Research Article
BibTex RIS Cite

Parametric investigation of open-drive scroll expander for micro organic rankine cycle applications

Year 2021, , 1110 - 1120, 01.07.2021
https://doi.org/10.18186/thermal.977975

Abstract

Organic Rankine cycles (ORC) are used to produce power from low-temperature heat sources. In the low power output range (<10 kWe), scroll expanders are preferred. However, the perfor-mance of the ORC system is dependent on the expander efficiency. The present work focuses on the parametric investigation of the open-drive scroll expander used for micro-organic Ran-kine cycle. A 5 kWe expander was used and its built-in volume ratio was 3.5. R245fa was used as the working fluid. The analysis was carried out using a well-known semi-empirical model available in the literature. Effect of key parameters such as expansion ratio, shaft speed, and expander inlet temperature on power output and expander efficiency wasevaluated for four different cases. Results showed that, at an inlet pressure of 10 bar, peak efficiency of 58% and 60% was achieved at shaft speeds of 1500 RPM and 2000 RPM respectively. It was also evident that,at higher shaft speeds, the increase in mass flow rate is not sufficient to counter frictional and mechanical losses within the expander. The analysis also indicated that increasing the expander inlet temperature could have a negative impact on the expander efficiency as well as the overall performance of the ORC system, as the thermal energy dissipation is higher at higher inlet temperatures for all cases.

References

  • [1] NITI Aayog, Government of India. A report on National Energy Policy 2017.
  • [2] Man Wang, Jiangfeng Wang, Yuzhu Zhao, Pan Zhao, Yiping Dai. Thermodynamic analysis and optimization of a solar-driven regenerative organic Rankine cycle (ORC) based on flat-plate solar collectors. Appl therm eng 2013; 50: 816-825.
  • [3] Pei Gang, Li Jing, Ji Jie. Analysis of low temperature solar thermal electric generation using regenerative Organic Rankine Cycle. Appl therm eng 2010; 30: 998-1004.
  • [4] Amir Ghasemi, Nasim Hashemian, Alireza Noorpoor, Parisa Heidarnejad. Exergy Based Optimization of a Biomass and Solar Fuelled CCHP Hybrid Seawater Desalination Plant. Journal of Thermal Engineering 2017; 3(1): 1034-1043.
  • [5] Usman Muhammad, Muhammad Imran , Dong Hyun Lee , Byung Sik Park. Design and experimental investigation of a 1 kW organic Rankine cycle system using R245fa as working fluid for low-grade waste heat recovery from steam. Energy Convers. Manag 2015; 103: 1089-1100.
  • [6] Seyedali Seyedkavoosi , Saeed Javan , Krishna Kota. Exergy-based optimization of an organic Rankine cycle (ORC) for waste heat recovery from an internal combustion engine (ICE). Appl therm eng 2017; 126: 447-457.
  • [7] Ali Volkan Akkaya. Performance Analyzing of an Organic Rankine Cycle Under Different Ambient Conditions. Journal of Thermal Engineering 2017; 3(5): 1498-1504.
  • [8] Esra Özdemir, Muhsin Kilic. Thermodynamic Analysis of Basic and Regenerative Organic Rankine Cycles Using Dry Fluids from Waste Heat Recovery. Journal of Thermal Engineering 2018; 4(5): 2381-2393.
  • [9] İbrahim Kaya, Asım Sinan Karakurt, Yasin Üst. Investigation of Waste Heat Energy in a Marine Engine with Transcritical Organic Rankine Cycle. Journal of Thermal Engineering 2020; 6(3): 282-296.
  • [10] Turgay Koroglu, Oguz Salim Sogut. Advanced Exergy Analysis of an Organic Rankine Cycle Waste Heat Recovery System of a Marine Power Plant. Journal of Thermal Engineering 2017; 3(2): 1136-1148.
  • [11] Manoj Dixit, Akhilesh Arora, S.C. Kaushik. Energy and Exergy Analysis of a Waste Heat Driven Cycle for Triple Effect Refrigeration. Journal of Thermal Engineering 2016; 2(5): 954-961.
  • [12] Guoquan Qiu, Yingjuan Shao, Jinxing Li, Hao Liu, Saffa.B. Riffat. Experimental investigation of a biomass-fired ORC-based micro-CHP for domestic applications. Fuel 2012; 96: 374-382.
  • [13] Xinghua Liu, Yufeng Zhang, Jiang Shen. System performance optimization of ORC-based geo-plant with R245fa under different geothermal water inlet temperatures. Geothermics 2017; 66: 134-142.
  • [14] Ali Husnu Bademlioglu, Recep Yamankaradeniz, Omer Kaynakli. Exergy Analysis of the Organic Rankine Cycle Based on the Pinch Point Temperature Difference. Journal of Thermal Engineering 2019; 5(3): 157-165.
  • [15] Maurizio Cambi, Roberto Tascioni, Luca Cioccolanti, Enrico Bocci. Converting a commercial scroll compressor into an expander: experimental and analytical performance evaluation. 4th international seminar on ORC power systems, ORC 2017, Milano, Italy, Energy Procedia 2017; 129: 363-370.
  • [16] E. Oralli , Md. Ali Tarique, C. Zamfirescu and I. Dincer. A study on scroll compressor conversion into expander for Rankine cycles. International Journal of Low-Carbon Technologies 2011; 6: 200–206.
  • [17] Janette Hogerwaard, Ibrahim Dincer, Calin Zamfirescu. Analysis and assessment of a new organic Rankine based heat engine system with/without cogeneration. Energy 2013; 62: 300-310.
  • [18] Sylvain Quoilin , Vincent Lemort, Jean Lebrun. Experimental study and modeling of an Organic Rankine Cycle using scroll expander. Appl. Energy 2010; 87: 1260–1268.
  • [19] Jen-Chieh Chang , Tzu-Chen Hung ,Ya-Ling He , Wenping Zhang. Experimental study on low-temperature organic Rankine cycle utilizing scroll type expander. Appl. Energy 2015; 155: 150-159.
  • [20] Sébastien Declaye, Sylvain Quoilin, Ludovic Guillaume, Vincent Lemort. Experimental study on an open-drive scroll expander integrated into an ORC (Organic Rankine Cycle) system with R245fa as working fluid. Energy 2013; 55: 173-183.
  • [21] K. Qiu, M. Thomas, M. Douglas. Investigation of a scroll expander driven by compressed air and its potential applications to ORC. Appl therm eng 2018; 135: 109-115.
  • [22] Zhiwei Ma, Huashan Bao, Anthony Paul Roskilly. Dynamic modelling and experimental validation of scroll expander for small scale power generation system. Appl. Energy 2017; 186: 262-281.
  • [23] Pardeep Garg , G.M. Karthik , Prashant Kumar , Pramod Kumar. Development of a generic tool to design scroll expanders for ORC applications. Appl therm eng 2016; 109: 878-888.
  • [24] M. G. Sobamowo, A. A. Yinusa. Power Series -After treatment Technique for Nonlinear Cubic Duffing and Double-Well Duffing Oscillators. Journal of Computational applied mechanics 2017; 48(2): 297-306.
  • [25] S. J. Ojolo, A. A. Yinusa, S. O. Ismail. Modelling of Temperature Distribution in Orthogonal Machining using Finite Element Method’, Proceedings of the 15th International Conference on Manufacturing Research, Incorporating the 32nd National Conference on Manufacturing Research, University of Greenwich, UK. September 5–7, 2017.
  • [26] M. G. Sobamowo, O. Adeleye, A. A. Yinusa. Analysis of convective-radiative porous fin with temperature-dependent internal heat Generation and magnetic field using Homotopy Perturbation method. Journal of Computational and Applied Mechanics 2017; 12(2): 127-145.
  • [27] M. G. Sobamowo, A. T. Akinshilo, A. A. Yinusa. Thermo-Magneto-Solutal Squeezing Flow of Nanofluid between Two Parallel Disks Embedded in a Porous Medium: Effects of Nanoparticle Geometry, Slip, and Temperature Jump Conditions. Hindawi Modelling and Simulation in Engineering 2018; Article ID 7364634.
  • [28] M. G. Sobamowo, A. A. Yinusa. Transient Combustion Analysis for Iron Micro -particles in a Gaseous Oxidizing Medium Using Adomian Decomposition Method. Journal of Computational Engineering and Physical Modeling 2018; 1: pp. 01-15.
  • [29] M. G. Sobamowo, A. A. Yinusa. Thermo-fluidic parameters effects on nonlinear vibration of fluid conveying nanotube resting on elastic foundations using Homotopy Perturbation method. Journal of Thermal Engineering 2018; 4(8): 2211-2233.
  • [30] M. G. Sobamowo, K. C. Alaribe, A. A. Yinusa. Homotopy perturbation method for analysis of squeezing axisymmetric flow of first-grade Fluid under the effects of slip and magnetic Field. Journal of Computational and Applied Mechanics 2018;13(1): 51- 65.
  • [31] M. G. Sobamowo, A. A. Yinusa. Transient Combustion Analysis for Iron Micro -particles in a Gaseous Oxidizing Medium Using a New Iterative Method. J. Computational and Engineering Mathematics 2018; 5(3).
  • [32] M. G. Sobamowo, A. T. Akinshilo, A. A. Yinusa, A. Oluwatoyin. Nonlinear Slip Effects on Pipe Flow and Heat Transfer of Third Grade Fluid with Nonlinear Temperature-Dependent Viscosities and Internal Heat Generation. Software Engineering 2018; 6(3): 69-88.
  • [33] G. A. Oguntala, M. G. Sobamowo, A. A. Yinusa, R. Abd-Alhameed. Application of Approximate Analytical Technique Using the Homotopy Perturbation Method to Study the Inclination Effect on the Thermal Behavior of Porous Fin Heat Sink. J. Mathematical and Computational Applications 2018; 23(62), doi:10.3390/mca23040062.
  • [34] Sobamowo MG, Yinusa AA, Oluwo AA. Finite element analysis of flow and heat transfer of dissipative Casson-Carreau nanofluid over a stretching sheet embedded in a porous medium. Aeron Aero Open Access J. 2018; 2(5): 294‒308.
  • [35] Sobamowo MG, Yinusa AA, Oluwo AA. Slip analysis of magnetohydrodynamics flow of an upper-convected Maxwell viscoelastic nanofluid in a permeable channel embedded in a porous medium’, Aeron Aero Open Access J. 2018; 2(5): 310‒318.
  • [36] M. G. Sobamowo, G. A. Oguntala, A. A. Yinusa. On the Effects of Inclination Angle and Temperature-Dependent Internal Heat Generation on the Thermal Performance of Porous Fin Heat Sink. J Therm Sci Eng Appl 2018; 4(2): 34-47.
  • [37] M. G. Sobamowo, G. A. Oguntala, A. A. Yinusa. Nonlinear Transient Thermal Modeling and Analysis of a Convective-Radiative Fin with Functionally Graded Material in a Magnetic Environment. Hindawi, J. Model Simulat Eng 2019; Article ID 7878564.
  • [38] A. A. Yinusa, M. G. Sobamowo. Analysis of Dynamic Behaviour of a Tensioned Carbon Nanotube in Thermal and Pressurized Environments. Karbala International Journal of Modern Science 2019; 5(1): 1-11.
  • [39] A. A. Yinusa, M. G. Sobamowo. On The Transient Combustion Analysis for Iron Micro -particles in a Gaseous Oxidizing Medium Using Variational Iteration Method. J Reliab. Eng. Resil 2019; 1(1): 01-12.
  • [40] Davide Ziviani, Nelson A. James, Felipe A. Accorsi, James E. Braun, Eckhard A. Groll, Experimental and numerical analyses of a 5 kWe oil-free open-drive scroll expander for small-scale organic Rankine cycle (ORC) applications. Appl. Energy 2018; 230: 1140-1156.
  • [41] Jingye Yang, Ziyang Sun, Binbin Yu, Jiangping Chen. Modeling and optimization criteria of scroll expander integrated into organic Rankine cycle for comparison of R1233zd (E) as an alternative to R245fa. Appl therm eng 2018; 141: 386-393.
  • [42] Vincent Lemort, Sylvain Quoilin , Cristian Cuevas, Jean Lebrun. Testing and modeling a scroll expander integrated into an Organic Rankine Cycle. Appl therm eng 2009; 29: 3094-3102.
  • [43] Antonio Giuffrida. Modelling the performance of a scroll expander for small organic Rankine cycles when changing the working fluid. Appl therm eng 2014; 70: 1040-1049.
  • [44] Vincent Lemort, Declaye S, Quoilin S. Experimental characterization of a hermetic scroll expander for use in a micro-scale Rankine cycle. P I Mech Eng A-J Pow 2012; 226: 126-36.
  • [45] Wang, H., Peterson, R.B., Herron, T. Experimental performance of a compliant scroll expander for an organic Rankine cycle. P I Mech Eng A-J Pow 2009; 223(7): 863-872.
Year 2021, , 1110 - 1120, 01.07.2021
https://doi.org/10.18186/thermal.977975

Abstract

References

  • [1] NITI Aayog, Government of India. A report on National Energy Policy 2017.
  • [2] Man Wang, Jiangfeng Wang, Yuzhu Zhao, Pan Zhao, Yiping Dai. Thermodynamic analysis and optimization of a solar-driven regenerative organic Rankine cycle (ORC) based on flat-plate solar collectors. Appl therm eng 2013; 50: 816-825.
  • [3] Pei Gang, Li Jing, Ji Jie. Analysis of low temperature solar thermal electric generation using regenerative Organic Rankine Cycle. Appl therm eng 2010; 30: 998-1004.
  • [4] Amir Ghasemi, Nasim Hashemian, Alireza Noorpoor, Parisa Heidarnejad. Exergy Based Optimization of a Biomass and Solar Fuelled CCHP Hybrid Seawater Desalination Plant. Journal of Thermal Engineering 2017; 3(1): 1034-1043.
  • [5] Usman Muhammad, Muhammad Imran , Dong Hyun Lee , Byung Sik Park. Design and experimental investigation of a 1 kW organic Rankine cycle system using R245fa as working fluid for low-grade waste heat recovery from steam. Energy Convers. Manag 2015; 103: 1089-1100.
  • [6] Seyedali Seyedkavoosi , Saeed Javan , Krishna Kota. Exergy-based optimization of an organic Rankine cycle (ORC) for waste heat recovery from an internal combustion engine (ICE). Appl therm eng 2017; 126: 447-457.
  • [7] Ali Volkan Akkaya. Performance Analyzing of an Organic Rankine Cycle Under Different Ambient Conditions. Journal of Thermal Engineering 2017; 3(5): 1498-1504.
  • [8] Esra Özdemir, Muhsin Kilic. Thermodynamic Analysis of Basic and Regenerative Organic Rankine Cycles Using Dry Fluids from Waste Heat Recovery. Journal of Thermal Engineering 2018; 4(5): 2381-2393.
  • [9] İbrahim Kaya, Asım Sinan Karakurt, Yasin Üst. Investigation of Waste Heat Energy in a Marine Engine with Transcritical Organic Rankine Cycle. Journal of Thermal Engineering 2020; 6(3): 282-296.
  • [10] Turgay Koroglu, Oguz Salim Sogut. Advanced Exergy Analysis of an Organic Rankine Cycle Waste Heat Recovery System of a Marine Power Plant. Journal of Thermal Engineering 2017; 3(2): 1136-1148.
  • [11] Manoj Dixit, Akhilesh Arora, S.C. Kaushik. Energy and Exergy Analysis of a Waste Heat Driven Cycle for Triple Effect Refrigeration. Journal of Thermal Engineering 2016; 2(5): 954-961.
  • [12] Guoquan Qiu, Yingjuan Shao, Jinxing Li, Hao Liu, Saffa.B. Riffat. Experimental investigation of a biomass-fired ORC-based micro-CHP for domestic applications. Fuel 2012; 96: 374-382.
  • [13] Xinghua Liu, Yufeng Zhang, Jiang Shen. System performance optimization of ORC-based geo-plant with R245fa under different geothermal water inlet temperatures. Geothermics 2017; 66: 134-142.
  • [14] Ali Husnu Bademlioglu, Recep Yamankaradeniz, Omer Kaynakli. Exergy Analysis of the Organic Rankine Cycle Based on the Pinch Point Temperature Difference. Journal of Thermal Engineering 2019; 5(3): 157-165.
  • [15] Maurizio Cambi, Roberto Tascioni, Luca Cioccolanti, Enrico Bocci. Converting a commercial scroll compressor into an expander: experimental and analytical performance evaluation. 4th international seminar on ORC power systems, ORC 2017, Milano, Italy, Energy Procedia 2017; 129: 363-370.
  • [16] E. Oralli , Md. Ali Tarique, C. Zamfirescu and I. Dincer. A study on scroll compressor conversion into expander for Rankine cycles. International Journal of Low-Carbon Technologies 2011; 6: 200–206.
  • [17] Janette Hogerwaard, Ibrahim Dincer, Calin Zamfirescu. Analysis and assessment of a new organic Rankine based heat engine system with/without cogeneration. Energy 2013; 62: 300-310.
  • [18] Sylvain Quoilin , Vincent Lemort, Jean Lebrun. Experimental study and modeling of an Organic Rankine Cycle using scroll expander. Appl. Energy 2010; 87: 1260–1268.
  • [19] Jen-Chieh Chang , Tzu-Chen Hung ,Ya-Ling He , Wenping Zhang. Experimental study on low-temperature organic Rankine cycle utilizing scroll type expander. Appl. Energy 2015; 155: 150-159.
  • [20] Sébastien Declaye, Sylvain Quoilin, Ludovic Guillaume, Vincent Lemort. Experimental study on an open-drive scroll expander integrated into an ORC (Organic Rankine Cycle) system with R245fa as working fluid. Energy 2013; 55: 173-183.
  • [21] K. Qiu, M. Thomas, M. Douglas. Investigation of a scroll expander driven by compressed air and its potential applications to ORC. Appl therm eng 2018; 135: 109-115.
  • [22] Zhiwei Ma, Huashan Bao, Anthony Paul Roskilly. Dynamic modelling and experimental validation of scroll expander for small scale power generation system. Appl. Energy 2017; 186: 262-281.
  • [23] Pardeep Garg , G.M. Karthik , Prashant Kumar , Pramod Kumar. Development of a generic tool to design scroll expanders for ORC applications. Appl therm eng 2016; 109: 878-888.
  • [24] M. G. Sobamowo, A. A. Yinusa. Power Series -After treatment Technique for Nonlinear Cubic Duffing and Double-Well Duffing Oscillators. Journal of Computational applied mechanics 2017; 48(2): 297-306.
  • [25] S. J. Ojolo, A. A. Yinusa, S. O. Ismail. Modelling of Temperature Distribution in Orthogonal Machining using Finite Element Method’, Proceedings of the 15th International Conference on Manufacturing Research, Incorporating the 32nd National Conference on Manufacturing Research, University of Greenwich, UK. September 5–7, 2017.
  • [26] M. G. Sobamowo, O. Adeleye, A. A. Yinusa. Analysis of convective-radiative porous fin with temperature-dependent internal heat Generation and magnetic field using Homotopy Perturbation method. Journal of Computational and Applied Mechanics 2017; 12(2): 127-145.
  • [27] M. G. Sobamowo, A. T. Akinshilo, A. A. Yinusa. Thermo-Magneto-Solutal Squeezing Flow of Nanofluid between Two Parallel Disks Embedded in a Porous Medium: Effects of Nanoparticle Geometry, Slip, and Temperature Jump Conditions. Hindawi Modelling and Simulation in Engineering 2018; Article ID 7364634.
  • [28] M. G. Sobamowo, A. A. Yinusa. Transient Combustion Analysis for Iron Micro -particles in a Gaseous Oxidizing Medium Using Adomian Decomposition Method. Journal of Computational Engineering and Physical Modeling 2018; 1: pp. 01-15.
  • [29] M. G. Sobamowo, A. A. Yinusa. Thermo-fluidic parameters effects on nonlinear vibration of fluid conveying nanotube resting on elastic foundations using Homotopy Perturbation method. Journal of Thermal Engineering 2018; 4(8): 2211-2233.
  • [30] M. G. Sobamowo, K. C. Alaribe, A. A. Yinusa. Homotopy perturbation method for analysis of squeezing axisymmetric flow of first-grade Fluid under the effects of slip and magnetic Field. Journal of Computational and Applied Mechanics 2018;13(1): 51- 65.
  • [31] M. G. Sobamowo, A. A. Yinusa. Transient Combustion Analysis for Iron Micro -particles in a Gaseous Oxidizing Medium Using a New Iterative Method. J. Computational and Engineering Mathematics 2018; 5(3).
  • [32] M. G. Sobamowo, A. T. Akinshilo, A. A. Yinusa, A. Oluwatoyin. Nonlinear Slip Effects on Pipe Flow and Heat Transfer of Third Grade Fluid with Nonlinear Temperature-Dependent Viscosities and Internal Heat Generation. Software Engineering 2018; 6(3): 69-88.
  • [33] G. A. Oguntala, M. G. Sobamowo, A. A. Yinusa, R. Abd-Alhameed. Application of Approximate Analytical Technique Using the Homotopy Perturbation Method to Study the Inclination Effect on the Thermal Behavior of Porous Fin Heat Sink. J. Mathematical and Computational Applications 2018; 23(62), doi:10.3390/mca23040062.
  • [34] Sobamowo MG, Yinusa AA, Oluwo AA. Finite element analysis of flow and heat transfer of dissipative Casson-Carreau nanofluid over a stretching sheet embedded in a porous medium. Aeron Aero Open Access J. 2018; 2(5): 294‒308.
  • [35] Sobamowo MG, Yinusa AA, Oluwo AA. Slip analysis of magnetohydrodynamics flow of an upper-convected Maxwell viscoelastic nanofluid in a permeable channel embedded in a porous medium’, Aeron Aero Open Access J. 2018; 2(5): 310‒318.
  • [36] M. G. Sobamowo, G. A. Oguntala, A. A. Yinusa. On the Effects of Inclination Angle and Temperature-Dependent Internal Heat Generation on the Thermal Performance of Porous Fin Heat Sink. J Therm Sci Eng Appl 2018; 4(2): 34-47.
  • [37] M. G. Sobamowo, G. A. Oguntala, A. A. Yinusa. Nonlinear Transient Thermal Modeling and Analysis of a Convective-Radiative Fin with Functionally Graded Material in a Magnetic Environment. Hindawi, J. Model Simulat Eng 2019; Article ID 7878564.
  • [38] A. A. Yinusa, M. G. Sobamowo. Analysis of Dynamic Behaviour of a Tensioned Carbon Nanotube in Thermal and Pressurized Environments. Karbala International Journal of Modern Science 2019; 5(1): 1-11.
  • [39] A. A. Yinusa, M. G. Sobamowo. On The Transient Combustion Analysis for Iron Micro -particles in a Gaseous Oxidizing Medium Using Variational Iteration Method. J Reliab. Eng. Resil 2019; 1(1): 01-12.
  • [40] Davide Ziviani, Nelson A. James, Felipe A. Accorsi, James E. Braun, Eckhard A. Groll, Experimental and numerical analyses of a 5 kWe oil-free open-drive scroll expander for small-scale organic Rankine cycle (ORC) applications. Appl. Energy 2018; 230: 1140-1156.
  • [41] Jingye Yang, Ziyang Sun, Binbin Yu, Jiangping Chen. Modeling and optimization criteria of scroll expander integrated into organic Rankine cycle for comparison of R1233zd (E) as an alternative to R245fa. Appl therm eng 2018; 141: 386-393.
  • [42] Vincent Lemort, Sylvain Quoilin , Cristian Cuevas, Jean Lebrun. Testing and modeling a scroll expander integrated into an Organic Rankine Cycle. Appl therm eng 2009; 29: 3094-3102.
  • [43] Antonio Giuffrida. Modelling the performance of a scroll expander for small organic Rankine cycles when changing the working fluid. Appl therm eng 2014; 70: 1040-1049.
  • [44] Vincent Lemort, Declaye S, Quoilin S. Experimental characterization of a hermetic scroll expander for use in a micro-scale Rankine cycle. P I Mech Eng A-J Pow 2012; 226: 126-36.
  • [45] Wang, H., Peterson, R.B., Herron, T. Experimental performance of a compliant scroll expander for an organic Rankine cycle. P I Mech Eng A-J Pow 2009; 223(7): 863-872.
There are 45 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Suhas Upadhyaya This is me 0000-0002-6721-253X

Veershetty Gumtapure This is me 0000-0002-1649-0863

Publication Date July 1, 2021
Submission Date August 7, 2019
Published in Issue Year 2021

Cite

APA Upadhyaya, S., & Gumtapure, V. (2021). Parametric investigation of open-drive scroll expander for micro organic rankine cycle applications. Journal of Thermal Engineering, 7(5), 1110-1120. https://doi.org/10.18186/thermal.977975
AMA Upadhyaya S, Gumtapure V. Parametric investigation of open-drive scroll expander for micro organic rankine cycle applications. Journal of Thermal Engineering. July 2021;7(5):1110-1120. doi:10.18186/thermal.977975
Chicago Upadhyaya, Suhas, and Veershetty Gumtapure. “Parametric Investigation of Open-Drive Scroll Expander for Micro Organic Rankine Cycle Applications”. Journal of Thermal Engineering 7, no. 5 (July 2021): 1110-20. https://doi.org/10.18186/thermal.977975.
EndNote Upadhyaya S, Gumtapure V (July 1, 2021) Parametric investigation of open-drive scroll expander for micro organic rankine cycle applications. Journal of Thermal Engineering 7 5 1110–1120.
IEEE S. Upadhyaya and V. Gumtapure, “Parametric investigation of open-drive scroll expander for micro organic rankine cycle applications”, Journal of Thermal Engineering, vol. 7, no. 5, pp. 1110–1120, 2021, doi: 10.18186/thermal.977975.
ISNAD Upadhyaya, Suhas - Gumtapure, Veershetty. “Parametric Investigation of Open-Drive Scroll Expander for Micro Organic Rankine Cycle Applications”. Journal of Thermal Engineering 7/5 (July 2021), 1110-1120. https://doi.org/10.18186/thermal.977975.
JAMA Upadhyaya S, Gumtapure V. Parametric investigation of open-drive scroll expander for micro organic rankine cycle applications. Journal of Thermal Engineering. 2021;7:1110–1120.
MLA Upadhyaya, Suhas and Veershetty Gumtapure. “Parametric Investigation of Open-Drive Scroll Expander for Micro Organic Rankine Cycle Applications”. Journal of Thermal Engineering, vol. 7, no. 5, 2021, pp. 1110-2, doi:10.18186/thermal.977975.
Vancouver Upadhyaya S, Gumtapure V. Parametric investigation of open-drive scroll expander for micro organic rankine cycle applications. Journal of Thermal Engineering. 2021;7(5):1110-2.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering