Research Article
BibTex RIS Cite
Year 2018, Volume: 4 Issue: 1, 1632 - 1647, 05.12.2017
https://doi.org/10.18186/journal-of-thermal-engineering.362048

Abstract

References

  • [1] Polezhaev, J. The transpiration cooling for blades of high temperatures gas turbine. Energ. Convers Manage, 1997, 38, 1123-1133.
  • [2] Trevino, C.; Medina, A. Analysis of transpiration cooling of a thin porous plate in a hot laminar convective flow. Eur. J. Mech., 1997, 2, 245-260.
  • [3] Andoh, Y.H.; Lips, B. Prediction of porous walls thermal protection by effusion or transpiration cooling An analytic approach. Appl. Therm. Eng., 2003, 23, 1947-1958.
  • [4] Cerri, G.; Giovannelli, A.; Battisti, L.; Fedrizzi, R. Advances in effusive cooling techniques of gas turbines. Appl. Therm. Eng., 2007, 27, 692-698.
  • [5] Liu, Y.Q.; Xiong, Y.B.; Jiang, P.X.; Wang, Y.P.; Sun, J.G. Effects of local geometry and boundary conditions on transpiration cooling. Int. J. Heat Mass Tran., 2013, 62, 362-372.
  • [6] He, F.; Wang, J. Numerical investigation on critical heat flux and coolant volume required for transpiration cooling with phase change. Energ. Convers Manage, 2014, 80, 591-597.
  • [7] Huang, Z.; Zhu, Y.; Xiong Y.; Jiang P. Investigation of transpiration cooling for sintered metal porous struts in supersonic flow. Appl. Therm. Eng., 2014, 70, 240-249.
  • [8] Shi, J.; Wang, J. Optimized structure of two layer porous media with genetic algorithm for transpiration cooling. Int. J. Therm. Sci., 2008, 47, 1595-1601.
  • [9] Song, C.H.; Lee, D.Y.; Sung, T.R. Cooling enhancement in an air cooled finned heat exchanger by thin water film evaporation. . Int. J. Heat Mass Tran. 2002, 46, 1241-1249.
  • [10] Leu, J.S.; Jang, J.Y.; Chou, W.C. Convection heat transfer along a vertical heated plate with film evaporation in a non-Darcian porous medium. Int. J. Heat Mass Tran., 2009, 52, 5447-5450.
  • [11] Hsyan, S.M.; Jer, H.M.; Kuang, C.C. A study of the liquid evaporation with Darcian resistance effect on mixed convection in porous media. Int. Commun. Heat Mass, 2005, 32, 685-694.
  • [12] Maity, S. Thermocapillary flow of thin liquid film over a porous stretching sheet in presence of suction/injection. Int. J. Heat Mass Tran., 2014, 70, 819-826.
  • [13] Xin, C.; Rao, Z.; You, X.; Song, Z.; Han, D. Numerical Investigation of Vapor-liquid heat and mass transfer in porous media. Energ. Convers Manage, 2014, 78, 1-7.
  • [14] Sun, Y.; Zhang, L.; Xu, H.; Zhong, X. Flow boiling enhancement of FC-72 from microporous surface in mini channels. Exp. Therm. and Fluid Sci., 2011, 35, 1418-1426.
  • [15] Jiang, P.X.; Yu, L.; Sun, J.G.; Wang, J. Experimental and numerical investigation of convection heat transfer in transpiration cooling. Appl. Therm. Eng.,, 2004, 24, 1271-1289.
  • [16] Liu, Y.Q.; Jiang, P.X.; Jin, S.S.; Sun, J.G. Transpiration cooling of a nose cone by various foreign gases. Int. J. Heat Mass Tran., 2010, 53, 5364-5372.
  • [17] Liu, Y.Q.; Jiang, P.X.; Xiong, Y.B; Wang, Y.P. Experimental and numerical investigation of transpiration for sintered porous flat plates. Appl. Therm. Eng., 2013, 50, 997-1007.
  • [18] Arai, M.; Suidzu, T. Porous ceramic coating for transpiration cooling of gas turbine blade. J. Therm. Spray Tech., 2012, 22, 690-698.
  • [19] He, F.; Wang, J.; Xu, L. Wang X., Modeling and simulation of transpiration cooling with phase change. Appl. Therm. Eng., 2013, 58,173-180.
  • [20] Wang, j.; Zhao, L.; Wang, X.; Ma, J.; Lin, J. An experimental investigation on transpiration cooling of wedge shaped nose cone with liquid coolant. . Int. J. Heat Mass Tran., 2014, 75, 442-449.
  • [21] Tsai, G.; Lin, Y.C.; Wang, H.W.; Lin, Y.F.; Su, Y.C.; Yang, T.J. Cooling transient in a sudden-expansion channel with varied rates of wall transpiration. Int. J. Heat Mass Tran., 2009, 52, 5990-5999.
  • [22] Langener, T.; Wolserdorf, J.; Selzer, M.; Hald, H. Experimental investigations cooling applied to C/C material. Int. J. Therm. Sci., 2012, 54, 70-81.
  • [23] Zhao, L.; Wang, J.; Ma, J.; Lin, J.; Peng, J.; Qu, D.; Chen, L. An experimental investigation on transpiration cooling under supersonic condition using a nose cone model. Int. J. Therm. Sci., 2014, 84, 207-213.
  • [24] Tsai, Y.Y; Lee, C.H. Experimental study of evaporative heat transfer in sintered powder structure at low superheat levels. Exp. Therm. Fluid Sci., 2014, 52, 230-238.
  • [25] Tsai, Y.Y; Lee, C.H. Effect of sintered structural parameters on reducing the superheat level in heat pipe evaporators. Int. J. Therm. Sci., 2014, 74, 225-234.
  • [26] He, S.; Guan, Z.; Gurgenci, H.; Hooman, K.; Lu, Y.; Alkhedhair, A.M. Experimental study of film media used for evaporative pre-cooling air. Energ. Convers Manage, 2014, 87, 874-884.
  • [27] Mills, A.F., Mass Transfer; 2nd ed., Prentica-Hall Inc.: New Jersey, 2001; pp. 153-169.
  • [28] Cengel, Y.A.; Ghajar, A.J. Heat and Mass Transfer; 4th ed., McGrew-Hill Education: New York, 2011; pp. 465-508.

NUMERICAL INVESTIGATION OF HEAT TRANSFER FROM A POROUS PLATE WITH TRANSPIRATION COOLING

Year 2018, Volume: 4 Issue: 1, 1632 - 1647, 05.12.2017
https://doi.org/10.18186/journal-of-thermal-engineering.362048

Abstract

The present study is focused on
investigation of heat transfer from a porous plate by cooling of air and
surface with transpiration cooling. Effects of Reynolds number of hot air (Re=
3035, 3200, 3300, 3580), effects of flow rate of water as a coolant (ṁwater=
0.000083, 0.000116, 0.000166, 0.000249 kg/s) on local wall temperature and
cooling efficiency of porous flat and the system inside a rectangular channel
with air as a hot gas stream and water as a coolant were investigated
numerically. In this study; different from the literature, transpiration
cooling was used as a cooling mechanism of air. It was observed from the
results that increasing Reynolds number causes an increase on surface
temperature and a decrease on cooling efficiency of porous plate and system.
Increase of Reynolds number from Re=3035 to 9430 causes a decrease of
efficiency of the system of 13.7%. Increasing water flow rate nine times causes
not only a decrease on average surface temperature of 1.1% but also an increase
of 6.5% on efficiency of porous plate and an increase of 19.1% on cooling efficiency
of the system. Numerical results prepared by RNG k-ε turbulence model generally
have a good approximation with experimental results.

References

  • [1] Polezhaev, J. The transpiration cooling for blades of high temperatures gas turbine. Energ. Convers Manage, 1997, 38, 1123-1133.
  • [2] Trevino, C.; Medina, A. Analysis of transpiration cooling of a thin porous plate in a hot laminar convective flow. Eur. J. Mech., 1997, 2, 245-260.
  • [3] Andoh, Y.H.; Lips, B. Prediction of porous walls thermal protection by effusion or transpiration cooling An analytic approach. Appl. Therm. Eng., 2003, 23, 1947-1958.
  • [4] Cerri, G.; Giovannelli, A.; Battisti, L.; Fedrizzi, R. Advances in effusive cooling techniques of gas turbines. Appl. Therm. Eng., 2007, 27, 692-698.
  • [5] Liu, Y.Q.; Xiong, Y.B.; Jiang, P.X.; Wang, Y.P.; Sun, J.G. Effects of local geometry and boundary conditions on transpiration cooling. Int. J. Heat Mass Tran., 2013, 62, 362-372.
  • [6] He, F.; Wang, J. Numerical investigation on critical heat flux and coolant volume required for transpiration cooling with phase change. Energ. Convers Manage, 2014, 80, 591-597.
  • [7] Huang, Z.; Zhu, Y.; Xiong Y.; Jiang P. Investigation of transpiration cooling for sintered metal porous struts in supersonic flow. Appl. Therm. Eng., 2014, 70, 240-249.
  • [8] Shi, J.; Wang, J. Optimized structure of two layer porous media with genetic algorithm for transpiration cooling. Int. J. Therm. Sci., 2008, 47, 1595-1601.
  • [9] Song, C.H.; Lee, D.Y.; Sung, T.R. Cooling enhancement in an air cooled finned heat exchanger by thin water film evaporation. . Int. J. Heat Mass Tran. 2002, 46, 1241-1249.
  • [10] Leu, J.S.; Jang, J.Y.; Chou, W.C. Convection heat transfer along a vertical heated plate with film evaporation in a non-Darcian porous medium. Int. J. Heat Mass Tran., 2009, 52, 5447-5450.
  • [11] Hsyan, S.M.; Jer, H.M.; Kuang, C.C. A study of the liquid evaporation with Darcian resistance effect on mixed convection in porous media. Int. Commun. Heat Mass, 2005, 32, 685-694.
  • [12] Maity, S. Thermocapillary flow of thin liquid film over a porous stretching sheet in presence of suction/injection. Int. J. Heat Mass Tran., 2014, 70, 819-826.
  • [13] Xin, C.; Rao, Z.; You, X.; Song, Z.; Han, D. Numerical Investigation of Vapor-liquid heat and mass transfer in porous media. Energ. Convers Manage, 2014, 78, 1-7.
  • [14] Sun, Y.; Zhang, L.; Xu, H.; Zhong, X. Flow boiling enhancement of FC-72 from microporous surface in mini channels. Exp. Therm. and Fluid Sci., 2011, 35, 1418-1426.
  • [15] Jiang, P.X.; Yu, L.; Sun, J.G.; Wang, J. Experimental and numerical investigation of convection heat transfer in transpiration cooling. Appl. Therm. Eng.,, 2004, 24, 1271-1289.
  • [16] Liu, Y.Q.; Jiang, P.X.; Jin, S.S.; Sun, J.G. Transpiration cooling of a nose cone by various foreign gases. Int. J. Heat Mass Tran., 2010, 53, 5364-5372.
  • [17] Liu, Y.Q.; Jiang, P.X.; Xiong, Y.B; Wang, Y.P. Experimental and numerical investigation of transpiration for sintered porous flat plates. Appl. Therm. Eng., 2013, 50, 997-1007.
  • [18] Arai, M.; Suidzu, T. Porous ceramic coating for transpiration cooling of gas turbine blade. J. Therm. Spray Tech., 2012, 22, 690-698.
  • [19] He, F.; Wang, J.; Xu, L. Wang X., Modeling and simulation of transpiration cooling with phase change. Appl. Therm. Eng., 2013, 58,173-180.
  • [20] Wang, j.; Zhao, L.; Wang, X.; Ma, J.; Lin, J. An experimental investigation on transpiration cooling of wedge shaped nose cone with liquid coolant. . Int. J. Heat Mass Tran., 2014, 75, 442-449.
  • [21] Tsai, G.; Lin, Y.C.; Wang, H.W.; Lin, Y.F.; Su, Y.C.; Yang, T.J. Cooling transient in a sudden-expansion channel with varied rates of wall transpiration. Int. J. Heat Mass Tran., 2009, 52, 5990-5999.
  • [22] Langener, T.; Wolserdorf, J.; Selzer, M.; Hald, H. Experimental investigations cooling applied to C/C material. Int. J. Therm. Sci., 2012, 54, 70-81.
  • [23] Zhao, L.; Wang, J.; Ma, J.; Lin, J.; Peng, J.; Qu, D.; Chen, L. An experimental investigation on transpiration cooling under supersonic condition using a nose cone model. Int. J. Therm. Sci., 2014, 84, 207-213.
  • [24] Tsai, Y.Y; Lee, C.H. Experimental study of evaporative heat transfer in sintered powder structure at low superheat levels. Exp. Therm. Fluid Sci., 2014, 52, 230-238.
  • [25] Tsai, Y.Y; Lee, C.H. Effect of sintered structural parameters on reducing the superheat level in heat pipe evaporators. Int. J. Therm. Sci., 2014, 74, 225-234.
  • [26] He, S.; Guan, Z.; Gurgenci, H.; Hooman, K.; Lu, Y.; Alkhedhair, A.M. Experimental study of film media used for evaporative pre-cooling air. Energ. Convers Manage, 2014, 87, 874-884.
  • [27] Mills, A.F., Mass Transfer; 2nd ed., Prentica-Hall Inc.: New Jersey, 2001; pp. 153-169.
  • [28] Cengel, Y.A.; Ghajar, A.J. Heat and Mass Transfer; 4th ed., McGrew-Hill Education: New York, 2011; pp. 465-508.
There are 28 citations in total.

Details

Journal Section Articles
Authors

Mustafa Kılıç

Publication Date December 5, 2017
Submission Date June 16, 2016
Published in Issue Year 2018 Volume: 4 Issue: 1

Cite

APA Kılıç, M. (2017). NUMERICAL INVESTIGATION OF HEAT TRANSFER FROM A POROUS PLATE WITH TRANSPIRATION COOLING. Journal of Thermal Engineering, 4(1), 1632-1647. https://doi.org/10.18186/journal-of-thermal-engineering.362048
AMA Kılıç M. NUMERICAL INVESTIGATION OF HEAT TRANSFER FROM A POROUS PLATE WITH TRANSPIRATION COOLING. Journal of Thermal Engineering. December 2017;4(1):1632-1647. doi:10.18186/journal-of-thermal-engineering.362048
Chicago Kılıç, Mustafa. “NUMERICAL INVESTIGATION OF HEAT TRANSFER FROM A POROUS PLATE WITH TRANSPIRATION COOLING”. Journal of Thermal Engineering 4, no. 1 (December 2017): 1632-47. https://doi.org/10.18186/journal-of-thermal-engineering.362048.
EndNote Kılıç M (December 1, 2017) NUMERICAL INVESTIGATION OF HEAT TRANSFER FROM A POROUS PLATE WITH TRANSPIRATION COOLING. Journal of Thermal Engineering 4 1 1632–1647.
IEEE M. Kılıç, “NUMERICAL INVESTIGATION OF HEAT TRANSFER FROM A POROUS PLATE WITH TRANSPIRATION COOLING”, Journal of Thermal Engineering, vol. 4, no. 1, pp. 1632–1647, 2017, doi: 10.18186/journal-of-thermal-engineering.362048.
ISNAD Kılıç, Mustafa. “NUMERICAL INVESTIGATION OF HEAT TRANSFER FROM A POROUS PLATE WITH TRANSPIRATION COOLING”. Journal of Thermal Engineering 4/1 (December 2017), 1632-1647. https://doi.org/10.18186/journal-of-thermal-engineering.362048.
JAMA Kılıç M. NUMERICAL INVESTIGATION OF HEAT TRANSFER FROM A POROUS PLATE WITH TRANSPIRATION COOLING. Journal of Thermal Engineering. 2017;4:1632–1647.
MLA Kılıç, Mustafa. “NUMERICAL INVESTIGATION OF HEAT TRANSFER FROM A POROUS PLATE WITH TRANSPIRATION COOLING”. Journal of Thermal Engineering, vol. 4, no. 1, 2017, pp. 1632-47, doi:10.18186/journal-of-thermal-engineering.362048.
Vancouver Kılıç M. NUMERICAL INVESTIGATION OF HEAT TRANSFER FROM A POROUS PLATE WITH TRANSPIRATION COOLING. Journal of Thermal Engineering. 2017;4(1):1632-47.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering