Research Article
BibTex RIS Cite

EFFECTS OF HEATER DIMENSIONS ON NANOFLUID NATURAL CONVECTION IN A HEATED INCINERATOR SHAPED CAVITY CONTAINING A HEATED BLOCK

Year 2018, Volume: 4 Issue: 3, 2018 - 2036, 22.03.2018
https://doi.org/10.18186/journal-of-thermal-engineering.411434

Abstract

The present work reports a numerical study of natural
convection in an incinerator shaped enclosure with a localized heated source
situated at the bottom. Lattice Boltzmann Method (LBM) is used to simulate
nanofluid (water-Al2O3) flow and heat transfer.
Simulations have been carried out for the pertinent parameters: Rayleigh number
(Ra=103−106), solid volume fraction




















   relative heat source high (

), relative heat source width (

), and inclination angle of the
incinerator (


). The comparison of the obtained
results is in excellent agreement with results from literature. It may be noted
that the Rayleigh number, the solid volume fraction, the heat source tallness
enhances the heat transfer and influences the flow pattern and the thermal
structures. However for the relative heat source width plays opposite role for
values superior to 0.4.

References

  • [1] Khaled, A. R. A., Siddique, M., Abdulhafiz, N. I., & Boukhary, A. Y. (2010). Recent advances in heat transfer enhancements: A review report. International Journal of Chemical Engineering.
  • [2] Bergles, A. E., (1998). Handbook of Heat Transfer, McGraw-Hill, New York, NY, USA, 3rd edition.
  • [3] Choi, S. U., & Eastman, J. A. (1995). Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP--84938; CONF-951135--29). Argonne National Lab., IL (United States).
  • [4] Mahbubul, I. M., Saidur, R., & Amalina, M. A. (2012). Latest developments on the viscosity of nanofluids. International Journal of Heat and Mass Transfer, 55(4), 874-885.
  • [5] Shanbedi, M., Amiri, A., Heris, S. Z., & Kazi, S. N. (2015). Basic Principles and Modern Aspects.
  • [6] Cheikh, N. B., Chamkha, A. J., & Beya, B. B. (2009). Effect of inclination on heat transfer and fluid flow in a finned enclosure filled with a dielectric liquid. Numerical Heat Transfer, Part A: Applications, 56(3), 286-300.
  • [7] Abbassi, M. A., Mliki, B., & Djebali, R. (2017). Lattice Boltzmann Method for Simulation of Nanoparticle Brownian Motion and Magnetic Field Effects on Free Convection in A Nanofluid-filled Open Cavity with Heat Generation/Absorption and Non Uniform Heating on the Left Solid Vertical Wall.
  • [8] Oztop, H. F., Selimefendigil, F., Abu-Nada, E., & Al-Salem, K. (2016). Recent developments of computational methods on natural convection in curvilinear shaped enclosures. Journal of Thermal Engineering, 2(2),693-698.
  • [9] Moumni, H., Welhezi, H., Djebali, R., & Sediki, E. (2015). Accurate finite volume investigation of nanofluid mixed convection in two-sided lid driven cavity including discrete heat sources. Applied Mathematical Modelling, 39(14),4164-4179.
  • [10] Mahfoud, B., & Bendjaghlouli, A. (2018). Natural Convection of a Nanofluid in a Conical Container. Journal of Thermal Engineering, 4(1), 1713-1723.
  • [11] Hassan, H. (2014). Heat transfer of Cu–water nanofluid in an enclosure with a heat sink and discrete heat source. European Journal of Mechanics-B/Fluids, 45, 72-83.
  • [12] Öztop, H. F., Estellé, P., Yan, W. M., Al-Salem, K., Orfi, J., & Mahian, O. (2015). A brief review of natural convection in enclosures under localized heating with and without nanofluids. International Communications in Heat and Mass Transfer, 60, 37-44.
  • [13] Kaluri, R. S., Basak, T., & Roy, S. (2010). Heatline approach for visualization of heat flow and efficient thermal mixing with discrete heat sources. International Journal of Heat and Mass Transfer, 53(15-16), 3241-3261.
  • [14] Aminossadati, S. M., & Ghasemi, B. (2009). Natural convection cooling of a localised heat source at the bottom of a nanofluid-filled enclosure. European Journal of Mechanics-B/Fluids, 28(5), 630-640.
  • [15] Mussa, M. A., Abdullah, S., Azwadi, C. N., & Muhamad, N. (2011). Simulation of natural convection heat transfer in an enclosure by the lattice-Boltzmann method. Computers & Fluids, 44(1), 162-168.
  • [16] Paroncini, M., & Corvaro, F. (2009). Natural convection in a square enclosure with a hot source. International journal of thermal sciences, 48(9), 1683-1695.
  • [17] Chen, S., & Doolen, G. D. (1998). Lattice Boltzmann method for fluid flows. Annual review of fluid mechanics, 30(1),329-364.
  • [18] Djebali, R., El Ganaoui, M., & Pateyron, B. (2012). A lattice Boltzmann-based investigation of powder in-flight characteristics during APS process, part I: modelling and validation. Progress in Computational Fluid Dynamics, an International Journal, 12(4), 270-278.
  • [19] Dixit, H. N., & Babu, V. (2006). Simulation of high Rayleigh number natural convection in a square cavity using the lattice Boltzmann method. International journal of heat and mass transfer, 49(3-4), 727-739.
  • [20] Patankar, S. (1980). Numerical heat transfer and fluid flow. CRC press.
  • [21] McNamara, G. R., & Zanetti, G. (1988). Use of the Boltzmann equation to simulate lattice-gas automata. Physical review letters, 61(20), 2332.
  • [22] Lai, F. H., & Yang, Y. T. (2011). Lattice Boltzmann simulation of natural convection heat transfer of Al2O3/water nanofluids in a square enclosure. International Journal of Thermal Sciences, 50(10), 1930-1941.
Year 2018, Volume: 4 Issue: 3, 2018 - 2036, 22.03.2018
https://doi.org/10.18186/journal-of-thermal-engineering.411434

Abstract

References

  • [1] Khaled, A. R. A., Siddique, M., Abdulhafiz, N. I., & Boukhary, A. Y. (2010). Recent advances in heat transfer enhancements: A review report. International Journal of Chemical Engineering.
  • [2] Bergles, A. E., (1998). Handbook of Heat Transfer, McGraw-Hill, New York, NY, USA, 3rd edition.
  • [3] Choi, S. U., & Eastman, J. A. (1995). Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP--84938; CONF-951135--29). Argonne National Lab., IL (United States).
  • [4] Mahbubul, I. M., Saidur, R., & Amalina, M. A. (2012). Latest developments on the viscosity of nanofluids. International Journal of Heat and Mass Transfer, 55(4), 874-885.
  • [5] Shanbedi, M., Amiri, A., Heris, S. Z., & Kazi, S. N. (2015). Basic Principles and Modern Aspects.
  • [6] Cheikh, N. B., Chamkha, A. J., & Beya, B. B. (2009). Effect of inclination on heat transfer and fluid flow in a finned enclosure filled with a dielectric liquid. Numerical Heat Transfer, Part A: Applications, 56(3), 286-300.
  • [7] Abbassi, M. A., Mliki, B., & Djebali, R. (2017). Lattice Boltzmann Method for Simulation of Nanoparticle Brownian Motion and Magnetic Field Effects on Free Convection in A Nanofluid-filled Open Cavity with Heat Generation/Absorption and Non Uniform Heating on the Left Solid Vertical Wall.
  • [8] Oztop, H. F., Selimefendigil, F., Abu-Nada, E., & Al-Salem, K. (2016). Recent developments of computational methods on natural convection in curvilinear shaped enclosures. Journal of Thermal Engineering, 2(2),693-698.
  • [9] Moumni, H., Welhezi, H., Djebali, R., & Sediki, E. (2015). Accurate finite volume investigation of nanofluid mixed convection in two-sided lid driven cavity including discrete heat sources. Applied Mathematical Modelling, 39(14),4164-4179.
  • [10] Mahfoud, B., & Bendjaghlouli, A. (2018). Natural Convection of a Nanofluid in a Conical Container. Journal of Thermal Engineering, 4(1), 1713-1723.
  • [11] Hassan, H. (2014). Heat transfer of Cu–water nanofluid in an enclosure with a heat sink and discrete heat source. European Journal of Mechanics-B/Fluids, 45, 72-83.
  • [12] Öztop, H. F., Estellé, P., Yan, W. M., Al-Salem, K., Orfi, J., & Mahian, O. (2015). A brief review of natural convection in enclosures under localized heating with and without nanofluids. International Communications in Heat and Mass Transfer, 60, 37-44.
  • [13] Kaluri, R. S., Basak, T., & Roy, S. (2010). Heatline approach for visualization of heat flow and efficient thermal mixing with discrete heat sources. International Journal of Heat and Mass Transfer, 53(15-16), 3241-3261.
  • [14] Aminossadati, S. M., & Ghasemi, B. (2009). Natural convection cooling of a localised heat source at the bottom of a nanofluid-filled enclosure. European Journal of Mechanics-B/Fluids, 28(5), 630-640.
  • [15] Mussa, M. A., Abdullah, S., Azwadi, C. N., & Muhamad, N. (2011). Simulation of natural convection heat transfer in an enclosure by the lattice-Boltzmann method. Computers & Fluids, 44(1), 162-168.
  • [16] Paroncini, M., & Corvaro, F. (2009). Natural convection in a square enclosure with a hot source. International journal of thermal sciences, 48(9), 1683-1695.
  • [17] Chen, S., & Doolen, G. D. (1998). Lattice Boltzmann method for fluid flows. Annual review of fluid mechanics, 30(1),329-364.
  • [18] Djebali, R., El Ganaoui, M., & Pateyron, B. (2012). A lattice Boltzmann-based investigation of powder in-flight characteristics during APS process, part I: modelling and validation. Progress in Computational Fluid Dynamics, an International Journal, 12(4), 270-278.
  • [19] Dixit, H. N., & Babu, V. (2006). Simulation of high Rayleigh number natural convection in a square cavity using the lattice Boltzmann method. International journal of heat and mass transfer, 49(3-4), 727-739.
  • [20] Patankar, S. (1980). Numerical heat transfer and fluid flow. CRC press.
  • [21] McNamara, G. R., & Zanetti, G. (1988). Use of the Boltzmann equation to simulate lattice-gas automata. Physical review letters, 61(20), 2332.
  • [22] Lai, F. H., & Yang, Y. T. (2011). Lattice Boltzmann simulation of natural convection heat transfer of Al2O3/water nanofluids in a square enclosure. International Journal of Thermal Sciences, 50(10), 1930-1941.
There are 22 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Mohamed Ammar Abbassi This is me

Publication Date March 22, 2018
Submission Date October 28, 2016
Published in Issue Year 2018 Volume: 4 Issue: 3

Cite

APA Abbassi, M. A. (2018). EFFECTS OF HEATER DIMENSIONS ON NANOFLUID NATURAL CONVECTION IN A HEATED INCINERATOR SHAPED CAVITY CONTAINING A HEATED BLOCK. Journal of Thermal Engineering, 4(3), 2018-2036. https://doi.org/10.18186/journal-of-thermal-engineering.411434
AMA Abbassi MA. EFFECTS OF HEATER DIMENSIONS ON NANOFLUID NATURAL CONVECTION IN A HEATED INCINERATOR SHAPED CAVITY CONTAINING A HEATED BLOCK. Journal of Thermal Engineering. March 2018;4(3):2018-2036. doi:10.18186/journal-of-thermal-engineering.411434
Chicago Abbassi, Mohamed Ammar. “EFFECTS OF HEATER DIMENSIONS ON NANOFLUID NATURAL CONVECTION IN A HEATED INCINERATOR SHAPED CAVITY CONTAINING A HEATED BLOCK”. Journal of Thermal Engineering 4, no. 3 (March 2018): 2018-36. https://doi.org/10.18186/journal-of-thermal-engineering.411434.
EndNote Abbassi MA (March 1, 2018) EFFECTS OF HEATER DIMENSIONS ON NANOFLUID NATURAL CONVECTION IN A HEATED INCINERATOR SHAPED CAVITY CONTAINING A HEATED BLOCK. Journal of Thermal Engineering 4 3 2018–2036.
IEEE M. A. Abbassi, “EFFECTS OF HEATER DIMENSIONS ON NANOFLUID NATURAL CONVECTION IN A HEATED INCINERATOR SHAPED CAVITY CONTAINING A HEATED BLOCK”, Journal of Thermal Engineering, vol. 4, no. 3, pp. 2018–2036, 2018, doi: 10.18186/journal-of-thermal-engineering.411434.
ISNAD Abbassi, Mohamed Ammar. “EFFECTS OF HEATER DIMENSIONS ON NANOFLUID NATURAL CONVECTION IN A HEATED INCINERATOR SHAPED CAVITY CONTAINING A HEATED BLOCK”. Journal of Thermal Engineering 4/3 (March 2018), 2018-2036. https://doi.org/10.18186/journal-of-thermal-engineering.411434.
JAMA Abbassi MA. EFFECTS OF HEATER DIMENSIONS ON NANOFLUID NATURAL CONVECTION IN A HEATED INCINERATOR SHAPED CAVITY CONTAINING A HEATED BLOCK. Journal of Thermal Engineering. 2018;4:2018–2036.
MLA Abbassi, Mohamed Ammar. “EFFECTS OF HEATER DIMENSIONS ON NANOFLUID NATURAL CONVECTION IN A HEATED INCINERATOR SHAPED CAVITY CONTAINING A HEATED BLOCK”. Journal of Thermal Engineering, vol. 4, no. 3, 2018, pp. 2018-36, doi:10.18186/journal-of-thermal-engineering.411434.
Vancouver Abbassi MA. EFFECTS OF HEATER DIMENSIONS ON NANOFLUID NATURAL CONVECTION IN A HEATED INCINERATOR SHAPED CAVITY CONTAINING A HEATED BLOCK. Journal of Thermal Engineering. 2018;4(3):2018-36.

Cited By












IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering