BibTex RIS Cite

Thermal conductivity of CNT water based nanofluids: Experimental trends and models overview

Year 2015, Volume: 1 Issue: 2, 381 - 390, 01.02.2015
https://doi.org/10.18186/jte.92293

Abstract

Thermal conductivity measurement of carbon nanotubes water-based nanofluids is here reported. We have considered in particular the influence of nanoparticle volume fraction, temperature, carbon nanotube aspect ratio and different kind of surfactant (SDBS, Lignin, Sodium polycarboxylate) on thermal conductivity enhancement of nanofluids. The experiments show that TC enhancement of nanofluids produces at very low volume fraction. It is also mainly governed by both volume fraction and temperature increase. However, TC enhancement of nanofluids is weakly affected by carbon nanotubes aspect ratio and surfactant type used in the study. In addition, various theoretical thermal conductivity models are used to possibly correlate the experimental data and explain the TC enhancement of nanofluids. The selected models do not capture the experimental findings within the range of this parametric study, evidencing the need to develop appropriate

References

  • T. Maré, S. Halelfadl, O. Sow, P. Estellé, S. Duret, F. Bazantay, Comparison of the thermal performances of two nanofluids at low temperature in a plate heat exchanger, Exp. Thermal Fluid Sci. 35/8 (2011) 1535-1543.
  • D. Wen, S. Lin, S. Vafaei, K. Zhang, Review of nanofluids for heat transfer applications, Particuology 7 (2009) 141-150.
  • O. Mahian, A. Kianifar, S.A. Kalogirou, I. Pop, S. Wongwises A review of the applications of nanofluids in solar energy, Int. J. Heat Mass Transfer 57 (2013) 582-594.
  • S. Halelfadl, T. Maré, P. Estellé, Efficiency of carbon nanotubes water based nanofluids as coolants, Exp. Thermal Fluid Sc. 53 (2014) 104-110.
  • M. Hemmat Esfe, S. Saedodin, O. Mahian, S. Wongwises, suspended in ethylene glycol for applications in energy devices: Effects of particle size, temperature, and concentration, Int. J. Heat Mass Transfer 58 (2014) 138-146. nanoparticles
  • J.M. Wu, J. Zhao, A review of nanofluid heat transfer and critical heat flux enhancement—Research gap to engineering application, Progress in Nuclear Energy, 66 (2013) 13-24.
  • A.M. Hussein, K.V. Sharma, R.A. Bakar, K. Kadirgama, A review of forced convection heat transfer enhancement and hydrodynamic characteristics of a nanofluid, Renew. Sust Energy Reviews, 29 (2014) 734-743.
  • E. Abu-Nada, Z. Masoud, H. F. Oztop, A. Campo, Effect of nanofluid variable properties on natural convection in enclosures, Int. J. Thermal Sci., 49 (2010) 479-491.
  • H.F. Öztop, P. Estellé, W-M. Yan, K. Al-Salem, J. Orfi, O. Mahian, A brief review of natural convection in enclosures under localized heating with and without nanofluids, Int. Commun. Heat Mass Transfer, 60 (2015) 37-44.
  • M. Turkyilmazoglu, Exact analytical solutions for heat and mass transfer of MHD slip flow in nanofluids, Chem. Eng. Science, 84 (2012) 182–187.
  • M. Turkyilmazoglu, Unsteady convection flow of some nanofluids past a moving vertical flat plate with heat transfer, J. Heat Transfer, 136(3) (2013) 031704.
  • X.Q. Wang, A.S. Mujumdar, heat transfer characteristics of nanofluids: a review, Int. J. Thermal Sci., 46 (2007) 1-19.
  • M.S. Liu, M.C.C. Lin, I.T. Huang, C.C. Wang, Enhancement of thermal conductivity with carbon nanotubes for nanofluids, Int. Commun. Heat Mass Transfer, 32 (2005) 1202- 1210.
  • H. Xie, L. Chen, Adjustable thermal conductivity in carbon nanotube nanofluid, Phy. Lett. A, 373 (2009) 1861- 1864.
  • Y. Ding, H. Alias, D. Wen, R.A. Williams, Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids), Int. J. Heat Mass Transfer 49 (2006) 240-250.
  • A. Indhuja, K.S. Suganthi, S. Manikandan, K.S. Rajan, Viscosity and thermal conductivity of dispersion of gum arabic capped MWCNT in water: influence of MWCNT concentration and temperature, J. Taiwan Institute Chem. Engineers, 44 (2013) 474–479.
  • A. Nassiri, M. Shariati-Niasar, A.M. Rashidi, R. Khodafari, Effect of CNT structures on thermal conductivity and stability of nanofluid, Int. J. Heat Mass Transfer, 55 (2012) 1529-1535.
  • Y. Yang, E.A. Grulke, Z.G. Zhang, G. Wu, Thermal of and dispersions, J. Appl. Phys., 99 (2006) 114307. carbon nanotube-in-oil
  • M.J. Assael, I. Metaxa, J. Arvanitidis, D. Christofilos, C. Lioustas, Thermal conductivity enhancement in aqueous suspensions of carbon muli-walled and double-walled nanotubes in the presence of two dispersants, Int. J. Thermophys. 26 (2005) 647-664.
  • O.V. Kharissova, B.I. Kharisov, E.G. de Casas Ortiz, Dispersion of carbon nanotubes in water and non-aqueous solvents, RCS Adv. 3 (2013) 24812.
  • D. Wen, Y. Ding, Effective thermal conductivity of aqueous suspensions of carbon nanotubes, J. Thermophys. Heat Transfer, 18 (4) (2004) 481–485.
  • B. Aladag, S. Halelfadl, N. Doner, T. Maré, S. Duret, P. Estellé, Experimental investigations of the viscosity of nanofluids at low temperatures, App. Energy 97 (2012) 876- 880.
  • K. Wusiman, H. Jeong, K. Tulugan, H. Afrianto, H. Ching, Thermal performance of multi-walled carbon nanotubes (MWCNTs) in aqueous suspensions with surfactants SDBS and SDS, Int. Comm. Heat Mass Transfer 41 (2013) 28-33.
  • A. Nassiri, M Shariaty-Niasar, A. Rashidi, A. Amrollahi, R. Khodafarin, Effect of dispersion method on thermal conductivity and stability of nanofluid, Exp. Thermal Fluid Sci. 35 (2011) 717-723.
  • S. Harish, K. Ishikawa, E. Einarsson, S. Aikawa, S. Chiashi, J. Shiomi, S. Maruyama, Enhanced thermal conductivity of ethylene glycol with single-walled carbon nanotube inclusions, Int. J. Heat Mass Transfer, 55 13–14 (2012) 3885-3890.
  • Y. Hwang, J.K. Lee, C.H. Lee, Y.M. Jung, S.I. Cheong, C.G. Lee et al. Stability and thermal conductivity characteristics of nanofluids, Thermochimica Acta, 455 (2007) 70–74.
  • P. Garg, L.A. Jorge, C. Marsh, T.A. Carlson, D.A. Kessler, K. Annamalai, An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids, Int. J. Heat Mass Transfer 52 (2009) 5090–5101.
  • R. Walvekar, I.A. Faris, M. Khalid, Thermal conductivity of carbon nanotube nanofluid-Experimental and theoretical study, Heat Transfer-Asian Research 41(2) (2012) 145-163.
  • H. Wang, W. Zhou, D.L. Ho, K.I. Winey, J.E. Fischer, C.J. Glinka, E.K. Hobbie, Dispersing single-walled carbon nanotubes with surfactants: a small angle neutron scattering study, Nano Lett., 4 (9) (2004) 1789–1793.
  • P. Estellé, S. Halelfadl, T. Maré, Lignin as dispersant for water-based carbon nanotubes nanofluids: Impact on viscosity and thermal conductivity, Int. Commun. Heat Mass Transfer, 57 (2014) 8-12.
  • S.M.S. Murshed, C.A. Nieto de Castro, Superior thermal features of carbon nanotubes-based nanofluids – A review, Renew. Sust. Energy Reviews, 37 (2014) 155-167.
  • B. Lamas, B. Abreu, A. Fonseca, N. Martins, M. Oliveira, Critical analysis of the thermal conductivity models for CNT based nanofluids, Int. J. Thermal Sci., 78 (2014) 65- 76.
  • R.L. Hamilton, O.K. Crosser, Thermal conductivity of heterogeneous two component systems, Indust. Eng. Chem. Fundament., 1 (3) (1962) 187–191.
  • Q.Z. Xue, Model for thermal conductivity of carbon nanotube-based composites, Phys. B: Condens. Matter, 368 (2005) 302-307.
  • H.E. Patel, K.B. Anoop, T. Sundararajan, S.K. Das, Model for thermal conductivity of CNT-nanofluids, Bull. Mater. Sci., 31 (2008) 387-390.
  • W. Yu, D.M. France, E.V. Timofeeva, D. Singh, Effective thermal conductivity models for carbon nanotube- based nanofluids, J. Nanofluids, 2 (2013) 69-73.
  • C-W. Nan, G. Liu, Y. Lin, M. Li, Interface effect on thermal conductivity of carbon nanotube composites, Appl. Phys. Lett. 85 (2004) 3549-3551.
  • S.M.S. Murshed, K.C. Leong, C. Yang, Inverstigations of thermal conductivity and viscosity of nanofluids, Int. J. Thermal Sci., 47 (2008) 560-568.
  • D.H. Kumar, H.E. Patel, V.R. Rajeev Kumar, T. Sundararajan, T. Pradeep, S.K. Das, Model for heat conduction in nanofluids, Phys. Rev. Lett. 93 (2004) 144301-144304.
  • See the conference version of this paper.
  • S. Halelfadl, P. Estellé, B. Aladag, N. Doner, T. Maré, Viscosity of carbon nanotubes water-based nanofluids: Influence of concentration and temperature, Int. J. Thermal Sci. 71 (2013) 111-117.
  • S. Halelfadl, P. Estellé, T. Maré, Heat transfer properties of aqueous carbon nanotubes nanofluids in coaxial heat exchanger under laminar regime, Exp. Thermal Fluid Sci., 55 (2014) 74-80.
  • S. Halelfadl, A.M. Adham, N. Mohd-Ghazali, T. Maré, P. Estellé, R. Ahmad, Optimization of thermal performance and pressure drop of a rectangular microchannel heat sink using aqueous carbon nanotubes based nanofluid, App. Thermal Eng. 62/2 (2014) 492-499.
  • P. Estellé, S. Halelfadl, N. Doner, T. Maré, Shear flow history effect on the viscosity of carbon nanotubes water based nanofluid, Curr. Nanosci., 9/2 (2013) 225-230.

Thermal conductivity of CNT water based nanofluids: Experimental trends and models overview

Year 2015, Volume: 1 Issue: 2, 381 - 390, 01.02.2015
https://doi.org/10.18186/jte.92293

Abstract

References

  • T. Maré, S. Halelfadl, O. Sow, P. Estellé, S. Duret, F. Bazantay, Comparison of the thermal performances of two nanofluids at low temperature in a plate heat exchanger, Exp. Thermal Fluid Sci. 35/8 (2011) 1535-1543.
  • D. Wen, S. Lin, S. Vafaei, K. Zhang, Review of nanofluids for heat transfer applications, Particuology 7 (2009) 141-150.
  • O. Mahian, A. Kianifar, S.A. Kalogirou, I. Pop, S. Wongwises A review of the applications of nanofluids in solar energy, Int. J. Heat Mass Transfer 57 (2013) 582-594.
  • S. Halelfadl, T. Maré, P. Estellé, Efficiency of carbon nanotubes water based nanofluids as coolants, Exp. Thermal Fluid Sc. 53 (2014) 104-110.
  • M. Hemmat Esfe, S. Saedodin, O. Mahian, S. Wongwises, suspended in ethylene glycol for applications in energy devices: Effects of particle size, temperature, and concentration, Int. J. Heat Mass Transfer 58 (2014) 138-146. nanoparticles
  • J.M. Wu, J. Zhao, A review of nanofluid heat transfer and critical heat flux enhancement—Research gap to engineering application, Progress in Nuclear Energy, 66 (2013) 13-24.
  • A.M. Hussein, K.V. Sharma, R.A. Bakar, K. Kadirgama, A review of forced convection heat transfer enhancement and hydrodynamic characteristics of a nanofluid, Renew. Sust Energy Reviews, 29 (2014) 734-743.
  • E. Abu-Nada, Z. Masoud, H. F. Oztop, A. Campo, Effect of nanofluid variable properties on natural convection in enclosures, Int. J. Thermal Sci., 49 (2010) 479-491.
  • H.F. Öztop, P. Estellé, W-M. Yan, K. Al-Salem, J. Orfi, O. Mahian, A brief review of natural convection in enclosures under localized heating with and without nanofluids, Int. Commun. Heat Mass Transfer, 60 (2015) 37-44.
  • M. Turkyilmazoglu, Exact analytical solutions for heat and mass transfer of MHD slip flow in nanofluids, Chem. Eng. Science, 84 (2012) 182–187.
  • M. Turkyilmazoglu, Unsteady convection flow of some nanofluids past a moving vertical flat plate with heat transfer, J. Heat Transfer, 136(3) (2013) 031704.
  • X.Q. Wang, A.S. Mujumdar, heat transfer characteristics of nanofluids: a review, Int. J. Thermal Sci., 46 (2007) 1-19.
  • M.S. Liu, M.C.C. Lin, I.T. Huang, C.C. Wang, Enhancement of thermal conductivity with carbon nanotubes for nanofluids, Int. Commun. Heat Mass Transfer, 32 (2005) 1202- 1210.
  • H. Xie, L. Chen, Adjustable thermal conductivity in carbon nanotube nanofluid, Phy. Lett. A, 373 (2009) 1861- 1864.
  • Y. Ding, H. Alias, D. Wen, R.A. Williams, Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids), Int. J. Heat Mass Transfer 49 (2006) 240-250.
  • A. Indhuja, K.S. Suganthi, S. Manikandan, K.S. Rajan, Viscosity and thermal conductivity of dispersion of gum arabic capped MWCNT in water: influence of MWCNT concentration and temperature, J. Taiwan Institute Chem. Engineers, 44 (2013) 474–479.
  • A. Nassiri, M. Shariati-Niasar, A.M. Rashidi, R. Khodafari, Effect of CNT structures on thermal conductivity and stability of nanofluid, Int. J. Heat Mass Transfer, 55 (2012) 1529-1535.
  • Y. Yang, E.A. Grulke, Z.G. Zhang, G. Wu, Thermal of and dispersions, J. Appl. Phys., 99 (2006) 114307. carbon nanotube-in-oil
  • M.J. Assael, I. Metaxa, J. Arvanitidis, D. Christofilos, C. Lioustas, Thermal conductivity enhancement in aqueous suspensions of carbon muli-walled and double-walled nanotubes in the presence of two dispersants, Int. J. Thermophys. 26 (2005) 647-664.
  • O.V. Kharissova, B.I. Kharisov, E.G. de Casas Ortiz, Dispersion of carbon nanotubes in water and non-aqueous solvents, RCS Adv. 3 (2013) 24812.
  • D. Wen, Y. Ding, Effective thermal conductivity of aqueous suspensions of carbon nanotubes, J. Thermophys. Heat Transfer, 18 (4) (2004) 481–485.
  • B. Aladag, S. Halelfadl, N. Doner, T. Maré, S. Duret, P. Estellé, Experimental investigations of the viscosity of nanofluids at low temperatures, App. Energy 97 (2012) 876- 880.
  • K. Wusiman, H. Jeong, K. Tulugan, H. Afrianto, H. Ching, Thermal performance of multi-walled carbon nanotubes (MWCNTs) in aqueous suspensions with surfactants SDBS and SDS, Int. Comm. Heat Mass Transfer 41 (2013) 28-33.
  • A. Nassiri, M Shariaty-Niasar, A. Rashidi, A. Amrollahi, R. Khodafarin, Effect of dispersion method on thermal conductivity and stability of nanofluid, Exp. Thermal Fluid Sci. 35 (2011) 717-723.
  • S. Harish, K. Ishikawa, E. Einarsson, S. Aikawa, S. Chiashi, J. Shiomi, S. Maruyama, Enhanced thermal conductivity of ethylene glycol with single-walled carbon nanotube inclusions, Int. J. Heat Mass Transfer, 55 13–14 (2012) 3885-3890.
  • Y. Hwang, J.K. Lee, C.H. Lee, Y.M. Jung, S.I. Cheong, C.G. Lee et al. Stability and thermal conductivity characteristics of nanofluids, Thermochimica Acta, 455 (2007) 70–74.
  • P. Garg, L.A. Jorge, C. Marsh, T.A. Carlson, D.A. Kessler, K. Annamalai, An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids, Int. J. Heat Mass Transfer 52 (2009) 5090–5101.
  • R. Walvekar, I.A. Faris, M. Khalid, Thermal conductivity of carbon nanotube nanofluid-Experimental and theoretical study, Heat Transfer-Asian Research 41(2) (2012) 145-163.
  • H. Wang, W. Zhou, D.L. Ho, K.I. Winey, J.E. Fischer, C.J. Glinka, E.K. Hobbie, Dispersing single-walled carbon nanotubes with surfactants: a small angle neutron scattering study, Nano Lett., 4 (9) (2004) 1789–1793.
  • P. Estellé, S. Halelfadl, T. Maré, Lignin as dispersant for water-based carbon nanotubes nanofluids: Impact on viscosity and thermal conductivity, Int. Commun. Heat Mass Transfer, 57 (2014) 8-12.
  • S.M.S. Murshed, C.A. Nieto de Castro, Superior thermal features of carbon nanotubes-based nanofluids – A review, Renew. Sust. Energy Reviews, 37 (2014) 155-167.
  • B. Lamas, B. Abreu, A. Fonseca, N. Martins, M. Oliveira, Critical analysis of the thermal conductivity models for CNT based nanofluids, Int. J. Thermal Sci., 78 (2014) 65- 76.
  • R.L. Hamilton, O.K. Crosser, Thermal conductivity of heterogeneous two component systems, Indust. Eng. Chem. Fundament., 1 (3) (1962) 187–191.
  • Q.Z. Xue, Model for thermal conductivity of carbon nanotube-based composites, Phys. B: Condens. Matter, 368 (2005) 302-307.
  • H.E. Patel, K.B. Anoop, T. Sundararajan, S.K. Das, Model for thermal conductivity of CNT-nanofluids, Bull. Mater. Sci., 31 (2008) 387-390.
  • W. Yu, D.M. France, E.V. Timofeeva, D. Singh, Effective thermal conductivity models for carbon nanotube- based nanofluids, J. Nanofluids, 2 (2013) 69-73.
  • C-W. Nan, G. Liu, Y. Lin, M. Li, Interface effect on thermal conductivity of carbon nanotube composites, Appl. Phys. Lett. 85 (2004) 3549-3551.
  • S.M.S. Murshed, K.C. Leong, C. Yang, Inverstigations of thermal conductivity and viscosity of nanofluids, Int. J. Thermal Sci., 47 (2008) 560-568.
  • D.H. Kumar, H.E. Patel, V.R. Rajeev Kumar, T. Sundararajan, T. Pradeep, S.K. Das, Model for heat conduction in nanofluids, Phys. Rev. Lett. 93 (2004) 144301-144304.
  • See the conference version of this paper.
  • S. Halelfadl, P. Estellé, B. Aladag, N. Doner, T. Maré, Viscosity of carbon nanotubes water-based nanofluids: Influence of concentration and temperature, Int. J. Thermal Sci. 71 (2013) 111-117.
  • S. Halelfadl, P. Estellé, T. Maré, Heat transfer properties of aqueous carbon nanotubes nanofluids in coaxial heat exchanger under laminar regime, Exp. Thermal Fluid Sci., 55 (2014) 74-80.
  • S. Halelfadl, A.M. Adham, N. Mohd-Ghazali, T. Maré, P. Estellé, R. Ahmad, Optimization of thermal performance and pressure drop of a rectangular microchannel heat sink using aqueous carbon nanotubes based nanofluid, App. Thermal Eng. 62/2 (2014) 492-499.
  • P. Estellé, S. Halelfadl, N. Doner, T. Maré, Shear flow history effect on the viscosity of carbon nanotubes water based nanofluid, Curr. Nanosci., 9/2 (2013) 225-230.
There are 44 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Patrice Estellé This is me

Salma Halelfadl This is me

Thierry Maré This is me

Publication Date February 1, 2015
Submission Date May 14, 2015
Published in Issue Year 2015 Volume: 1 Issue: 2

Cite

APA Estellé, P., Halelfadl, S., & Maré, T. (2015). Thermal conductivity of CNT water based nanofluids: Experimental trends and models overview. Journal of Thermal Engineering, 1(2), 381-390. https://doi.org/10.18186/jte.92293
AMA Estellé P, Halelfadl S, Maré T. Thermal conductivity of CNT water based nanofluids: Experimental trends and models overview. Journal of Thermal Engineering. February 2015;1(2):381-390. doi:10.18186/jte.92293
Chicago Estellé, Patrice, Salma Halelfadl, and Thierry Maré. “Thermal Conductivity of CNT Water Based Nanofluids: Experimental Trends and Models Overview”. Journal of Thermal Engineering 1, no. 2 (February 2015): 381-90. https://doi.org/10.18186/jte.92293.
EndNote Estellé P, Halelfadl S, Maré T (February 1, 2015) Thermal conductivity of CNT water based nanofluids: Experimental trends and models overview. Journal of Thermal Engineering 1 2 381–390.
IEEE P. Estellé, S. Halelfadl, and T. Maré, “Thermal conductivity of CNT water based nanofluids: Experimental trends and models overview”, Journal of Thermal Engineering, vol. 1, no. 2, pp. 381–390, 2015, doi: 10.18186/jte.92293.
ISNAD Estellé, Patrice et al. “Thermal Conductivity of CNT Water Based Nanofluids: Experimental Trends and Models Overview”. Journal of Thermal Engineering 1/2 (February 2015), 381-390. https://doi.org/10.18186/jte.92293.
JAMA Estellé P, Halelfadl S, Maré T. Thermal conductivity of CNT water based nanofluids: Experimental trends and models overview. Journal of Thermal Engineering. 2015;1:381–390.
MLA Estellé, Patrice et al. “Thermal Conductivity of CNT Water Based Nanofluids: Experimental Trends and Models Overview”. Journal of Thermal Engineering, vol. 1, no. 2, 2015, pp. 381-90, doi:10.18186/jte.92293.
Vancouver Estellé P, Halelfadl S, Maré T. Thermal conductivity of CNT water based nanofluids: Experimental trends and models overview. Journal of Thermal Engineering. 2015;1(2):381-90.

Cited By








































A state of the art review on viscosity of nanofluids
Renewable and Sustainable Energy Reviews
S.M. Sohel Murshed
https://doi.org/10.1016/j.rser.2017.03.113





























IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering