Research Article
BibTex RIS Cite

THE EFFECT OF SYSTEM PARAMETERS ON THE CONDENSATION PERFORMANCE OF HEAT PUMP SYSTEM USING R290

Year 2018, Volume: 4 Issue: 5, 2248 - 2262, 25.06.2018
https://doi.org/10.18186/journal-of-thermal-engineering.436137

Abstract

Since global warming has reached critical levels, limitations have
been placed on the use of certain fluoride-containing refrigerants by F-Gas
regulations. The EU F-​​Gas Regulation has introduced quotas for the use of
refrigerants with a global warming potential(GWP) greater than 150. Hydrofluorocarbons(HFCs)
from restricted refrigerants are widely used in heat pump systems. Considering
the environmental impact of these refrigerants, it is important to look for
long-term alternatives to comply with F-gas regulations. Hydrocarbon(HC)
refrigerants are shown as suitable alternatives for heat pump applications. R290
as HC refrigerant is a potential refrigerant suitable for existing HFCs systems
due to zero ODP and low GWP. In heat pump systems, there are many system
components or parameters that are effective in condensing the air passing
through the evaporator. It is very important to know how these elements affect
the condensation performance in different design situations. In this study, the
effect of different parameters such as capillary length, charge amount and
evaporator tube volume on the condensation performance of a R290 hydrocarbon
refrigerant heat pump was investigated by the experimental design approach. The
experimental results obtained was compared with the theoretical model. It has
been determined that the most effective parameter on the condensation
performance is the capillary tube length with the effect of 35%.

References

  • [1] F-Gas Regulation (EC) 517/2014. https://ec.europa.eu/clima/policies/f-gas/legislation_en
  • [2] Gustafsson, O., Rolfsman, L., Jensen, S., Lindahl, M. (2017). Evaluation of Alternativers to R404 – The Most Common Refrigerant in Swedish Grocery Stores. 12th IEA Heat Pump Conference.
  • [3] The Linde Group. EU F-Gas Regulation. EN 517/2014.
  • [4] J.M. Calm. (2008). The next generation of refrigerant- Historical review, considerations, and outlook. 31, 1123-1133.
  • [5] Bhargav, A., Jaiswal, N. (2010). Comparative analysis of R290/R600a with commonly used refrigerant. International Journal of Application of Engineering and Technology, 2 (3), 2395-3594.
  • [6] Bellomare, F., & Minetto, S. (2015). Experimental analysis of hydrocarbons as drop-in replacement in household heat pump tumble dryers. Energy Procedia, 81, 1212-1221.
  • [7] Sánchez, D., Cabello, R., Llopis, R., Arauzo, I., Catalán-Gil, J., Torrella, E. (2017). Energy performance evaluation of R1234yf, R1234ze (E), R600a, R290 and R152a as low-GWP R134a alternatives. International Journal of Refrigeration, 74, 269-282.
  • [8] Bengtsson, P., Eikevik, T. (2016). Reducing the global warming impact of a household heat pump dishwasher using hydrocarbon refrigerants. Applied Thermal Engineering, 99, 1295-1302.
  • [9] Longhini, M. (2015). New generation refrigerants for domestic heat pumps in Sweden. MSc Thesis.
  • [10] Meyer, J.P. (2000).The performance of the refrigerants R-134a, R-290, R404A, R-407C and R-410A in air conditioners and refrigerators. ZSITS International Thermal Science Seminar Bled, Slovenia.
  • [11] Jwo, C. S., Ting, C. C., Wang, W. R. (2009). Efficiency analysis of home refrigerators by replacing hydrocarbon refrigerants. Measurement, 42 (5), 697-701.
  • [12] Choudhari, C. S., Sapali, S. N. (2017). Performance investigation of natural refrigerant R290 as a substitute to R22 in refrigeration systems. Energy Procedia, 109, 346-352.
  • [13] Ghoubali, R., Byrne, P., Bazantay, F. (2017). Refrigerant charge optimization for propane heat pump water heaters. International Journal of Refrigeration, 76, 230-244.
  • [14] Nawaz, K., Shen, B., Elatar, A., Baxter, V., Abdelaziz, O. (2017). R290 (propane) and R600a (isobutane) as natural refrigerants for residential heat pump water heaters. Applied Thermal Engineering, 127, 870-883.
  • [15] Koh, J., Zakaria, Z. (2017). Hydrocarbons as Refrigerants―A Review. ASEAN Journal on Science and Technology for Development, 34 (1), 35-50.
  • [16] Kline, S. J., McClintock, F. A. (1953). Describing uncertainty in single-sample experiments, Mechanical Engineer, 1–3.
  • [17] Çengel, Y. A., Boles, M. A. (2008). Thermodynamics: An Engineering Approach, McGraw-Hill.
  • [18] Minitab 17 Statistical Software [Computer software]. State College, PA: Minitab, Inc. 2010.
  • [19] CoolPack – A Collection of Simulation Tools for Refrigeration. Technical University of Denmark, Department of Mechanical Engineering. 1998-2001.
  • [20] Klein, S.A., Alvarado, F.L. EES- Engineering Equation Solver; F-Chart Software, Middleton. 1995.
  • [21] CoilDesigner, Simulation and Optimization Software [Computer software]. Optimized Thermal Systems, Inc. 2016-2018.
  • [22] Zhou, G., Zhang, Y. (2010). Performance of a split-type air conditioner matched with coiled adiabatic capillary tubes using HCFC22 and HC290. Applied energy, 87 (5), 1522-1528.
  • [23] Reference fluid thermodynamic and transport properties REFPROP Version 9.0”, NIST Standard Reference Database 23, NOV 2010.
  • [24] Lee, H. S., Yoon, J. I., Kim, J. D., Bansal, P. K. (2006). Characteristics of condensing and evaporating heat transfer using hydrocarbon refrigerants. Applied thermal engineering, 26 (10), 1054-1062.
  • [25] Tashtoush, B., Tahat, M., Shudeifat, M. A. (2002). Experimental study of new refrigerant mixtures to replace R12 in domestic refrigerators. Applied Thermal Engineering, 22 (5), 495-506.
  • [26] Longo, G. A., Mancin, S., Righetti, G., Zilio, C. (2017). Hydrocarbon refrigerants HC290 (Propane) and HC1270 (Propylene) low GWP long-term substitutes for HFC404A: A comparative analysis in vaporisation inside a small-diameter horizontal smooth tube. Applied Thermal Engineering, 124, 707-715.
  • [27] Liu, N., Xiao, H., & Li, J. (2016). Experimental investigation of condensation heat transfer and pressure drop of propane, R1234ze (E) and R22 in minichannels. Applied Thermal Engineering, 102, 63-72.
  • [28] Wongwises, S., Chimres, N. (2005). Experimental study of hydrocarbon mixtures to replace HFC-134a in a domestic refrigerator. Energy conversion and management, 46 (1), 85-100.
  • [29] Wongwises, S., Kamboon, A., Orachon, B. (2006). Experimental investigation of hydrocarbon mixtures to replace HFC-134a in an automotive air conditioning system. Energy Conversion and Management, 47(11-12), 1644-1659.
  • [30] Ju, F., Fan, X., Chen, Y., Ouyang, H., Kuang, A., Ma, S., Wang, F. (2018). Experiment and simulation study on performances of heat pump water heater using blend of R744/R290. Energy and Buildings, 169, 148-156.
  • [31] Longo, G. A. (2011). The effect of vapour super-heating on hydrocarbon refrigerant condensation inside a brazed plate heat exchanger. Experimental Thermal and Fluid Science, 35(6), 978-985.
  • [32] Devotta, S., Padalkar, A. S., Sane, N. K. (2005). Performance assessment of HC-290 as a drop-in substitute to HCFC-22 in a window air conditioner. International Journal of Refrigeration, 28 (4), 594-604.
  • [33] Hwang, Y., Jin, D. H., Radermacher, R. (2007). Comparison of R-290 and two HFC blends for walk-in refrigeration systems. International Journal of Refrigeration, 30 (4), 633-641.
  • [34] Oyedepoa, S. O., Fagbenleb, R. O., Babarindea, T. O., Odunfac, K. M., Oyegbilea, A. D., Leramoa, R. O., Babalola., P.O. Kilanko., O. Adekeyea, T. (2016). Effect of Capillary Tube Length and Refrigerant Charge on the Performance of Domestic Refrigerator with R12 and R600a. International Journal of Advanced Thermofluid Research, 2 (1), 2-14.
  • [35] Sheikholeslami, M., Darzi, M., Sadoughi, M. K. (2018). Heat transfer improvement and pressure drop during condensation of refrigerant-based nanofluid; an experimental procedure. International Journal of Heat and Mass Transfer, 122, 643-650.
  • [36] Darzi, M., Sadoughi, M. K., Sheikholeslami, M. (2018). Condensation of nano-refrigerant inside a horizontal tube. Physica B: Condensed Matter, 537, 33-39.
  • [37] Sheikholeslami, M., Ganji, D. D., Moradi, R. (2017). Forced convection in existence of Lorentz forces in a porous cavity with hot circular obstacle using nanofluid via Lattice Boltzmann method. Journal of Molecular Liquids, 246, 103-111.
  • [38] Sheikholeslami, M. (2018). Numerical investigation for CuO-H2O nanofluid flow in a porous channel with magnetic field using mesoscopic method. Journal of Molecular Liquids, 249, 739-746.
  • [39] Sheikholeslami, M. (2017). Lattice Boltzmann method simulation for MHD non-Darcy nanofluid free convection. Physica B: Condensed Matter, 516, 55-71.
  • [40] Sheikholeslami, M., Hayat, T., Alsaedi, A. (2017). Numerical simulation of nanofluid forced convection heat transfer improvement in existence of magnetic field using lattice Boltzmann method. International Journal of Heat and Mass Transfer, 108, 1870-1883.
  • [41] Sheikholeslami, M., Darzi, M., Sadoughi, M. K. (2018). Heat transfer improvement and pressure drop during condensation of refrigerant-based nanofluid; an experimental procedure. International Journal of Heat and Mass Transfer, 122, 643-650.
  • [42] Malvandi, A., Ganji, D. D., Pop, I. (2016). Laminar filmwise condensation of nanofluids over a vertical plate considering nanoparticles migration. Applied Thermal Engineering, 100, 979-986.
Year 2018, Volume: 4 Issue: 5, 2248 - 2262, 25.06.2018
https://doi.org/10.18186/journal-of-thermal-engineering.436137

Abstract

References

  • [1] F-Gas Regulation (EC) 517/2014. https://ec.europa.eu/clima/policies/f-gas/legislation_en
  • [2] Gustafsson, O., Rolfsman, L., Jensen, S., Lindahl, M. (2017). Evaluation of Alternativers to R404 – The Most Common Refrigerant in Swedish Grocery Stores. 12th IEA Heat Pump Conference.
  • [3] The Linde Group. EU F-Gas Regulation. EN 517/2014.
  • [4] J.M. Calm. (2008). The next generation of refrigerant- Historical review, considerations, and outlook. 31, 1123-1133.
  • [5] Bhargav, A., Jaiswal, N. (2010). Comparative analysis of R290/R600a with commonly used refrigerant. International Journal of Application of Engineering and Technology, 2 (3), 2395-3594.
  • [6] Bellomare, F., & Minetto, S. (2015). Experimental analysis of hydrocarbons as drop-in replacement in household heat pump tumble dryers. Energy Procedia, 81, 1212-1221.
  • [7] Sánchez, D., Cabello, R., Llopis, R., Arauzo, I., Catalán-Gil, J., Torrella, E. (2017). Energy performance evaluation of R1234yf, R1234ze (E), R600a, R290 and R152a as low-GWP R134a alternatives. International Journal of Refrigeration, 74, 269-282.
  • [8] Bengtsson, P., Eikevik, T. (2016). Reducing the global warming impact of a household heat pump dishwasher using hydrocarbon refrigerants. Applied Thermal Engineering, 99, 1295-1302.
  • [9] Longhini, M. (2015). New generation refrigerants for domestic heat pumps in Sweden. MSc Thesis.
  • [10] Meyer, J.P. (2000).The performance of the refrigerants R-134a, R-290, R404A, R-407C and R-410A in air conditioners and refrigerators. ZSITS International Thermal Science Seminar Bled, Slovenia.
  • [11] Jwo, C. S., Ting, C. C., Wang, W. R. (2009). Efficiency analysis of home refrigerators by replacing hydrocarbon refrigerants. Measurement, 42 (5), 697-701.
  • [12] Choudhari, C. S., Sapali, S. N. (2017). Performance investigation of natural refrigerant R290 as a substitute to R22 in refrigeration systems. Energy Procedia, 109, 346-352.
  • [13] Ghoubali, R., Byrne, P., Bazantay, F. (2017). Refrigerant charge optimization for propane heat pump water heaters. International Journal of Refrigeration, 76, 230-244.
  • [14] Nawaz, K., Shen, B., Elatar, A., Baxter, V., Abdelaziz, O. (2017). R290 (propane) and R600a (isobutane) as natural refrigerants for residential heat pump water heaters. Applied Thermal Engineering, 127, 870-883.
  • [15] Koh, J., Zakaria, Z. (2017). Hydrocarbons as Refrigerants―A Review. ASEAN Journal on Science and Technology for Development, 34 (1), 35-50.
  • [16] Kline, S. J., McClintock, F. A. (1953). Describing uncertainty in single-sample experiments, Mechanical Engineer, 1–3.
  • [17] Çengel, Y. A., Boles, M. A. (2008). Thermodynamics: An Engineering Approach, McGraw-Hill.
  • [18] Minitab 17 Statistical Software [Computer software]. State College, PA: Minitab, Inc. 2010.
  • [19] CoolPack – A Collection of Simulation Tools for Refrigeration. Technical University of Denmark, Department of Mechanical Engineering. 1998-2001.
  • [20] Klein, S.A., Alvarado, F.L. EES- Engineering Equation Solver; F-Chart Software, Middleton. 1995.
  • [21] CoilDesigner, Simulation and Optimization Software [Computer software]. Optimized Thermal Systems, Inc. 2016-2018.
  • [22] Zhou, G., Zhang, Y. (2010). Performance of a split-type air conditioner matched with coiled adiabatic capillary tubes using HCFC22 and HC290. Applied energy, 87 (5), 1522-1528.
  • [23] Reference fluid thermodynamic and transport properties REFPROP Version 9.0”, NIST Standard Reference Database 23, NOV 2010.
  • [24] Lee, H. S., Yoon, J. I., Kim, J. D., Bansal, P. K. (2006). Characteristics of condensing and evaporating heat transfer using hydrocarbon refrigerants. Applied thermal engineering, 26 (10), 1054-1062.
  • [25] Tashtoush, B., Tahat, M., Shudeifat, M. A. (2002). Experimental study of new refrigerant mixtures to replace R12 in domestic refrigerators. Applied Thermal Engineering, 22 (5), 495-506.
  • [26] Longo, G. A., Mancin, S., Righetti, G., Zilio, C. (2017). Hydrocarbon refrigerants HC290 (Propane) and HC1270 (Propylene) low GWP long-term substitutes for HFC404A: A comparative analysis in vaporisation inside a small-diameter horizontal smooth tube. Applied Thermal Engineering, 124, 707-715.
  • [27] Liu, N., Xiao, H., & Li, J. (2016). Experimental investigation of condensation heat transfer and pressure drop of propane, R1234ze (E) and R22 in minichannels. Applied Thermal Engineering, 102, 63-72.
  • [28] Wongwises, S., Chimres, N. (2005). Experimental study of hydrocarbon mixtures to replace HFC-134a in a domestic refrigerator. Energy conversion and management, 46 (1), 85-100.
  • [29] Wongwises, S., Kamboon, A., Orachon, B. (2006). Experimental investigation of hydrocarbon mixtures to replace HFC-134a in an automotive air conditioning system. Energy Conversion and Management, 47(11-12), 1644-1659.
  • [30] Ju, F., Fan, X., Chen, Y., Ouyang, H., Kuang, A., Ma, S., Wang, F. (2018). Experiment and simulation study on performances of heat pump water heater using blend of R744/R290. Energy and Buildings, 169, 148-156.
  • [31] Longo, G. A. (2011). The effect of vapour super-heating on hydrocarbon refrigerant condensation inside a brazed plate heat exchanger. Experimental Thermal and Fluid Science, 35(6), 978-985.
  • [32] Devotta, S., Padalkar, A. S., Sane, N. K. (2005). Performance assessment of HC-290 as a drop-in substitute to HCFC-22 in a window air conditioner. International Journal of Refrigeration, 28 (4), 594-604.
  • [33] Hwang, Y., Jin, D. H., Radermacher, R. (2007). Comparison of R-290 and two HFC blends for walk-in refrigeration systems. International Journal of Refrigeration, 30 (4), 633-641.
  • [34] Oyedepoa, S. O., Fagbenleb, R. O., Babarindea, T. O., Odunfac, K. M., Oyegbilea, A. D., Leramoa, R. O., Babalola., P.O. Kilanko., O. Adekeyea, T. (2016). Effect of Capillary Tube Length and Refrigerant Charge on the Performance of Domestic Refrigerator with R12 and R600a. International Journal of Advanced Thermofluid Research, 2 (1), 2-14.
  • [35] Sheikholeslami, M., Darzi, M., Sadoughi, M. K. (2018). Heat transfer improvement and pressure drop during condensation of refrigerant-based nanofluid; an experimental procedure. International Journal of Heat and Mass Transfer, 122, 643-650.
  • [36] Darzi, M., Sadoughi, M. K., Sheikholeslami, M. (2018). Condensation of nano-refrigerant inside a horizontal tube. Physica B: Condensed Matter, 537, 33-39.
  • [37] Sheikholeslami, M., Ganji, D. D., Moradi, R. (2017). Forced convection in existence of Lorentz forces in a porous cavity with hot circular obstacle using nanofluid via Lattice Boltzmann method. Journal of Molecular Liquids, 246, 103-111.
  • [38] Sheikholeslami, M. (2018). Numerical investigation for CuO-H2O nanofluid flow in a porous channel with magnetic field using mesoscopic method. Journal of Molecular Liquids, 249, 739-746.
  • [39] Sheikholeslami, M. (2017). Lattice Boltzmann method simulation for MHD non-Darcy nanofluid free convection. Physica B: Condensed Matter, 516, 55-71.
  • [40] Sheikholeslami, M., Hayat, T., Alsaedi, A. (2017). Numerical simulation of nanofluid forced convection heat transfer improvement in existence of magnetic field using lattice Boltzmann method. International Journal of Heat and Mass Transfer, 108, 1870-1883.
  • [41] Sheikholeslami, M., Darzi, M., Sadoughi, M. K. (2018). Heat transfer improvement and pressure drop during condensation of refrigerant-based nanofluid; an experimental procedure. International Journal of Heat and Mass Transfer, 122, 643-650.
  • [42] Malvandi, A., Ganji, D. D., Pop, I. (2016). Laminar filmwise condensation of nanofluids over a vertical plate considering nanoparticles migration. Applied Thermal Engineering, 100, 979-986.
There are 42 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Samet Hocaoğlu This is me

Publication Date June 25, 2018
Submission Date April 6, 2018
Published in Issue Year 2018 Volume: 4 Issue: 5

Cite

APA Hocaoğlu, S. (2018). THE EFFECT OF SYSTEM PARAMETERS ON THE CONDENSATION PERFORMANCE OF HEAT PUMP SYSTEM USING R290. Journal of Thermal Engineering, 4(5), 2248-2262. https://doi.org/10.18186/journal-of-thermal-engineering.436137
AMA Hocaoğlu S. THE EFFECT OF SYSTEM PARAMETERS ON THE CONDENSATION PERFORMANCE OF HEAT PUMP SYSTEM USING R290. Journal of Thermal Engineering. June 2018;4(5):2248-2262. doi:10.18186/journal-of-thermal-engineering.436137
Chicago Hocaoğlu, Samet. “THE EFFECT OF SYSTEM PARAMETERS ON THE CONDENSATION PERFORMANCE OF HEAT PUMP SYSTEM USING R290”. Journal of Thermal Engineering 4, no. 5 (June 2018): 2248-62. https://doi.org/10.18186/journal-of-thermal-engineering.436137.
EndNote Hocaoğlu S (June 1, 2018) THE EFFECT OF SYSTEM PARAMETERS ON THE CONDENSATION PERFORMANCE OF HEAT PUMP SYSTEM USING R290. Journal of Thermal Engineering 4 5 2248–2262.
IEEE S. Hocaoğlu, “THE EFFECT OF SYSTEM PARAMETERS ON THE CONDENSATION PERFORMANCE OF HEAT PUMP SYSTEM USING R290”, Journal of Thermal Engineering, vol. 4, no. 5, pp. 2248–2262, 2018, doi: 10.18186/journal-of-thermal-engineering.436137.
ISNAD Hocaoğlu, Samet. “THE EFFECT OF SYSTEM PARAMETERS ON THE CONDENSATION PERFORMANCE OF HEAT PUMP SYSTEM USING R290”. Journal of Thermal Engineering 4/5 (June 2018), 2248-2262. https://doi.org/10.18186/journal-of-thermal-engineering.436137.
JAMA Hocaoğlu S. THE EFFECT OF SYSTEM PARAMETERS ON THE CONDENSATION PERFORMANCE OF HEAT PUMP SYSTEM USING R290. Journal of Thermal Engineering. 2018;4:2248–2262.
MLA Hocaoğlu, Samet. “THE EFFECT OF SYSTEM PARAMETERS ON THE CONDENSATION PERFORMANCE OF HEAT PUMP SYSTEM USING R290”. Journal of Thermal Engineering, vol. 4, no. 5, 2018, pp. 2248-62, doi:10.18186/journal-of-thermal-engineering.436137.
Vancouver Hocaoğlu S. THE EFFECT OF SYSTEM PARAMETERS ON THE CONDENSATION PERFORMANCE OF HEAT PUMP SYSTEM USING R290. Journal of Thermal Engineering. 2018;4(5):2248-62.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering