Research Article
BibTex RIS Cite
Year 2017, Volume: 3 Issue: 6 - Special Issue 6: Istanbul International Conference on Progress Applied Science (ICPAS2017), 1588 - 1606, 04.10.2017
https://doi.org/10.18186/journal-of-thermal-engineering.353737

Abstract

References

  • [1] Escudier, M. P. "Observations of the flow produced in a cylindrical container by a rotating endwall." Experiments in fluids 2, no. 4 (1984): 189-196.
  • [2] Hourigan, K., L. J. W. Graham, and M. C. Thompson. "Spiral streaklines in pre‐vortex breakdown regions of axisymmetric swirling flows." Physics of Fluids (1994-present) 7, no. 12 (1995): 3126-3128.
  • [3] Stevens, José L., Z. Z. Celik, B. J. Cantwell, and J. M. Lopez. "Experimental study of vortex breakdown in a cylindrical, swirling flow." (1996).
  • [4] Fujimura, Kazuyuki, Hide S. Koyama, and Jae Min Hyun. "Time-dependent vortex breakdown in a cylinder with a rotating lid." Journal of fluids engineering 119, no. 2 (1997): 450-453.
  • [5] Spohn, A., M. Mory, and E. J. Hopfinger."Experiments on vortex breakdown in a confined flow generated by a rotating disc." Journal of Fluid Mechanics370 (1998): 73-99.
  • [6] Blackburn, Hugh M., and J. M. Lopez. "Symmetry breaking of the flow in a cylinder driven by a rotating end wall." Physics of Fluids 12, no. 11 (2000): 2698-2701.
  • [7] Sotiropoulos, Fotis, and Yiannis Ventikos. "The three-dimensional structure of confined swirling flows with vortex breakdown." Journal of Fluid Mechanics 426 (2001): 155-175.
  • [8] Vogel, H. U. 1968: Experimentelle Ergebnisse t~ber die laminare Str6mung in einem zylindrischen Geh~iuse mit darin rotierender Scheibe. MPI Bericht 6.
  • [9] Ronnenberg, B. 1977: Ein selbstjustierendes 3-Komponenten-Laserdoppleranemometer nach dem Vergleichsstrahlverfahren,angewandt far Untersuchungen in einer station~ tren zylinder symmetrischen Drehstr6mung mit einem Rt~ckstromgebiet. MPI Bericht 20.
  • [10] Escudier, M. P., and J. J. Keller. Vortex breakdown: a two-stage transition.BROWN BOVERI RESEARCH CENTER BADEN (SWITZERLAND), 1983.
  • [11] Lopez, J. M. (1990). Axisymmetric vortex breakdown Part 1. Confined swirling flow. Journal of Fluid Mechanics, 221, 533-552.
  • [12] Lugt, H.J. and Abboud, M., 1987, “Axisymmetric vortex breakdown with and without temperature effects in a container with a rotating lid,” Journal of Fluid Mechanics., 179, pp.179-200.
  • [13] Bessaïh R, Marty P, Kadja M. Numerical study of disk driven rotating MHD flowof a liquid metal in a cylindrical enclosure. Acta Mech 1999; 135:153.
  • [14] Bessaïh R, Kadja M, Eckert K, Marty P. Numerical and analytical study of rotating flow in an enclosed cylinder under an axial magnetic field. Acta Mech2003; 164:175.
  • [15] Gelfgat YM, Gelfgat AY. Experimental and numerical study of rotating magnetic field driven flow in cylindrical enclosures with different aspect ratios. Magnetohydrodynamics.2004; 40:147.
  • [16] Lee, C. H., & Hyun, J. M. (1999). Flow of a stratified fluid in a cylinder with a rotating lid. International journal of heat and fluid flow, 20(1), 26-33.
  • [17] Kim, W. N., & Hyun, J. M. (1997). Convective heat transfer in a cylinder with a rotating lid under stable stratification. International Journal of Heat and Fluid Flow, 18(4), 384-388.
  • [18] Iwatsu, R. (2004). Flow pattern and heat transfer of swirling flows in cylindrical container with rotating top and stable temperature gradient. International journal of heat and mass transfer, 47(12), 2755-2767.
  • [19] Chen, S. (2011). Entropy generation inside disk driven rotating convectional flow. International Journal of Thermal Sciences, 50(4), 626-638.
  • [20] Dash S., and Singh N., 2016, “Effects of Partial Heating of Top Rotating Lid With Axial Temperature Gradient On Vortex Breakdown In Case Of Axisymmetric Stratified Lid Driven Swirling Flow,” Yildiz Technical University Press, Istanbul, Turkey , J. Thermal Eng., 2(Sp. Issue 4), pp. 883-896.
  • [21] Gefagat A. Y. , Destabilization of free convection by weak rotation, 9th international conference heat transfer fluid mechanics and thermodynamics,16-18 july 2012,Malta.
  • [22] Bessaïh R, Boukhari A, Marty P. Magnetohydrodynamics stability of a rotatingflow with heat transfer. Int Commun Heat Mass 2009; 36:893.
  • [23] Mahfoud B, Bessaih R. Oscillatory swirling flows in a cylindrical enclosure with co-/counter-rotating end disks submitted to a vertical temperature gradient. Fluid Dynamics & Materials Processing. 2012; 8:1.
  • [24] Verzicco, R., and P. Orlandi. "A finitedifference scheme for three-dimensional incompressible flows in cylindrical coordinates." Journal of Computational Physics 123, no. 2 (1996): 402-414.
  • [25] Barbosa, Emerson, and Olivier Daube. "A finite difference method for 3D incompressible flows in cylindrical coordinates." Computers & fluids 34, no. 8 (2005): 950-971.
  • [26] Fukagata, Koji, and Nobuhide Kasagi. "Highly energy-conservative finite difference method for the cylindrical coordinate system." Journal of Computational Physics 181, no. 2 (2002): 478-498.
  • [27] Chorin, A. J., A Numerical method for solving incompressible viscous flow problems, Journal of Comput. Phys., Vol 2, pp 12-26, 1967.
  • [28] Peyret, R.&Taylor, D.(1983). Computational methods for fluid flow;SprigerVerlag.

STUDY OF AXISYMMETRIC NATURE IN 3-D SWIRLING FLOW IN A CYLINDRICAL ANNULUS WITH A TOP ROTATING LID UNDER THE INFLUENCE OF AXIAL TEMPERATURE GRADIENT OR AXIAL MAGNETIC FIELD

Year 2017, Volume: 3 Issue: 6 - Special Issue 6: Istanbul International Conference on Progress Applied Science (ICPAS2017), 1588 - 1606, 04.10.2017
https://doi.org/10.18186/journal-of-thermal-engineering.353737

Abstract

The three
dimensional swirling flow has been obtained by solving Navier Stokes equations,
expressed in cylindrical coordinate system, using finite difference technique
on a staggered grid. An explicit finite difference method using pressure
correction technique, for the solution of Navier-Stokes has been implemented to
solve three dimensional flows.   Present
study explores the 3-D axisymmetric nature of stratified swirling flow and
vortex breakdown in a cylindrical annulus cavity with top rotating lid. The
annulus is obtained by inserting a thin coaxial rod in cylindrical cavity. This
rod may be stationary or rotating depending on the particular study. Three
dimensional swirling flows in annuli have also been studied subjected to axial
temperature gradient or under the influence of axial magnetic field. Influence
of
governing parameters
Re, Ri and Ha on the overall heat transfer has been investigated through
variation of
the average Nusselt number with these parameters. Further, the present numerical results are shown to be in good
agreement with the available benchmark solutions under the limiting conditions.

References

  • [1] Escudier, M. P. "Observations of the flow produced in a cylindrical container by a rotating endwall." Experiments in fluids 2, no. 4 (1984): 189-196.
  • [2] Hourigan, K., L. J. W. Graham, and M. C. Thompson. "Spiral streaklines in pre‐vortex breakdown regions of axisymmetric swirling flows." Physics of Fluids (1994-present) 7, no. 12 (1995): 3126-3128.
  • [3] Stevens, José L., Z. Z. Celik, B. J. Cantwell, and J. M. Lopez. "Experimental study of vortex breakdown in a cylindrical, swirling flow." (1996).
  • [4] Fujimura, Kazuyuki, Hide S. Koyama, and Jae Min Hyun. "Time-dependent vortex breakdown in a cylinder with a rotating lid." Journal of fluids engineering 119, no. 2 (1997): 450-453.
  • [5] Spohn, A., M. Mory, and E. J. Hopfinger."Experiments on vortex breakdown in a confined flow generated by a rotating disc." Journal of Fluid Mechanics370 (1998): 73-99.
  • [6] Blackburn, Hugh M., and J. M. Lopez. "Symmetry breaking of the flow in a cylinder driven by a rotating end wall." Physics of Fluids 12, no. 11 (2000): 2698-2701.
  • [7] Sotiropoulos, Fotis, and Yiannis Ventikos. "The three-dimensional structure of confined swirling flows with vortex breakdown." Journal of Fluid Mechanics 426 (2001): 155-175.
  • [8] Vogel, H. U. 1968: Experimentelle Ergebnisse t~ber die laminare Str6mung in einem zylindrischen Geh~iuse mit darin rotierender Scheibe. MPI Bericht 6.
  • [9] Ronnenberg, B. 1977: Ein selbstjustierendes 3-Komponenten-Laserdoppleranemometer nach dem Vergleichsstrahlverfahren,angewandt far Untersuchungen in einer station~ tren zylinder symmetrischen Drehstr6mung mit einem Rt~ckstromgebiet. MPI Bericht 20.
  • [10] Escudier, M. P., and J. J. Keller. Vortex breakdown: a two-stage transition.BROWN BOVERI RESEARCH CENTER BADEN (SWITZERLAND), 1983.
  • [11] Lopez, J. M. (1990). Axisymmetric vortex breakdown Part 1. Confined swirling flow. Journal of Fluid Mechanics, 221, 533-552.
  • [12] Lugt, H.J. and Abboud, M., 1987, “Axisymmetric vortex breakdown with and without temperature effects in a container with a rotating lid,” Journal of Fluid Mechanics., 179, pp.179-200.
  • [13] Bessaïh R, Marty P, Kadja M. Numerical study of disk driven rotating MHD flowof a liquid metal in a cylindrical enclosure. Acta Mech 1999; 135:153.
  • [14] Bessaïh R, Kadja M, Eckert K, Marty P. Numerical and analytical study of rotating flow in an enclosed cylinder under an axial magnetic field. Acta Mech2003; 164:175.
  • [15] Gelfgat YM, Gelfgat AY. Experimental and numerical study of rotating magnetic field driven flow in cylindrical enclosures with different aspect ratios. Magnetohydrodynamics.2004; 40:147.
  • [16] Lee, C. H., & Hyun, J. M. (1999). Flow of a stratified fluid in a cylinder with a rotating lid. International journal of heat and fluid flow, 20(1), 26-33.
  • [17] Kim, W. N., & Hyun, J. M. (1997). Convective heat transfer in a cylinder with a rotating lid under stable stratification. International Journal of Heat and Fluid Flow, 18(4), 384-388.
  • [18] Iwatsu, R. (2004). Flow pattern and heat transfer of swirling flows in cylindrical container with rotating top and stable temperature gradient. International journal of heat and mass transfer, 47(12), 2755-2767.
  • [19] Chen, S. (2011). Entropy generation inside disk driven rotating convectional flow. International Journal of Thermal Sciences, 50(4), 626-638.
  • [20] Dash S., and Singh N., 2016, “Effects of Partial Heating of Top Rotating Lid With Axial Temperature Gradient On Vortex Breakdown In Case Of Axisymmetric Stratified Lid Driven Swirling Flow,” Yildiz Technical University Press, Istanbul, Turkey , J. Thermal Eng., 2(Sp. Issue 4), pp. 883-896.
  • [21] Gefagat A. Y. , Destabilization of free convection by weak rotation, 9th international conference heat transfer fluid mechanics and thermodynamics,16-18 july 2012,Malta.
  • [22] Bessaïh R, Boukhari A, Marty P. Magnetohydrodynamics stability of a rotatingflow with heat transfer. Int Commun Heat Mass 2009; 36:893.
  • [23] Mahfoud B, Bessaih R. Oscillatory swirling flows in a cylindrical enclosure with co-/counter-rotating end disks submitted to a vertical temperature gradient. Fluid Dynamics & Materials Processing. 2012; 8:1.
  • [24] Verzicco, R., and P. Orlandi. "A finitedifference scheme for three-dimensional incompressible flows in cylindrical coordinates." Journal of Computational Physics 123, no. 2 (1996): 402-414.
  • [25] Barbosa, Emerson, and Olivier Daube. "A finite difference method for 3D incompressible flows in cylindrical coordinates." Computers & fluids 34, no. 8 (2005): 950-971.
  • [26] Fukagata, Koji, and Nobuhide Kasagi. "Highly energy-conservative finite difference method for the cylindrical coordinate system." Journal of Computational Physics 181, no. 2 (2002): 478-498.
  • [27] Chorin, A. J., A Numerical method for solving incompressible viscous flow problems, Journal of Comput. Phys., Vol 2, pp 12-26, 1967.
  • [28] Peyret, R.&Taylor, D.(1983). Computational methods for fluid flow;SprigerVerlag.
There are 28 citations in total.

Details

Journal Section Articles
Authors

Subas Chandra Dash This is me

Publication Date October 4, 2017
Submission Date November 15, 2017
Published in Issue Year 2017 Volume: 3 Issue: 6 - Special Issue 6: Istanbul International Conference on Progress Applied Science (ICPAS2017)

Cite

APA Dash, S. C. (2017). STUDY OF AXISYMMETRIC NATURE IN 3-D SWIRLING FLOW IN A CYLINDRICAL ANNULUS WITH A TOP ROTATING LID UNDER THE INFLUENCE OF AXIAL TEMPERATURE GRADIENT OR AXIAL MAGNETIC FIELD. Journal of Thermal Engineering, 3(6), 1588-1606. https://doi.org/10.18186/journal-of-thermal-engineering.353737
AMA Dash SC. STUDY OF AXISYMMETRIC NATURE IN 3-D SWIRLING FLOW IN A CYLINDRICAL ANNULUS WITH A TOP ROTATING LID UNDER THE INFLUENCE OF AXIAL TEMPERATURE GRADIENT OR AXIAL MAGNETIC FIELD. Journal of Thermal Engineering. October 2017;3(6):1588-1606. doi:10.18186/journal-of-thermal-engineering.353737
Chicago Dash, Subas Chandra. “STUDY OF AXISYMMETRIC NATURE IN 3-D SWIRLING FLOW IN A CYLINDRICAL ANNULUS WITH A TOP ROTATING LID UNDER THE INFLUENCE OF AXIAL TEMPERATURE GRADIENT OR AXIAL MAGNETIC FIELD”. Journal of Thermal Engineering 3, no. 6 (October 2017): 1588-1606. https://doi.org/10.18186/journal-of-thermal-engineering.353737.
EndNote Dash SC (October 1, 2017) STUDY OF AXISYMMETRIC NATURE IN 3-D SWIRLING FLOW IN A CYLINDRICAL ANNULUS WITH A TOP ROTATING LID UNDER THE INFLUENCE OF AXIAL TEMPERATURE GRADIENT OR AXIAL MAGNETIC FIELD. Journal of Thermal Engineering 3 6 1588–1606.
IEEE S. C. Dash, “STUDY OF AXISYMMETRIC NATURE IN 3-D SWIRLING FLOW IN A CYLINDRICAL ANNULUS WITH A TOP ROTATING LID UNDER THE INFLUENCE OF AXIAL TEMPERATURE GRADIENT OR AXIAL MAGNETIC FIELD”, Journal of Thermal Engineering, vol. 3, no. 6, pp. 1588–1606, 2017, doi: 10.18186/journal-of-thermal-engineering.353737.
ISNAD Dash, Subas Chandra. “STUDY OF AXISYMMETRIC NATURE IN 3-D SWIRLING FLOW IN A CYLINDRICAL ANNULUS WITH A TOP ROTATING LID UNDER THE INFLUENCE OF AXIAL TEMPERATURE GRADIENT OR AXIAL MAGNETIC FIELD”. Journal of Thermal Engineering 3/6 (October 2017), 1588-1606. https://doi.org/10.18186/journal-of-thermal-engineering.353737.
JAMA Dash SC. STUDY OF AXISYMMETRIC NATURE IN 3-D SWIRLING FLOW IN A CYLINDRICAL ANNULUS WITH A TOP ROTATING LID UNDER THE INFLUENCE OF AXIAL TEMPERATURE GRADIENT OR AXIAL MAGNETIC FIELD. Journal of Thermal Engineering. 2017;3:1588–1606.
MLA Dash, Subas Chandra. “STUDY OF AXISYMMETRIC NATURE IN 3-D SWIRLING FLOW IN A CYLINDRICAL ANNULUS WITH A TOP ROTATING LID UNDER THE INFLUENCE OF AXIAL TEMPERATURE GRADIENT OR AXIAL MAGNETIC FIELD”. Journal of Thermal Engineering, vol. 3, no. 6, 2017, pp. 1588-06, doi:10.18186/journal-of-thermal-engineering.353737.
Vancouver Dash SC. STUDY OF AXISYMMETRIC NATURE IN 3-D SWIRLING FLOW IN A CYLINDRICAL ANNULUS WITH A TOP ROTATING LID UNDER THE INFLUENCE OF AXIAL TEMPERATURE GRADIENT OR AXIAL MAGNETIC FIELD. Journal of Thermal Engineering. 2017;3(6):1588-606.

Cited By










IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering