BibTex RIS Cite

Aerodynamic Performance of Small-Scale Horizontal Axis Wind Turbines Under Two Different Extreme Wind Conditions

Year 2015, Volume: 1 Issue: 3, 420 - 432, 01.03.2015
https://doi.org/10.18186/jte.94189

Abstract

Aerodynamic performance of two small-scale horizontal axis wind turbines are analyzed under the extreme operating gust and extreme direction change conditions with initial wind speeds of 7, 10, 13, 15 and 20 m/s. Performance predictions are performed using computational fluid dynamics, and time variations of shaft torque and hub bending moment produced by the turbines are presented and compared with each other. Sectional flow field and sectional blade loading details along with surface skin friction line predictions are also presented in order to explain the loading behavior of the turbine blades at the mentioned extreme wind conditions. Predictions show that variations in wind speed and blade loadings are similar at low wind speeds, however, this similarity degrades as the wind speed increases. Also compared to wind speed changes, aerodynamic forces are shown to adapt more slowly to wind direction changes

References

  • Burton, T., Sharpe, D., Jenkins, N. and Bossanyi, E., 2001. Wind Energy Handbook, Chapter 3, John Wiley & Sons, Ltd.
  • Hansen, M. O. L., 2008. Aerodynamics of Wind Turbines, Earthscan, ISBN: 978-1-84407-438-9.
  • Ceyhan, O., 2008. Aerodynamic Design and Optimization of Horizontal Axis Wind Turbines by using BEM Theory and Genetic Algorithm, MS Thesis, Middle East Technical University, Ankara, Turkey.
  • Sagol, E., 2010. Site Specific Design Optimization of a Horizontal Axis Wind Turbine based on Minimum Cost of Energy, MS Thesis, Middle East Technical University, Ankara, Turkey.
  • Alpman, E., Kimilli, M. O., Erisik, A., and Sahin, E. 2014. Site-Specific Optiomization of a Small Scale Horizontal Axis Wind Turbine via Micro Genetic Algorithm. Isı Bilimi ve Tekniği Dergisi - Journal of Thermal Science and Technology, 34 (1), pp. 123 – 136.
  • Alpman,E., 2014. Effect of Selection of Design Parameters on the Optimization of a Horizontal Axis Wind Turbine via Genetic Algorithm. Journal of Physics: Conference Series, 524, 012044.
  • Giguere, P., Selig, M.S., 1999. Design of a Tapered and Twisted Blade for the NREL Combined Experiment Rotor, NREL/SR-500-26173.
  • Eke, G. B., Onyewuidala, J. I., 2010. Optimization of Wind Turbine Blades using Genetic Algorithm, Global Journal of Researches in Engineering, 10, pp. 22 – 26.
  • Diaz-Casas, V., Becerra, J.-A., Lopez-Pena, F., Duro, R. J., 2012. Wind Turbine Design through Evolutionary Algorithms Optimization Engineering, DOI 10.1007/s11081-012- 9187-1. Surrogate CFD Methods,
  • Leishman, J. G., 2002. Challenges in Modelling the Unsteady Aerodynamics of Wind Turbines, Wind Energy, 5, pp. 85 – 132.
  • Lubitz, W. D., 2014. Impact of Ambient Turbulence on Performance of a Small Wind Turbine, Renewable Energy, 61, pp. 69 – 73.
  • International Standard IEC 61400-1. Wind Turbines part 1: Design Requirements, 2005.
  • Storey, R. C., Norris, S. E., Cater, J.E., 2014. Modelling Turbine Loads during an Extreme Coherent Gust using Large Eddy Simulation, Journal of Physics: Conference Series, 524, 012177.
  • Storey, R. C., Norris, S. E., Cater, J.E., 2014. An Actuator Sector Method for Efficient Wind Turbine Simulation, Wind Energy, DOI: 10.1002/we.1722.
  • Jeong, M.-S., Kim, S.-W. Lee, I., Yoo, S.-J., 2014. Wake Impacts on Aerodynamic and Aeroelastic Behaviors of a Horizontal Axis Wind Turbine Blade for Sheared Turbulent Flow, Journal of Fluids and Structures, 50, pp. 66 – 78.
  • Kim. T., Petersen, M. M., Larsen, T. J., 2014. A Comparison Study of the Two-Bladed Partial Pitch Turbine During Normal Operation and Extreme Gust Conditions, Journal of Physics: Conference Series, 524, 012065.
  • http://www.hawc2.dk/
  • Qui, Y.-X. Wang, X.-D., Kang, S., Zhao, M., Liang, Y.-J., 2014. Predictions of Unsteady HAWT Aerodynamics in Yawing and Pitching using Free-Vortex Method, Renewable Energy, 70, pp. 93 – 106.
  • Sezer-Uzol, N., Uzol, O., 2013. Effect of Steady and Transient Wind Shear on the Wake Structure and Performance of a Horizontal Axis Wind Turbine Rotor, Wind Energy, 16, pp. 1-17.
  • Jeon, M., Lee, S., Lee, S., 2014. Unsteady Aerodynamics of Off-Shore Floating Wind Turbines in Platform Pitching Motion using Vortex Lattice Method, Renewable Energy, 65, pp. 207 – 212.
  • Wekesa, D. W., Wang, C., Wei, Y., Danao, L. A. M., 2014. Influence of Operating Conditions on Unsteady Wind Performance of Vertical Axis Wind Turbines Operating within a Fluctuating Free-Stream: A Numerical Study, Journal of Wind Engineering and Industrial Aerodynamics, 135, pp. 76 – 89.
  • Wekesa, D. W., Wang, C., Wei, Y., Kamau, J. N., Danao, L. A. M., 2015. A Numerical Analysis of Unsteady Wind Site for Site Specific Vertical Axis Wind Turbine: A Case Study for Marsabit and Garissa in Kenya, Renewable Energy, 76, pp. 648 – 661.
  • http://www.numeca.com/index.php?id=turbomachine
  • Spalart, P. R. and Allmaras, S. R., 1992. A One-Equation Turbulence Model for Aerodynamic Flows, AIAA Paper, 92-0439.
  • Sorensen, N. N., Michelsen, J. A. and Schreck, S., 2002. Navier-Stokes Predictions of the NREL Phase VI Rotor in the NASA Ames 80ft x 120ft Wind Tunnel, Wind Energy, 5, pp. 151 – 169.
  • FINETM/Turbo v8.7 User Manual, Numeca International, 2010.
  • Simms, D., Schreck, S., Hand, M. and Fingersh, L. J., 2001. NREL Unsteady Aerodynamics Experiment in the NASA-Ames Wind Tunnel: A Comparison of Predictions to Measurements. NREL/TP-500-29494.
  • Somers, D. M., 1997. Design and Experimental Results for the S809 Airfoil, NREL/SR-440-6918.
  • Williamson, G. A., McGranahan, B. D., Broughton, B. A., Deters, R. W., Brandt, J. B., Selig, M. S., 2012. Summary of Low-Speed Airfoil Data: Volume 5, University of Illinois Low Speed Airfoil Tests.
  • https://wind.nrel.gov/airfoils/AirfoilList.html
  • Selig, M. S., McGranahan, B. D., 2004. Wind Tunnel Tests of Six Airfoils for Use on Small Wind Turbines, NREL/SR- 500-34515.

Aerodynamic Performance of Small-Scale Horizontal Axis Wind Turbines Under Two Different Extreme Wind Conditions

Year 2015, Volume: 1 Issue: 3, 420 - 432, 01.03.2015
https://doi.org/10.18186/jte.94189

Abstract

References

  • Burton, T., Sharpe, D., Jenkins, N. and Bossanyi, E., 2001. Wind Energy Handbook, Chapter 3, John Wiley & Sons, Ltd.
  • Hansen, M. O. L., 2008. Aerodynamics of Wind Turbines, Earthscan, ISBN: 978-1-84407-438-9.
  • Ceyhan, O., 2008. Aerodynamic Design and Optimization of Horizontal Axis Wind Turbines by using BEM Theory and Genetic Algorithm, MS Thesis, Middle East Technical University, Ankara, Turkey.
  • Sagol, E., 2010. Site Specific Design Optimization of a Horizontal Axis Wind Turbine based on Minimum Cost of Energy, MS Thesis, Middle East Technical University, Ankara, Turkey.
  • Alpman, E., Kimilli, M. O., Erisik, A., and Sahin, E. 2014. Site-Specific Optiomization of a Small Scale Horizontal Axis Wind Turbine via Micro Genetic Algorithm. Isı Bilimi ve Tekniği Dergisi - Journal of Thermal Science and Technology, 34 (1), pp. 123 – 136.
  • Alpman,E., 2014. Effect of Selection of Design Parameters on the Optimization of a Horizontal Axis Wind Turbine via Genetic Algorithm. Journal of Physics: Conference Series, 524, 012044.
  • Giguere, P., Selig, M.S., 1999. Design of a Tapered and Twisted Blade for the NREL Combined Experiment Rotor, NREL/SR-500-26173.
  • Eke, G. B., Onyewuidala, J. I., 2010. Optimization of Wind Turbine Blades using Genetic Algorithm, Global Journal of Researches in Engineering, 10, pp. 22 – 26.
  • Diaz-Casas, V., Becerra, J.-A., Lopez-Pena, F., Duro, R. J., 2012. Wind Turbine Design through Evolutionary Algorithms Optimization Engineering, DOI 10.1007/s11081-012- 9187-1. Surrogate CFD Methods,
  • Leishman, J. G., 2002. Challenges in Modelling the Unsteady Aerodynamics of Wind Turbines, Wind Energy, 5, pp. 85 – 132.
  • Lubitz, W. D., 2014. Impact of Ambient Turbulence on Performance of a Small Wind Turbine, Renewable Energy, 61, pp. 69 – 73.
  • International Standard IEC 61400-1. Wind Turbines part 1: Design Requirements, 2005.
  • Storey, R. C., Norris, S. E., Cater, J.E., 2014. Modelling Turbine Loads during an Extreme Coherent Gust using Large Eddy Simulation, Journal of Physics: Conference Series, 524, 012177.
  • Storey, R. C., Norris, S. E., Cater, J.E., 2014. An Actuator Sector Method for Efficient Wind Turbine Simulation, Wind Energy, DOI: 10.1002/we.1722.
  • Jeong, M.-S., Kim, S.-W. Lee, I., Yoo, S.-J., 2014. Wake Impacts on Aerodynamic and Aeroelastic Behaviors of a Horizontal Axis Wind Turbine Blade for Sheared Turbulent Flow, Journal of Fluids and Structures, 50, pp. 66 – 78.
  • Kim. T., Petersen, M. M., Larsen, T. J., 2014. A Comparison Study of the Two-Bladed Partial Pitch Turbine During Normal Operation and Extreme Gust Conditions, Journal of Physics: Conference Series, 524, 012065.
  • http://www.hawc2.dk/
  • Qui, Y.-X. Wang, X.-D., Kang, S., Zhao, M., Liang, Y.-J., 2014. Predictions of Unsteady HAWT Aerodynamics in Yawing and Pitching using Free-Vortex Method, Renewable Energy, 70, pp. 93 – 106.
  • Sezer-Uzol, N., Uzol, O., 2013. Effect of Steady and Transient Wind Shear on the Wake Structure and Performance of a Horizontal Axis Wind Turbine Rotor, Wind Energy, 16, pp. 1-17.
  • Jeon, M., Lee, S., Lee, S., 2014. Unsteady Aerodynamics of Off-Shore Floating Wind Turbines in Platform Pitching Motion using Vortex Lattice Method, Renewable Energy, 65, pp. 207 – 212.
  • Wekesa, D. W., Wang, C., Wei, Y., Danao, L. A. M., 2014. Influence of Operating Conditions on Unsteady Wind Performance of Vertical Axis Wind Turbines Operating within a Fluctuating Free-Stream: A Numerical Study, Journal of Wind Engineering and Industrial Aerodynamics, 135, pp. 76 – 89.
  • Wekesa, D. W., Wang, C., Wei, Y., Kamau, J. N., Danao, L. A. M., 2015. A Numerical Analysis of Unsteady Wind Site for Site Specific Vertical Axis Wind Turbine: A Case Study for Marsabit and Garissa in Kenya, Renewable Energy, 76, pp. 648 – 661.
  • http://www.numeca.com/index.php?id=turbomachine
  • Spalart, P. R. and Allmaras, S. R., 1992. A One-Equation Turbulence Model for Aerodynamic Flows, AIAA Paper, 92-0439.
  • Sorensen, N. N., Michelsen, J. A. and Schreck, S., 2002. Navier-Stokes Predictions of the NREL Phase VI Rotor in the NASA Ames 80ft x 120ft Wind Tunnel, Wind Energy, 5, pp. 151 – 169.
  • FINETM/Turbo v8.7 User Manual, Numeca International, 2010.
  • Simms, D., Schreck, S., Hand, M. and Fingersh, L. J., 2001. NREL Unsteady Aerodynamics Experiment in the NASA-Ames Wind Tunnel: A Comparison of Predictions to Measurements. NREL/TP-500-29494.
  • Somers, D. M., 1997. Design and Experimental Results for the S809 Airfoil, NREL/SR-440-6918.
  • Williamson, G. A., McGranahan, B. D., Broughton, B. A., Deters, R. W., Brandt, J. B., Selig, M. S., 2012. Summary of Low-Speed Airfoil Data: Volume 5, University of Illinois Low Speed Airfoil Tests.
  • https://wind.nrel.gov/airfoils/AirfoilList.html
  • Selig, M. S., McGranahan, B. D., 2004. Wind Tunnel Tests of Six Airfoils for Use on Small Wind Turbines, NREL/SR- 500-34515.
There are 31 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Emre Alpman This is me

Publication Date March 1, 2015
Submission Date May 14, 2015
Published in Issue Year 2015 Volume: 1 Issue: 3

Cite

APA Alpman, E. (2015). Aerodynamic Performance of Small-Scale Horizontal Axis Wind Turbines Under Two Different Extreme Wind Conditions. Journal of Thermal Engineering, 1(3), 420-432. https://doi.org/10.18186/jte.94189
AMA Alpman E. Aerodynamic Performance of Small-Scale Horizontal Axis Wind Turbines Under Two Different Extreme Wind Conditions. Journal of Thermal Engineering. March 2015;1(3):420-432. doi:10.18186/jte.94189
Chicago Alpman, Emre. “Aerodynamic Performance of Small-Scale Horizontal Axis Wind Turbines Under Two Different Extreme Wind Conditions”. Journal of Thermal Engineering 1, no. 3 (March 2015): 420-32. https://doi.org/10.18186/jte.94189.
EndNote Alpman E (March 1, 2015) Aerodynamic Performance of Small-Scale Horizontal Axis Wind Turbines Under Two Different Extreme Wind Conditions. Journal of Thermal Engineering 1 3 420–432.
IEEE E. Alpman, “Aerodynamic Performance of Small-Scale Horizontal Axis Wind Turbines Under Two Different Extreme Wind Conditions”, Journal of Thermal Engineering, vol. 1, no. 3, pp. 420–432, 2015, doi: 10.18186/jte.94189.
ISNAD Alpman, Emre. “Aerodynamic Performance of Small-Scale Horizontal Axis Wind Turbines Under Two Different Extreme Wind Conditions”. Journal of Thermal Engineering 1/3 (March 2015), 420-432. https://doi.org/10.18186/jte.94189.
JAMA Alpman E. Aerodynamic Performance of Small-Scale Horizontal Axis Wind Turbines Under Two Different Extreme Wind Conditions. Journal of Thermal Engineering. 2015;1:420–432.
MLA Alpman, Emre. “Aerodynamic Performance of Small-Scale Horizontal Axis Wind Turbines Under Two Different Extreme Wind Conditions”. Journal of Thermal Engineering, vol. 1, no. 3, 2015, pp. 420-32, doi:10.18186/jte.94189.
Vancouver Alpman E. Aerodynamic Performance of Small-Scale Horizontal Axis Wind Turbines Under Two Different Extreme Wind Conditions. Journal of Thermal Engineering. 2015;1(3):420-32.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering