BibTex RIS Cite

Influence of drying conditions and mathematical models on the drying curves and the moisture diffusivity of mushrooms

Year 2015, Volume: 1 Issue: 4, 235 - 244, 01.04.2015
https://doi.org/10.18186/jte.65158

Abstract

In the present research, experimental data from several studies about drying behavior of mushrooms have been selected and used to compare different drying methods and different mathematical thin layer drying models to simulate mushroom drying rates. The white button (Agaricus Bisporus), the oyster (Pleurotus Ostreatus) and the milky mushroom slices have been considered for drying in different dryers with different slice thicknesses, drying air temperatures (45 °C to 90 °C) and drying air velocities (0.2 m/s to 5 m/s). The entire drying process has taken place in the falling rate period, assuming that internal mass transfer occurred by diffusion in mushroom slices. Additionally, the effective moisture diffusivity was calculated by using the method of slopes. The diffusivity increases with drying air temperature. The study shows that the drying air temperature and the drying air velocity have an effect on the moisture removal from mushrooms and also on the drying time. Mathematical models have been proved to be useful for design and analysis of heat and mass transfer during drying processes. All the drying models considered in this study could adequately represent the thin layer drying behavior of mushrooms. Furthermore, as it is obvious, any type of mushrooms has its own most suitable model

References

  • Agrawal, Y. C., & Singh, R. P. (1977). Thin layer drying studies on short grain rough rice. ASAE Paper No 77- 3531, MI, USA: St. Joseph.
  • Arora, S., Shivhare, U. S., Ahmed, J., & Raghavan,G. S. V. (2003). Drying kinetics of agaricus bisporus and pleurotus florida mushrooms. Transactions of the ASAE, 46( 3), 721- 724.
  • Arumuganathan, T., Manikantan, M. R., Rai, R. D., Anandakumar, S., & Khare, V. (2009). Mathematical modeling of drying kinetics of milky mushroom in a fluidized bed dryer. International Agrophysics, 23, 1-7.
  • Babalis, S. J., Papanicolaou, E., Kyriakis, N., & Belessiotis,V. G. (2006). Evaluation of thin-layer drying models for describing drying kinetics of figs (Ficuscarica). Journal of Food Engineering. 75, 205-214.
  • Basunia, M., & Abe, T. (2001). Thin layer solar drying characteristics of rough rice under natural convection. Journal of Food Engineering, 47, 295-301.
  • Çelen, S., Kahveci, K., Akyol, U. & Haksever, A. (2010). Drying behavior of cultured mushrooms. Journal of Processing and Preservation, 34, 27-42.
  • Diamante, L. M., & Munro, P. A. (1993). Mathematical modeling of the thin layer solar drying of sweet potato slices. Solar Energy, 51(4), 271-276.
  • Doymaz, I., & Pala, M. (2002). The effects of dipping pretreatments on air-drying rates of the seedless grapes. Journal of Food Engineering. 52( 4), 413-417.
  • Doymaz, I. (2004). Convective air drying characteristics of thin layer carrots. Journal of Food Engineering, 61, 359-364. Ertekin, C., & Yaldiz, O. (2004). Drying of eggplant and selection of a suitable thin layer drying model. Journal of Food Engineering, 63, 349-359.
  • Gothandapani, L., Parvathi, K., & Kennedy, Z. J. (1997). Evaluation of different methods of drying on the quality of oyster mushroom. Drying Technology, 15, (1995-2004).
  • Kulshreshtha, M., Singh, A., et al. (2009). Effect of drying conditions on mushroom quality. Journal of Engineering Science and Technology, 4(1), 90-98.
  • Maskan, M., & Cogus ,F. (1998). Sorption isotherms and drying characteristics of mulberry (Morusalba). Journal of Food Engineering, 37, 437-449.
  • Meisami, E., & Rafiee, S. (2009). Mathematical modeling of kinetics of thin-layer drying of apple. Agricultural Engineering International, the CIGR E Journal, manuscript 1185, vol. XI.
  • Menges H. O., & Ertekin, C. (2006). Mathematical modeling of thin layer drying of golden apples. Journal of Food Engineering, 77, 119-125.
  • Midilli, A., & Kucuk, H. (2003). Mathematical modeling of thin layer drying of pistachio by using solar energy. Energy Conversion and Management, 44(7), 1111-1122.
  • Moss, J. R., & Otten, L. (1989). A relationship between color development and moisture content during roasting of peanut. Canadian Institute of food science and technology journal, 22, 34-39.
  • O’ Callaghan, J. R., Menzies, D. J., & Bailey, P. H. (1971). Digital simulation of agricultural dryer performance. Journal of Agricultural Engineering Research, 16, 223-244.
  • Özdemir, M., Devres, Y. O. (1999). The thin layer drying characteristics of hazelnuts during roasting. Journal of Food Engineering, 42, 225-233.
  • Panchariya, P. C., Popovic, D., & Sharma, A. L. (2002). Thin-layer modeling of black tea drying process. Journal of Food Engineering, 52, 349-357.
  • Pandey, R. K., Gupta, D. K., Dey A. & Agrawal, S. K. (2000). Hot air-drying characteristics of osmosed button mushroom (Agaricusbisporus) slices. Journal of Agricultural Engineering, 37(4), 7-21.
  • Pangavhane, D. R., Sawhney, R. L., & Sarsavadia, P. N. (1999). Effect of various dipping pretreatment on drying kinetics of Thompson seedless grapes. Journal of Food Engineering, 39, 211-216.
  • Pal, U. S., & Chakraverty, A. (1997). Thin layer convection drying of mushrooms. Energy Conversion and Management, 38(2), 107-113.
  • Sharaf-Eldeen, Y. I., Blaisdell, J. L., & Hamdy, M. Y. (1980). A model for ear corn drying. Transactions of the ASAE, 39(5), 1261-1265.
  • Temple S. J., & Van Boxtel, A. J. (1999). Thin layer drying model of black tea. Journal of Agricultural Engineering Research. 74, 167-176.
  • Thompson, T. L., Peart, R. M., & Foster, G. H. (1968). Mathematical simulation of corn drying-a new model. Transactions of American Society of Agricultural Engineers, 11, 582-586.
  • Toğrul, İ., & Pehlivan, D. (2004). Modeling of thin layer drying kinetics of some fruits under open-air sun drying process. Journal of Food Engineering, 65, 413-425.
  • Toğrul, İ., & Pehlivan, D. (2003). Modeling of drying kinetics of single apricot. Journal of Food Engineering, 58, 23-32.
  • Tulek, Y. (2011). Drying kinetics of oyster mushroom (Peurotus ostreatus) in a convective hot air dryer. Journal of Agricultural Science Technology, 13, 655-664.
  • Verma, L. R., Bucklin, R. A., Endan, J .B., & Wratten, F. T. (1985). Effects of drying air parameters on rice drying models. Transactions of the ASAE, 85, 296-301.
  • Wakchaure, G. C., Manikandan, K., ManiI., & Shirur, M. (2010). Kinetics of Thin layer drying of button mushroom. Journal of Agricultural Engineering, 47(4).
  • Walde, S. G., Velu, V., Jyothirmayi, T., & Math. R. G. (2006). Effects of pretreatments and drying methods on dehydration of mushroom. Journal of Food Engineering, (74),108-115.
  • Wang, C. Y., & Singh, R. P. (1978). A single layer drying equation for rough rice. ASAE Paper No 3001, MI, USA: St.Joseph.
  • Xanthopoulos, G., Lambrinos, Gr., & Manolopoulou, H. (2007). Evaluation of thin-layer models for mushroom (Agaricus bisporus) drying. Drying Technology, 25, 1471- 1481.
  • Yaldiz, O., Ertekin, C., & Uzun, H. I. (2001). Mathematical modeling of thin layer solar drying of sultana grapes. Energy, 26, 457-465.
  • Yaldiz, O., & Ertekin, C. (2001). Thin layer solar drying of some
  • International Journal, 19, 583-596.
  • Zhang, Q., Litchfield, J. B. (1991). An optimization of intermittent corn drying in a laboratory scale thin layer dryer. Drying Technology, 9, 383-395. Drying Technology-An

Influence of drying conditions and mathematical models on the drying curves and the moisture diffusivity of mushrooms

Year 2015, Volume: 1 Issue: 4, 235 - 244, 01.04.2015
https://doi.org/10.18186/jte.65158

Abstract

References

  • Agrawal, Y. C., & Singh, R. P. (1977). Thin layer drying studies on short grain rough rice. ASAE Paper No 77- 3531, MI, USA: St. Joseph.
  • Arora, S., Shivhare, U. S., Ahmed, J., & Raghavan,G. S. V. (2003). Drying kinetics of agaricus bisporus and pleurotus florida mushrooms. Transactions of the ASAE, 46( 3), 721- 724.
  • Arumuganathan, T., Manikantan, M. R., Rai, R. D., Anandakumar, S., & Khare, V. (2009). Mathematical modeling of drying kinetics of milky mushroom in a fluidized bed dryer. International Agrophysics, 23, 1-7.
  • Babalis, S. J., Papanicolaou, E., Kyriakis, N., & Belessiotis,V. G. (2006). Evaluation of thin-layer drying models for describing drying kinetics of figs (Ficuscarica). Journal of Food Engineering. 75, 205-214.
  • Basunia, M., & Abe, T. (2001). Thin layer solar drying characteristics of rough rice under natural convection. Journal of Food Engineering, 47, 295-301.
  • Çelen, S., Kahveci, K., Akyol, U. & Haksever, A. (2010). Drying behavior of cultured mushrooms. Journal of Processing and Preservation, 34, 27-42.
  • Diamante, L. M., & Munro, P. A. (1993). Mathematical modeling of the thin layer solar drying of sweet potato slices. Solar Energy, 51(4), 271-276.
  • Doymaz, I., & Pala, M. (2002). The effects of dipping pretreatments on air-drying rates of the seedless grapes. Journal of Food Engineering. 52( 4), 413-417.
  • Doymaz, I. (2004). Convective air drying characteristics of thin layer carrots. Journal of Food Engineering, 61, 359-364. Ertekin, C., & Yaldiz, O. (2004). Drying of eggplant and selection of a suitable thin layer drying model. Journal of Food Engineering, 63, 349-359.
  • Gothandapani, L., Parvathi, K., & Kennedy, Z. J. (1997). Evaluation of different methods of drying on the quality of oyster mushroom. Drying Technology, 15, (1995-2004).
  • Kulshreshtha, M., Singh, A., et al. (2009). Effect of drying conditions on mushroom quality. Journal of Engineering Science and Technology, 4(1), 90-98.
  • Maskan, M., & Cogus ,F. (1998). Sorption isotherms and drying characteristics of mulberry (Morusalba). Journal of Food Engineering, 37, 437-449.
  • Meisami, E., & Rafiee, S. (2009). Mathematical modeling of kinetics of thin-layer drying of apple. Agricultural Engineering International, the CIGR E Journal, manuscript 1185, vol. XI.
  • Menges H. O., & Ertekin, C. (2006). Mathematical modeling of thin layer drying of golden apples. Journal of Food Engineering, 77, 119-125.
  • Midilli, A., & Kucuk, H. (2003). Mathematical modeling of thin layer drying of pistachio by using solar energy. Energy Conversion and Management, 44(7), 1111-1122.
  • Moss, J. R., & Otten, L. (1989). A relationship between color development and moisture content during roasting of peanut. Canadian Institute of food science and technology journal, 22, 34-39.
  • O’ Callaghan, J. R., Menzies, D. J., & Bailey, P. H. (1971). Digital simulation of agricultural dryer performance. Journal of Agricultural Engineering Research, 16, 223-244.
  • Özdemir, M., Devres, Y. O. (1999). The thin layer drying characteristics of hazelnuts during roasting. Journal of Food Engineering, 42, 225-233.
  • Panchariya, P. C., Popovic, D., & Sharma, A. L. (2002). Thin-layer modeling of black tea drying process. Journal of Food Engineering, 52, 349-357.
  • Pandey, R. K., Gupta, D. K., Dey A. & Agrawal, S. K. (2000). Hot air-drying characteristics of osmosed button mushroom (Agaricusbisporus) slices. Journal of Agricultural Engineering, 37(4), 7-21.
  • Pangavhane, D. R., Sawhney, R. L., & Sarsavadia, P. N. (1999). Effect of various dipping pretreatment on drying kinetics of Thompson seedless grapes. Journal of Food Engineering, 39, 211-216.
  • Pal, U. S., & Chakraverty, A. (1997). Thin layer convection drying of mushrooms. Energy Conversion and Management, 38(2), 107-113.
  • Sharaf-Eldeen, Y. I., Blaisdell, J. L., & Hamdy, M. Y. (1980). A model for ear corn drying. Transactions of the ASAE, 39(5), 1261-1265.
  • Temple S. J., & Van Boxtel, A. J. (1999). Thin layer drying model of black tea. Journal of Agricultural Engineering Research. 74, 167-176.
  • Thompson, T. L., Peart, R. M., & Foster, G. H. (1968). Mathematical simulation of corn drying-a new model. Transactions of American Society of Agricultural Engineers, 11, 582-586.
  • Toğrul, İ., & Pehlivan, D. (2004). Modeling of thin layer drying kinetics of some fruits under open-air sun drying process. Journal of Food Engineering, 65, 413-425.
  • Toğrul, İ., & Pehlivan, D. (2003). Modeling of drying kinetics of single apricot. Journal of Food Engineering, 58, 23-32.
  • Tulek, Y. (2011). Drying kinetics of oyster mushroom (Peurotus ostreatus) in a convective hot air dryer. Journal of Agricultural Science Technology, 13, 655-664.
  • Verma, L. R., Bucklin, R. A., Endan, J .B., & Wratten, F. T. (1985). Effects of drying air parameters on rice drying models. Transactions of the ASAE, 85, 296-301.
  • Wakchaure, G. C., Manikandan, K., ManiI., & Shirur, M. (2010). Kinetics of Thin layer drying of button mushroom. Journal of Agricultural Engineering, 47(4).
  • Walde, S. G., Velu, V., Jyothirmayi, T., & Math. R. G. (2006). Effects of pretreatments and drying methods on dehydration of mushroom. Journal of Food Engineering, (74),108-115.
  • Wang, C. Y., & Singh, R. P. (1978). A single layer drying equation for rough rice. ASAE Paper No 3001, MI, USA: St.Joseph.
  • Xanthopoulos, G., Lambrinos, Gr., & Manolopoulou, H. (2007). Evaluation of thin-layer models for mushroom (Agaricus bisporus) drying. Drying Technology, 25, 1471- 1481.
  • Yaldiz, O., Ertekin, C., & Uzun, H. I. (2001). Mathematical modeling of thin layer solar drying of sultana grapes. Energy, 26, 457-465.
  • Yaldiz, O., & Ertekin, C. (2001). Thin layer solar drying of some
  • International Journal, 19, 583-596.
  • Zhang, Q., Litchfield, J. B. (1991). An optimization of intermittent corn drying in a laboratory scale thin layer dryer. Drying Technology, 9, 383-395. Drying Technology-An
There are 37 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Athina Stegou-sagia This is me

Dimitra Fragkou This is me

Publication Date April 1, 2015
Submission Date May 14, 2015
Published in Issue Year 2015 Volume: 1 Issue: 4

Cite

APA Stegou-sagia, A., & Fragkou, D. (2015). Influence of drying conditions and mathematical models on the drying curves and the moisture diffusivity of mushrooms. Journal of Thermal Engineering, 1(4), 235-244. https://doi.org/10.18186/jte.65158
AMA Stegou-sagia A, Fragkou D. Influence of drying conditions and mathematical models on the drying curves and the moisture diffusivity of mushrooms. Journal of Thermal Engineering. April 2015;1(4):235-244. doi:10.18186/jte.65158
Chicago Stegou-sagia, Athina, and Dimitra Fragkou. “Influence of Drying Conditions and Mathematical Models on the Drying Curves and the Moisture Diffusivity of Mushrooms”. Journal of Thermal Engineering 1, no. 4 (April 2015): 235-44. https://doi.org/10.18186/jte.65158.
EndNote Stegou-sagia A, Fragkou D (April 1, 2015) Influence of drying conditions and mathematical models on the drying curves and the moisture diffusivity of mushrooms. Journal of Thermal Engineering 1 4 235–244.
IEEE A. Stegou-sagia and D. Fragkou, “Influence of drying conditions and mathematical models on the drying curves and the moisture diffusivity of mushrooms”, Journal of Thermal Engineering, vol. 1, no. 4, pp. 235–244, 2015, doi: 10.18186/jte.65158.
ISNAD Stegou-sagia, Athina - Fragkou, Dimitra. “Influence of Drying Conditions and Mathematical Models on the Drying Curves and the Moisture Diffusivity of Mushrooms”. Journal of Thermal Engineering 1/4 (April 2015), 235-244. https://doi.org/10.18186/jte.65158.
JAMA Stegou-sagia A, Fragkou D. Influence of drying conditions and mathematical models on the drying curves and the moisture diffusivity of mushrooms. Journal of Thermal Engineering. 2015;1:235–244.
MLA Stegou-sagia, Athina and Dimitra Fragkou. “Influence of Drying Conditions and Mathematical Models on the Drying Curves and the Moisture Diffusivity of Mushrooms”. Journal of Thermal Engineering, vol. 1, no. 4, 2015, pp. 235-44, doi:10.18186/jte.65158.
Vancouver Stegou-sagia A, Fragkou D. Influence of drying conditions and mathematical models on the drying curves and the moisture diffusivity of mushrooms. Journal of Thermal Engineering. 2015;1(4):235-44.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering