Research Article
BibTex RIS Cite
Year 2018, Volume: 4 Issue: 4 - Special Issue 8: International Technology Congress 2017, Pune, India, 2149 - 2168, 10.04.2018
https://doi.org/10.18186/journal-of-thermal-engineering.433806

Abstract

References

  • [1] Prakash, R., Christopher, D., & Kumarrathinam, K. (2015). Analysis of Surface Waste Heat Recovery in IC Engine by Using TEG. In Applied Mechanics and Materials (Vol. 787, pp. 782-786). Trans Tech Publications.
  • [2] Liu, X., Deng, Y. D., Li, Z., & Su, C. Q. (2015). Performance analysis of a waste heat recovery thermoelectric generation system for automotive application. Energy Conversion and Management, 90, 121-127.
  • [3] Chandi, R. M., & Rajeev, R. (2015). Design and Analysis of Heat Exchanger for Automotive Exhaust based Thermoelectric Generator [TEG]. International Journal for Innovative Research in Science & Technology, 1(11).
  • [4] Deok In, B., ik Kim, H., wook Son, J., & hyung Lee, K. (2015). The study of a thermoelectric generator with various thermal conditions of exhaust gas from a diesel engine. International Journal of Heat and Mass Transfer, 86, 667-680.
  • [5] Liu, C., & Li, W. Z. (2015). An Experimental Study of a Two-stage Thermoelectric Generator Using Heat Pipe in Vehicle Exhaust. Distributed Generation and Alternative Energy Journal, 30(1), 15-37.
  • [6] Liu, Z., Zhang, L., Gong, G., Luo, Y., & Meng, F. (2015). Evaluation of a prototype active solar thermoelectric radiant wall system in winter conditions. Applied Thermal Engineering, 89, 36-43.
  • [7] Alomair, Y., Alomair, M., Mahmud, S., & Abdullah, H. A. (2015). Theoretical and experimental analyses of solar-thermoelectric liquid-chiller system. International Journal of Refrigeration, 56, 126-139.
  • [8] Liu, Z., Zhang, L., Gong, G., & Han, T. (2015). Experimental evaluation of an active solar thermoelectric radiant wall system. Energy Conversion and Management, 94, 253-260.
  • [9] Özdemir, A. E., Köysal, Y., Özbaş, E., & Atalay, T. (2015). The experimental design of solar heating thermoelectric generator with wind cooling chimney. Energy Conversion and Management, 98, 127-133.
  • [10] Liu, Z., Zhang, L., & Gong, G. (2014). Experimental evaluation of a solar thermoelectric cooled ceiling combined with displacement ventilation system. Energy Conversion and Management, 87, 559-565.
  • [11] Killander, A., & Bass, J. C. (1996, March). A stove-top generator for cold areas. In Thermoelectrics, 1996., Fifteenth International Conference on (pp. 390-393). IEEE.
  • [12] O’Shaughnessy, S. M., Deasy, M. J., Kinsella, C. E., Doyle, J. V., & Robinson, A. J. (2013). Small scale electricity generation from a portable biomass cookstove: prototype design and preliminary results. Applied Energy, 102, 374-385.
  • [13] Champier, D., Bedecarrats, J. P., Rivaletto, M., & Strub, F. (2010). Thermoelectric power generation from biomass cook stoves. Energy, 35(2), 935-942.
  • [14] Nuwayhid, R. Y., Shihadeh, A., & Ghaddar, N. (2005). Development and testing of a domestic woodstove thermoelectric generator with natural convection cooling. Energy Conversion and Management, 46(9-10), 1631-1643.
  • [15] Lertsatitthanakorn, C. (2007). Electrical performance analysis and economic evaluation of combined biomass cook stove thermoelectric (BITE) generator. Bioresource technology, 98(8), 1670-1674.
  • [16] Jayakumar, J. (2015, March). Analysis of (Bi 2 Te 3-PbTe) hybrid thermoelectric generator for effective power generation. In Innovations in Information, Embedded and Communication Systems (ICIIECS), 2015 International Conference on (pp. 1-6). IEEE.
  • [17] Elghool, A., Basrawi, F., Ibrahim, T. K., Habib, K., Ibrahim, H., & Idris, D. M. N. D. (2017). A review on heat sink for thermo-electric power generation: Classifications and parameters affecting performance. Energy conversion and management, 134, 260-277. [18] O'Shaughnessy, S. M., Deasy, M. J., Doyle, J. V., & Robinson, A. J. (2014). Field trial testing of an electricity-producing portable biomass cooking stove in rural Malawi. Energy for Sustainable development, 20, 1-10.
  • [19] Montecucco, A., Siviter, J., & Knox, A. R. (2017). Combined heat and power system for stoves with thermoelectric generators. Applied Energy, 185, 1336-1342.
  • [20] O'Shaughnessy, S. M., Deasy, M. J., Doyle, J. V., & Robinson, A. J. (2015). Adaptive design of a prototype electricity-producing biomass cooking stove. Energy for sustainable development, 28, 41-51.
  • [21] Montecucco, A., Siviter, J., & Knox, A. R. (2015). A combined heat and power system for solid-fuel stoves using thermoelectric generators. Energy Procedia, 75, 597-602.
  • [22] Mal, R., Prasad, R., & Vijay, V. K. (2016). Multi-functionality clean biomass cookstove for off-grid areas. Process Safety and Environmental Protection, 104, 85-94.
  • [23] O’Shaughnessy, S. M., Deasy, M. J., Doyle, J. V., & Robinson, A. J. (2015). Performance analysis of a prototype small scale electricity-producing biomass cooking stove. Applied energy, 156, 566-576.
  • [24] Toghyani, S., Ahmadi, M. H., Kasaeian, A., & Mohammadi, A. H. (2016). Artificial neural network, ANN-PSO and ANN-ICA for modelling the Stirling engine. International Journal of Ambient Energy, 37(5), 456-468.
  • [25] Pourkiaei, S. M., Ahmadi, M. H., & Hasheminejad, S. M. (2016). Modeling and experimental verification of a 25W fabricated PEM fuel cell by parametric and GMDH-type neural network. Mechanics & Industry, 17(1), 105.
  • [26] Ahmadi, M. H., Ahmadi, M. A., Mehrpooya, M., & Rosen, M. A. (2015). Using GMDH neural networks to model the power and torque of a stirling engine. Sustainability, 7(2), 2243-2255.
  • [27] Ahmadi, M. H., Ahmadi, M. A., Sadatsakkak, S. A., & Feidt, M. (2015). Connectionist intelligent model estimates output power and torque of stirling engine. Renewable and Sustainable Energy Reviews, 50, 871-883.
  • [28] Ahmadi, M. H., Aghaj, S. S. G., & Nazeri, A. (2013). Prediction of power in solar stirling heat engine by using neural network based on hybrid genetic algorithm and particle swarm optimization. Neural Computing and Applications, 22(6), 1141-1150.
  • [29] Koten, H., Yilmaz, M., & Zafer Gul, M. (2014). Compressed biogas-diesel dual-fuel engine optimization study for ultralow emission. Advances in Mechanical Engineering, 6, 571063.
  • [30] Yilmaz, M., Köten, H., & Gul, M. Z. (2012). Effects of the injection parameters and compression ratio on the emissions of a heavy-duty diesel engine. International Journal of Vehicle Design, 59(2/3), 147-163.
  • [31] Anitha, A. A., Jayakumar, J., & Asirvatham, L. G. (2017). Performance analysis of (Bi2Te3-PbTe) hybrid thermoelectric generator. International Journal of Power Electronics and Drive Systems, 8(2), 917.
  • [32] Khandelwal, S., & Chauhan, R. Y. (2013). Life cycle assessment of Neem and Karanja biodiesel: an overview. International Journal of ChemTech Research, 5(2), 659-665.
  • [33] Chandra, R., Vijay, V. K., & Subbarao, P. M. V. (2009). Biogas production from de-oiled seed cakes of Jatropha and Pongamia. Renewable Energy (Akshay Urja), 3(2), 17-22.
  • [34] Radhakrishna, P. (2003). Tree borne oil seeds as a source of energy for decentralized planning. Government of India, Ministry of Non-Conventional Energy Sources, New Delhi, India.
  • [35] “Clean Renewable Fuel from the Plasma Gasification of Waste”, http://www.waste-management-world.com
  • [36] Angeline, A. A., Jayakumar, J., Asirvatham, L. G., Marshal, J. J., & Wongwises, S. (2017). Power generation enhancement with hybrid thermoelectric generator using biomass waste heat energy. Experimental Thermal and Fluid Science, 85, 1-12.
  • [37] Zhang, H. Y., Mui, Y. C., & Tarin, M. (2010). Analysis of thermoelectric cooler performance for high power electronic packages. Applied thermal engineering, 30(6-7), 561-568.
  • [38] Chen, W. H., Liao, C. Y., Hung, C. I., & Huang, W. L. (2012). Experimental study on thermoelectric modules for power generation at various operating conditions. Energy, 45(1), 874-881.
  • [39] https://www.ashden.org/biomass-gasification
  • [40] Purohit, I., Purohit, P., & Shekhar, S. (2013). Evaluating the potential of concentrating solar power generation in Northwestern India. Energy policy, 62, 157-175.
  • [41] “Renewable Energy Technologies: Cost Analysis series”, http://www.irena.org, Power Sector, Vol.1, Issue 1/5, June 2012.
  • [42] Sano, S., Mizukami, H., & Kaibe, H. (2003). Development of high-efficiency thermoelectric power generation system. Komat’su Technical Report, Report No.
  • [43] Decker, B. Y., Calderon, S., & Gan, Y. (2015). Thermoelectric Properties of Bismuth Telluride Filled Silicone. Journal of Thermal Engineering, 1(6), 402-407.

POWER GENERATION FROM COMBUSTED “SYNGAS” USING HYBRID THERMOELECTRIC GENERATOR AND FORECASTING THE PERFORMANCE WITH ANN TECHNIQUE

Year 2018, Volume: 4 Issue: 4 - Special Issue 8: International Technology Congress 2017, Pune, India, 2149 - 2168, 10.04.2018
https://doi.org/10.18186/journal-of-thermal-engineering.433806

Abstract

Gasification
and combustion of de-oiled Pongamia Pinnata seed cake is done to produce higher
energy biomass waste heat “syngas” for generating power using hybrid
thermoelectric generator (TEG). A test
rig is fabricated and experiments conducted with synthetic oil (Therminol-55) as the heating fluid under
water and air-cooled methods. The hot side temperature is varied from 200 - 250ºC
while the coolant temperature is maintained at 30 oC for both water
and air respectively. Experimental results showed 22.27% enhancement in
electric power at a constant hot side temperature of 250 ºC under water cooled
method. In addition, simulation results for the above mentioned conditions using
artificial neural networks (ANN) tool
in MATLAB also agreed well with the
sample experimental results. The performance parameters such as open circuit
voltage, maximum output power and matched load resistance are forecasted using
ANN upto maximum possible hot side temperature of 350ºC. Further, the financial
evaluation of Biomass gasified-thermoelectric system ($0.0018/kWh and in terms
of Indian currency is ₨ 0.0676/kWh) is found to be almost negligible on
comparison with other available renewable energy technologies.  

References

  • [1] Prakash, R., Christopher, D., & Kumarrathinam, K. (2015). Analysis of Surface Waste Heat Recovery in IC Engine by Using TEG. In Applied Mechanics and Materials (Vol. 787, pp. 782-786). Trans Tech Publications.
  • [2] Liu, X., Deng, Y. D., Li, Z., & Su, C. Q. (2015). Performance analysis of a waste heat recovery thermoelectric generation system for automotive application. Energy Conversion and Management, 90, 121-127.
  • [3] Chandi, R. M., & Rajeev, R. (2015). Design and Analysis of Heat Exchanger for Automotive Exhaust based Thermoelectric Generator [TEG]. International Journal for Innovative Research in Science & Technology, 1(11).
  • [4] Deok In, B., ik Kim, H., wook Son, J., & hyung Lee, K. (2015). The study of a thermoelectric generator with various thermal conditions of exhaust gas from a diesel engine. International Journal of Heat and Mass Transfer, 86, 667-680.
  • [5] Liu, C., & Li, W. Z. (2015). An Experimental Study of a Two-stage Thermoelectric Generator Using Heat Pipe in Vehicle Exhaust. Distributed Generation and Alternative Energy Journal, 30(1), 15-37.
  • [6] Liu, Z., Zhang, L., Gong, G., Luo, Y., & Meng, F. (2015). Evaluation of a prototype active solar thermoelectric radiant wall system in winter conditions. Applied Thermal Engineering, 89, 36-43.
  • [7] Alomair, Y., Alomair, M., Mahmud, S., & Abdullah, H. A. (2015). Theoretical and experimental analyses of solar-thermoelectric liquid-chiller system. International Journal of Refrigeration, 56, 126-139.
  • [8] Liu, Z., Zhang, L., Gong, G., & Han, T. (2015). Experimental evaluation of an active solar thermoelectric radiant wall system. Energy Conversion and Management, 94, 253-260.
  • [9] Özdemir, A. E., Köysal, Y., Özbaş, E., & Atalay, T. (2015). The experimental design of solar heating thermoelectric generator with wind cooling chimney. Energy Conversion and Management, 98, 127-133.
  • [10] Liu, Z., Zhang, L., & Gong, G. (2014). Experimental evaluation of a solar thermoelectric cooled ceiling combined with displacement ventilation system. Energy Conversion and Management, 87, 559-565.
  • [11] Killander, A., & Bass, J. C. (1996, March). A stove-top generator for cold areas. In Thermoelectrics, 1996., Fifteenth International Conference on (pp. 390-393). IEEE.
  • [12] O’Shaughnessy, S. M., Deasy, M. J., Kinsella, C. E., Doyle, J. V., & Robinson, A. J. (2013). Small scale electricity generation from a portable biomass cookstove: prototype design and preliminary results. Applied Energy, 102, 374-385.
  • [13] Champier, D., Bedecarrats, J. P., Rivaletto, M., & Strub, F. (2010). Thermoelectric power generation from biomass cook stoves. Energy, 35(2), 935-942.
  • [14] Nuwayhid, R. Y., Shihadeh, A., & Ghaddar, N. (2005). Development and testing of a domestic woodstove thermoelectric generator with natural convection cooling. Energy Conversion and Management, 46(9-10), 1631-1643.
  • [15] Lertsatitthanakorn, C. (2007). Electrical performance analysis and economic evaluation of combined biomass cook stove thermoelectric (BITE) generator. Bioresource technology, 98(8), 1670-1674.
  • [16] Jayakumar, J. (2015, March). Analysis of (Bi 2 Te 3-PbTe) hybrid thermoelectric generator for effective power generation. In Innovations in Information, Embedded and Communication Systems (ICIIECS), 2015 International Conference on (pp. 1-6). IEEE.
  • [17] Elghool, A., Basrawi, F., Ibrahim, T. K., Habib, K., Ibrahim, H., & Idris, D. M. N. D. (2017). A review on heat sink for thermo-electric power generation: Classifications and parameters affecting performance. Energy conversion and management, 134, 260-277. [18] O'Shaughnessy, S. M., Deasy, M. J., Doyle, J. V., & Robinson, A. J. (2014). Field trial testing of an electricity-producing portable biomass cooking stove in rural Malawi. Energy for Sustainable development, 20, 1-10.
  • [19] Montecucco, A., Siviter, J., & Knox, A. R. (2017). Combined heat and power system for stoves with thermoelectric generators. Applied Energy, 185, 1336-1342.
  • [20] O'Shaughnessy, S. M., Deasy, M. J., Doyle, J. V., & Robinson, A. J. (2015). Adaptive design of a prototype electricity-producing biomass cooking stove. Energy for sustainable development, 28, 41-51.
  • [21] Montecucco, A., Siviter, J., & Knox, A. R. (2015). A combined heat and power system for solid-fuel stoves using thermoelectric generators. Energy Procedia, 75, 597-602.
  • [22] Mal, R., Prasad, R., & Vijay, V. K. (2016). Multi-functionality clean biomass cookstove for off-grid areas. Process Safety and Environmental Protection, 104, 85-94.
  • [23] O’Shaughnessy, S. M., Deasy, M. J., Doyle, J. V., & Robinson, A. J. (2015). Performance analysis of a prototype small scale electricity-producing biomass cooking stove. Applied energy, 156, 566-576.
  • [24] Toghyani, S., Ahmadi, M. H., Kasaeian, A., & Mohammadi, A. H. (2016). Artificial neural network, ANN-PSO and ANN-ICA for modelling the Stirling engine. International Journal of Ambient Energy, 37(5), 456-468.
  • [25] Pourkiaei, S. M., Ahmadi, M. H., & Hasheminejad, S. M. (2016). Modeling and experimental verification of a 25W fabricated PEM fuel cell by parametric and GMDH-type neural network. Mechanics & Industry, 17(1), 105.
  • [26] Ahmadi, M. H., Ahmadi, M. A., Mehrpooya, M., & Rosen, M. A. (2015). Using GMDH neural networks to model the power and torque of a stirling engine. Sustainability, 7(2), 2243-2255.
  • [27] Ahmadi, M. H., Ahmadi, M. A., Sadatsakkak, S. A., & Feidt, M. (2015). Connectionist intelligent model estimates output power and torque of stirling engine. Renewable and Sustainable Energy Reviews, 50, 871-883.
  • [28] Ahmadi, M. H., Aghaj, S. S. G., & Nazeri, A. (2013). Prediction of power in solar stirling heat engine by using neural network based on hybrid genetic algorithm and particle swarm optimization. Neural Computing and Applications, 22(6), 1141-1150.
  • [29] Koten, H., Yilmaz, M., & Zafer Gul, M. (2014). Compressed biogas-diesel dual-fuel engine optimization study for ultralow emission. Advances in Mechanical Engineering, 6, 571063.
  • [30] Yilmaz, M., Köten, H., & Gul, M. Z. (2012). Effects of the injection parameters and compression ratio on the emissions of a heavy-duty diesel engine. International Journal of Vehicle Design, 59(2/3), 147-163.
  • [31] Anitha, A. A., Jayakumar, J., & Asirvatham, L. G. (2017). Performance analysis of (Bi2Te3-PbTe) hybrid thermoelectric generator. International Journal of Power Electronics and Drive Systems, 8(2), 917.
  • [32] Khandelwal, S., & Chauhan, R. Y. (2013). Life cycle assessment of Neem and Karanja biodiesel: an overview. International Journal of ChemTech Research, 5(2), 659-665.
  • [33] Chandra, R., Vijay, V. K., & Subbarao, P. M. V. (2009). Biogas production from de-oiled seed cakes of Jatropha and Pongamia. Renewable Energy (Akshay Urja), 3(2), 17-22.
  • [34] Radhakrishna, P. (2003). Tree borne oil seeds as a source of energy for decentralized planning. Government of India, Ministry of Non-Conventional Energy Sources, New Delhi, India.
  • [35] “Clean Renewable Fuel from the Plasma Gasification of Waste”, http://www.waste-management-world.com
  • [36] Angeline, A. A., Jayakumar, J., Asirvatham, L. G., Marshal, J. J., & Wongwises, S. (2017). Power generation enhancement with hybrid thermoelectric generator using biomass waste heat energy. Experimental Thermal and Fluid Science, 85, 1-12.
  • [37] Zhang, H. Y., Mui, Y. C., & Tarin, M. (2010). Analysis of thermoelectric cooler performance for high power electronic packages. Applied thermal engineering, 30(6-7), 561-568.
  • [38] Chen, W. H., Liao, C. Y., Hung, C. I., & Huang, W. L. (2012). Experimental study on thermoelectric modules for power generation at various operating conditions. Energy, 45(1), 874-881.
  • [39] https://www.ashden.org/biomass-gasification
  • [40] Purohit, I., Purohit, P., & Shekhar, S. (2013). Evaluating the potential of concentrating solar power generation in Northwestern India. Energy policy, 62, 157-175.
  • [41] “Renewable Energy Technologies: Cost Analysis series”, http://www.irena.org, Power Sector, Vol.1, Issue 1/5, June 2012.
  • [42] Sano, S., Mizukami, H., & Kaibe, H. (2003). Development of high-efficiency thermoelectric power generation system. Komat’su Technical Report, Report No.
  • [43] Decker, B. Y., Calderon, S., & Gan, Y. (2015). Thermoelectric Properties of Bismuth Telluride Filled Silicone. Journal of Thermal Engineering, 1(6), 402-407.
There are 42 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Appadurai Anitha Angeline This is me

Publication Date April 10, 2018
Submission Date August 8, 2017
Published in Issue Year 2018 Volume: 4 Issue: 4 - Special Issue 8: International Technology Congress 2017, Pune, India

Cite

APA Angeline, A. A. (2018). POWER GENERATION FROM COMBUSTED “SYNGAS” USING HYBRID THERMOELECTRIC GENERATOR AND FORECASTING THE PERFORMANCE WITH ANN TECHNIQUE. Journal of Thermal Engineering, 4(4), 2149-2168. https://doi.org/10.18186/journal-of-thermal-engineering.433806
AMA Angeline AA. POWER GENERATION FROM COMBUSTED “SYNGAS” USING HYBRID THERMOELECTRIC GENERATOR AND FORECASTING THE PERFORMANCE WITH ANN TECHNIQUE. Journal of Thermal Engineering. April 2018;4(4):2149-2168. doi:10.18186/journal-of-thermal-engineering.433806
Chicago Angeline, Appadurai Anitha. “POWER GENERATION FROM COMBUSTED ‘SYNGAS’ USING HYBRID THERMOELECTRIC GENERATOR AND FORECASTING THE PERFORMANCE WITH ANN TECHNIQUE”. Journal of Thermal Engineering 4, no. 4 (April 2018): 2149-68. https://doi.org/10.18186/journal-of-thermal-engineering.433806.
EndNote Angeline AA (April 1, 2018) POWER GENERATION FROM COMBUSTED “SYNGAS” USING HYBRID THERMOELECTRIC GENERATOR AND FORECASTING THE PERFORMANCE WITH ANN TECHNIQUE. Journal of Thermal Engineering 4 4 2149–2168.
IEEE A. A. Angeline, “POWER GENERATION FROM COMBUSTED ‘SYNGAS’ USING HYBRID THERMOELECTRIC GENERATOR AND FORECASTING THE PERFORMANCE WITH ANN TECHNIQUE”, Journal of Thermal Engineering, vol. 4, no. 4, pp. 2149–2168, 2018, doi: 10.18186/journal-of-thermal-engineering.433806.
ISNAD Angeline, Appadurai Anitha. “POWER GENERATION FROM COMBUSTED ‘SYNGAS’ USING HYBRID THERMOELECTRIC GENERATOR AND FORECASTING THE PERFORMANCE WITH ANN TECHNIQUE”. Journal of Thermal Engineering 4/4 (April 2018), 2149-2168. https://doi.org/10.18186/journal-of-thermal-engineering.433806.
JAMA Angeline AA. POWER GENERATION FROM COMBUSTED “SYNGAS” USING HYBRID THERMOELECTRIC GENERATOR AND FORECASTING THE PERFORMANCE WITH ANN TECHNIQUE. Journal of Thermal Engineering. 2018;4:2149–2168.
MLA Angeline, Appadurai Anitha. “POWER GENERATION FROM COMBUSTED ‘SYNGAS’ USING HYBRID THERMOELECTRIC GENERATOR AND FORECASTING THE PERFORMANCE WITH ANN TECHNIQUE”. Journal of Thermal Engineering, vol. 4, no. 4, 2018, pp. 2149-68, doi:10.18186/journal-of-thermal-engineering.433806.
Vancouver Angeline AA. POWER GENERATION FROM COMBUSTED “SYNGAS” USING HYBRID THERMOELECTRIC GENERATOR AND FORECASTING THE PERFORMANCE WITH ANN TECHNIQUE. Journal of Thermal Engineering. 2018;4(4):2149-68.

Cited By













IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering