

Heru Mırmanto This is me

Joko Sarsetıyanto This is me 0000-0001-8539-1669

Denny Soedjono This is me 0000-0003-1081-8271

Publication Date July 1, 2021
Submission Date July 2, 2019
Published in Issue Year 2021

Cite

APA Noor, D., Mırmanto, H., Sarsetıyanto, J., Soedjono, D. (2021). Flow behavior and thermal separation mechanism on vortex tube. Journal of Thermal Engineering, 7(5), 1090-1099. https://doi.org/10.18186/thermal.977941
AMA Noor D, Mırmanto H, Sarsetıyanto J, Soedjono D. Flow behavior and thermal separation mechanism on vortex tube. Journal of Thermal Engineering. July 2021;7(5):1090-1099. doi:10.18186/thermal.977941
Chicago Noor, Dedy, Heru Mırmanto, Joko Sarsetıyanto, and Denny Soedjono. “Flow Behavior and Thermal Separation Mechanism on Vortex Tube”. Journal of Thermal Engineering 7, no. 5 (July 2021): 1090-99. https://doi.org/10.18186/thermal.977941.
EndNote Noor D, Mırmanto H, Sarsetıyanto J, Soedjono D (July 1, 2021) Flow behavior and thermal separation mechanism on vortex tube. Journal of Thermal Engineering 7 5 1090–1099.
IEEE D. Noor, H. Mırmanto, J. Sarsetıyanto, and D. Soedjono, “Flow behavior and thermal separation mechanism on vortex tube”, Journal of Thermal Engineering, vol. 7, no. 5, pp. 1090–1099, 2021, doi: 10.18186/thermal.977941.
ISNAD Noor, Dedy et al. “Flow Behavior and Thermal Separation Mechanism on Vortex Tube”. Journal of Thermal Engineering 7/5 (July 2021), 1090-1099. https://doi.org/10.18186/thermal.977941.
JAMA Noor D, Mırmanto H, Sarsetıyanto J, Soedjono D. Flow behavior and thermal separation mechanism on vortex tube. Journal of Thermal Engineering. 2021;7:1090–1099.
MLA Noor, Dedy et al. “Flow Behavior and Thermal Separation Mechanism on Vortex Tube”. Journal of Thermal Engineering, vol. 7, no. 5, 2021, pp. 1090-9, doi:10.18186/thermal.977941.
Vancouver Noor D, Mırmanto H, Sarsetıyanto J, Soedjono D. Flow behavior and thermal separation mechanism on vortex tube. Journal of Thermal Engineering. 2021;7(5):1090-9.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering