BibTex RIS Cite

Inverted fins for cooling of a non-uniformly heated domain

Year 2015, Volume: 1 Issue: 1, 1 - 9, 01.01.2015
https://doi.org/10.18186/jte.12488

Abstract

This paper shows that the peak temperature of a nonuniformly heated region can be decreased by embedding highconductivity tree-shaped inserts which is in contact with a heat sink from its stem. The volume fraction of the high-conductivity material is fixed, and so is the volume of the solid region. The length scale of the solid domain is L. Inside there is a cubeshaped region with length scale of 0.1L and heat production 100 times greater than the rest of the domain. The location of this hot spot was varied to uncover how its location affects the peak temperature and the design of inverted fins, i.e. highconductivity tree-shaped inserts. The volume fraction of the high-conductivity tree was varied for number of bifurcation levels of 0, 1 and 2. This showed that increasing the number of the bifurcation levels decreases the peak temperature when the volume fraction decreases. The optimal diameter ratios and optimal bifurcation angles at the each junction level are also documented. Y-shaped trees promise smaller peak temperatures than T-shaped trees. The location of the vascular tree in the z direction also affects the peak temperature when the heat generation is non-uniform. In addition, the peak temperature is minimum when z = 0.65L even though the hot spot is located on z = 0.75L

References

  • Pop E, Sinha S, Goodson KE. Heat generation and transport in nanometer-scale transistors. Proceedings of the IEEE 10.1109/JPROC.2006.879794. pp. 2006; 94, 1587−1601, DOI:
  • Bejan A, Lorente S. Design with Constructal Theory 2008, Wiley, Hoboken.
  • Said, SAM. Investigation of natural convection in convergent vertical channels. Int. J. Energy Res. 1996; 20, pp. 114X(199607)20:7<559::AID-ER115>3.0.CO;2-J.
  • DOI: 1002/(SICI)1099
  • Jang D, Yook S-J, Lee K-S. Optimum design of a radial heat sink with a fin-height profile for high-power led lighting applications. Appl. Energy 2014; 116, pp. 260−268, DOI: 10.1016/j.apenergy.2013.11.063.
  • Kim YS, Lorente S, Bejan A. Constructal steam generator architecture. Int. J. Heat Mass Transfer 2009; 52, pp. 2362−2369, 10.1016/j.ijheatmasstransfer.2008.10.021. DOI:
  • Bejan A, Lorente S. Constructal multi-scale and multi- objective structures. Int. J. Energy Res. 2005; 29, pp. 689−710, DOI: 10.1002/er.1100.
  • Ho T, Mao SS, Greif R. Improving efficiency of high- concentrator photovoltaics by cooling with two-phase forced convection. Int. J. Energy Res. 2010; 34, pp. 1257−1271, DOI: 10.1002/er.1670.
  • Cetkin E, Lorente S, Bejan A. Hybrid grid and tree structures for cooling and mechanical strength. J. Appl. Phys. 2011; 110 064910, DOI: 10.1063/1.3626062.
  • Lorente S, Bejan A, Niu JL. Phase change heat storage in an enclosure with vertical pipe in the center. Int. J. Heat Mass 10.1016/j.ijheatmasstransfer.2014.01.021. 72, Transfer 2014; pp. 329−335, DOI:
  • Kakac S, Pramuanjaroenkij A. Review of convective heat transfer enhancement with nanofluids. Int. J. Heat Mass Transfer 10.1016/j.ijheatmasstransfer.2009.02.006. pp. 3187−3196, DOI:
  • Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 2001; 78, pp. 718−720, DOI: 10.1063/1.1341218.
  • Cetkin E. Three-dimensional high conductivity trees for volumetric cooling. Int. J. Energy Res. 2014; published online, DOI: 10.1002/er.3176.
  • Bejan A. Constructal tree-shaped paths for conduction and convection. Int. J. Energy Res. 2003; 27, pp. 283−299, DOI: 10.1002/er.875.
  • Bejan A. Constructal-theory network of conducting paths for cooling a heat generating volume. Int. J. Heat Mass Transfer 1997; 40, pp. 799–816, DOI: 10.1016/0017- 9310(96)00175-5.
  • Rocha LAO, Lorente S, Bejan A. Conduction tree networks with loops for cooling a heat generating volume. Int. J. Heat Mass Transfer 2006; 49, pp. 2626−2635, DOI: 10.1016/j.ijheatmasstransfer.2006.01.017.
  • Ledezma GA, Bejan A, Errera MR. Constructal tree Networks for heat transfer. J. Appl. Phys. 1997; 82, pp. 89−100, DOI: 10.1063/1.365853.
  • Ledezma GA, Bejan A. Constructal three-dimensional trees for conduction between a volume and one point. J. Heat Transfer 10.1115/1.2825918. pp. 977−984, DOI:
  • See www.comsol.com for information about Comsol Multiphysics.
  • Almogbel M, Bejan A. Conduction trees with spacings at the tips. Int. J. Heat Mass Transfer 1999; 42, pp. 3739−3756, DOI: 10.1016/S0017-9310(99)00051-4.
  • Cetkin E, Lorente S, Bejan A. Natural constructal emergence of vascular design with turbulent flow. J. Appl. Phys. 2010; 107 114901, DOI: 10.1063/1.3430941.
  • Cetkin E, Lorente S, Bejan A. The steepest S curve of spreading and collecting flows: Discovering the invading tree, not assuming it. J. Appl. Phys. 2012; 111 114903, DOI: 10.1063/1.4721657.
  • Kobayashi H, Lorente S, Anderson R, Bejan A. Freely morphing tree structures in a conducting body. Int. J. Heat Mass Transfer 2012; 55, pp. 4744−4753, DOI: 10.1016/j.ijheatmasstransfer.2012.04.038.

Inverted fins for cooling of a non-uniformly heated domain

Year 2015, Volume: 1 Issue: 1, 1 - 9, 01.01.2015
https://doi.org/10.18186/jte.12488

Abstract

References

  • Pop E, Sinha S, Goodson KE. Heat generation and transport in nanometer-scale transistors. Proceedings of the IEEE 10.1109/JPROC.2006.879794. pp. 2006; 94, 1587−1601, DOI:
  • Bejan A, Lorente S. Design with Constructal Theory 2008, Wiley, Hoboken.
  • Said, SAM. Investigation of natural convection in convergent vertical channels. Int. J. Energy Res. 1996; 20, pp. 114X(199607)20:7<559::AID-ER115>3.0.CO;2-J.
  • DOI: 1002/(SICI)1099
  • Jang D, Yook S-J, Lee K-S. Optimum design of a radial heat sink with a fin-height profile for high-power led lighting applications. Appl. Energy 2014; 116, pp. 260−268, DOI: 10.1016/j.apenergy.2013.11.063.
  • Kim YS, Lorente S, Bejan A. Constructal steam generator architecture. Int. J. Heat Mass Transfer 2009; 52, pp. 2362−2369, 10.1016/j.ijheatmasstransfer.2008.10.021. DOI:
  • Bejan A, Lorente S. Constructal multi-scale and multi- objective structures. Int. J. Energy Res. 2005; 29, pp. 689−710, DOI: 10.1002/er.1100.
  • Ho T, Mao SS, Greif R. Improving efficiency of high- concentrator photovoltaics by cooling with two-phase forced convection. Int. J. Energy Res. 2010; 34, pp. 1257−1271, DOI: 10.1002/er.1670.
  • Cetkin E, Lorente S, Bejan A. Hybrid grid and tree structures for cooling and mechanical strength. J. Appl. Phys. 2011; 110 064910, DOI: 10.1063/1.3626062.
  • Lorente S, Bejan A, Niu JL. Phase change heat storage in an enclosure with vertical pipe in the center. Int. J. Heat Mass 10.1016/j.ijheatmasstransfer.2014.01.021. 72, Transfer 2014; pp. 329−335, DOI:
  • Kakac S, Pramuanjaroenkij A. Review of convective heat transfer enhancement with nanofluids. Int. J. Heat Mass Transfer 10.1016/j.ijheatmasstransfer.2009.02.006. pp. 3187−3196, DOI:
  • Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 2001; 78, pp. 718−720, DOI: 10.1063/1.1341218.
  • Cetkin E. Three-dimensional high conductivity trees for volumetric cooling. Int. J. Energy Res. 2014; published online, DOI: 10.1002/er.3176.
  • Bejan A. Constructal tree-shaped paths for conduction and convection. Int. J. Energy Res. 2003; 27, pp. 283−299, DOI: 10.1002/er.875.
  • Bejan A. Constructal-theory network of conducting paths for cooling a heat generating volume. Int. J. Heat Mass Transfer 1997; 40, pp. 799–816, DOI: 10.1016/0017- 9310(96)00175-5.
  • Rocha LAO, Lorente S, Bejan A. Conduction tree networks with loops for cooling a heat generating volume. Int. J. Heat Mass Transfer 2006; 49, pp. 2626−2635, DOI: 10.1016/j.ijheatmasstransfer.2006.01.017.
  • Ledezma GA, Bejan A, Errera MR. Constructal tree Networks for heat transfer. J. Appl. Phys. 1997; 82, pp. 89−100, DOI: 10.1063/1.365853.
  • Ledezma GA, Bejan A. Constructal three-dimensional trees for conduction between a volume and one point. J. Heat Transfer 10.1115/1.2825918. pp. 977−984, DOI:
  • See www.comsol.com for information about Comsol Multiphysics.
  • Almogbel M, Bejan A. Conduction trees with spacings at the tips. Int. J. Heat Mass Transfer 1999; 42, pp. 3739−3756, DOI: 10.1016/S0017-9310(99)00051-4.
  • Cetkin E, Lorente S, Bejan A. Natural constructal emergence of vascular design with turbulent flow. J. Appl. Phys. 2010; 107 114901, DOI: 10.1063/1.3430941.
  • Cetkin E, Lorente S, Bejan A. The steepest S curve of spreading and collecting flows: Discovering the invading tree, not assuming it. J. Appl. Phys. 2012; 111 114903, DOI: 10.1063/1.4721657.
  • Kobayashi H, Lorente S, Anderson R, Bejan A. Freely morphing tree structures in a conducting body. Int. J. Heat Mass Transfer 2012; 55, pp. 4744−4753, DOI: 10.1016/j.ijheatmasstransfer.2012.04.038.
There are 23 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Erdal Çetkin This is me

Publication Date January 1, 2015
Submission Date May 14, 2015
Published in Issue Year 2015 Volume: 1 Issue: 1

Cite

APA Çetkin, E. (2015). Inverted fins for cooling of a non-uniformly heated domain. Journal of Thermal Engineering, 1(1), 1-9. https://doi.org/10.18186/jte.12488
AMA Çetkin E. Inverted fins for cooling of a non-uniformly heated domain. Journal of Thermal Engineering. January 2015;1(1):1-9. doi:10.18186/jte.12488
Chicago Çetkin, Erdal. “Inverted Fins for Cooling of a Non-Uniformly Heated Domain”. Journal of Thermal Engineering 1, no. 1 (January 2015): 1-9. https://doi.org/10.18186/jte.12488.
EndNote Çetkin E (January 1, 2015) Inverted fins for cooling of a non-uniformly heated domain. Journal of Thermal Engineering 1 1 1–9.
IEEE E. Çetkin, “Inverted fins for cooling of a non-uniformly heated domain”, Journal of Thermal Engineering, vol. 1, no. 1, pp. 1–9, 2015, doi: 10.18186/jte.12488.
ISNAD Çetkin, Erdal. “Inverted Fins for Cooling of a Non-Uniformly Heated Domain”. Journal of Thermal Engineering 1/1 (January 2015), 1-9. https://doi.org/10.18186/jte.12488.
JAMA Çetkin E. Inverted fins for cooling of a non-uniformly heated domain. Journal of Thermal Engineering. 2015;1:1–9.
MLA Çetkin, Erdal. “Inverted Fins for Cooling of a Non-Uniformly Heated Domain”. Journal of Thermal Engineering, vol. 1, no. 1, 2015, pp. 1-9, doi:10.18186/jte.12488.
Vancouver Çetkin E. Inverted fins for cooling of a non-uniformly heated domain. Journal of Thermal Engineering. 2015;1(1):1-9.

Cited By




















IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering