Research Article
BibTex RIS Cite

PARAMETRIC ANALYSIS OF THERMAL PERFORMANCE OF RANQUE-HILSCH VORTEX TUBE

Year 2018, Volume: 4 Issue: 5, 2333 - 2354, 25.06.2018
https://doi.org/10.18186/thermal.439061

Abstract

Vortex tube separates pressurized fluid into hot and cold fluid streams simultaneously. Geometrical and operational parameters affect this separation. The study deals with experimental investigations of effect of geometrical and operational parameters. L/D ratio (15, 16, 17 and 18), number of nozzles (2, 4 and 6), nozzle geometry (straight and Spiral), divergence angle (0, 2, 3, 4 and 5), valve angles (30 to 90 deg. in steps of 15 deg.) and cold orifice diameter (5, 6 and 7mm) are variables. For all the experiments, air is working fluid. Airflows at different pressures ranging from (200 to 600 kPa in steps of 100kPa).CMF variation is in the range from 0 to 1 for all geometries. The effects on energy separation were analyzed with respect to CMF and Mach number. The results are expressed in percentage rise and drop. Similarity relation is developed and results are compared with literature.

References

  • [1] Ranque, G. J. (1933). Expériencesd sur la detente giratoire avec productions simultanes d'un echappment d'air chand et d'un echappment d'air froid. Journal de Physique et Le Radium, 112-114.
  • [2] Hilsch, R. (1947). The use of the expansion of gases in a centrifugal field as cooling process. Review of Scientific Instruments, 18(2), 108-113.
  • [3] Westley, R. (1954). A bibliography and survey of the vortex tube.
  • [4] Brun, M. E. (1933). A propose de la communication by Ranque. J de Phys et le radium.
  • [5] Gulyaev, A. I. (1966). Investigation of conical vortex tubes. Journal of Engineering Physics and Thermophysics, 10(3), 193-195.
  • [6] Aydın, O., Baki, M. (2006). An experimental study on the design parameters of a counterflow vortex tube. Energy, 31(14), 2763-2772.
  • [7] Saidi, M. H., Valipour, M. S. (2003). Experimental modeling of vortex tube refrigerator. Applied Thermal Engineering, 23(15), 1971-1980.
  • [8] Cockerill T.T. (1995). Thermodynamic and Fluid Mechanics of Ranque –Hilsch vortexs Tube. Master Thesis, University of Cambridge, England.
  • [9] Piralishvili, S. A., Polyaev, V. M. (1996). Flow and thermodynamic characteristics of energy separation in a double-circuit vortex tube—an experimental investigation. Experimental Thermal and Fluid Science, 12(4), 399-410.
  • [10] Saidi, M. H., Yazdi, M. A. (1999). Exergy model of a vortex tube system with experimental results. Energy, 24(7), 625-632.
  • [11] Markal, B., Aydın, O., Avcı, M. (2010). An experimental study on the effect of the valve angle of counter-flow Ranque–Hilsch vortex tubes on thermal energy separation. Experimental Thermal and Fluid Science, 34(7), 966-971.
  • [12] Behera, U., Paul, P. J., Dinesh, K., Jacob, S. (2008). Numerical investigations on flow behaviour and energy separation in Ranque–Hilsch vortex tube. International Journal of Heat and Mass Transfer, 51(25-26), 6077-6089.
  • [13] Aljuwayhel, N. F., Nellis, G. F., Klein, S. A. (2005). Parametric and internal study of the vortex tube using a CFD model. International Journal of Refrigeration, 28(3), 442-450.
  • [14] Bramo, A. R. (2010). N. pourmahmoud, CFD simulation of length to diameter ratio effects on the energy separation in a vortex tube. Journal of Thermal sciences, 1-16.
  • [15] Takahama, H. (1965). Studies on vortex tubes:(1) experiments on efficiency of energy separation:(2) on profiles of velocity and temperature. Bulletin of JSME, 8(31), 433-440.
  • [16] Takahama, H., Soga, N. (1966). Effects of cold air rate and partial admission of nozzle on the energy separation. Japan Society of Mechanical Engineers, 9(33), 121-130.
  • [17] Promvonge, P., Eiamsa-ard, S. (2005). Investigation on the vortex thermal separation in a vortex tube refrigerator. Science Asia, 31(3), 215-223.
  • [18] Dincer, K., Tasdemir, S., Baskaya, S., Uysal, B. Z. (2008). Modeling of the effects of length to diameter ratio and nozzle number on the performance of counterflow Ranque–Hilsch vortex tubes using artificial neural networks. Applied Thermal Engineering, 28(17-18), 2380-2390.
  • [19] Kırmacı, V. (2009). Exergy analysis and performance of a counter flow Ranque–Hilsch vortex tube having various nozzle numbers at different inlet pressures of oxygen and air. International Journal of Refrigeration, 32(7), 1626-1633.
  • [20] Dincer, K., Avci, A., Baskaya, S., Berber, A. (2010). Experimental investigation and exergy analysis of the performance of a counter flow Ranque–Hilsch vortex tube with regard to nozzle cross-section areas. International Journal of Refrigeration, 33(5), 954-962.
  • [21] Eiamsa-Ard, S. (2010). Experimental investigation of energy separation in a counter-flow Ranque–Hilsch vortex tube with multiple inlet snail entries. International Communications in Heat and Mass Transfer, 37(6), 637-643.
  • [22] Chang, K., Li, Q., Zhou, G., Li, Q. (2011). Experimental investigation of vortex tube refrigerator with a divergent hot tube. International Journal of Refrigeration, 34(1), 322-327.
  • [23] Mohammadi, S., Farhadi, F. (2013). Experimental analysis of a Ranque–Hilsch vortex tube for optimizing nozzle numbers and diameter. Applied Thermal Engineering, 61(2), 500-506.
  • [24] Avcı, M. (2013). The effects of nozzle aspect ratio and nozzle number on the performance of the Ranque–Hilsch vortex tube. Applied Thermal Engineering, 50(1), 302-308.
  • [25] Bovand, M., Rashidi, S., Esfahani, J. A. (2016). New design of Ranque–Hilsch vortex tube: helical multi-intake vortex generator. Journal of Thermophysics and Heat Transfer, 608-613.
  • [26] Pourmahmoud, N., Hassanzadeh, A., Moutaby, O. (2012). Numerical analysis of the effect of helical nozzles gap on the cooling capacity of Ranque–Hilsch vortex tube. International Journal of Refrigeration, 35(5), 1473-1483.
  • [27] Van Deemter, J. J. (1952). On the theory of the Ranque-Hilsch cooling effect. Applied Scientific Research, Section A, 3(3), 174-196.
  • [28] Borisenko, A. I., Safonov, V. A., Yakovlev, A. I. (1968). The effect of geometric parameters on the characteristics of a conical vortex cooling unit. Journal of Engineering Physics and Thermophysics, 15(6), 1158-1162.
  • [29] R. A. Polisel, M. S. Rocha and J. R. Simões-Moreira, (2007). Parametric studies of a ranque-hilsch vortex tube, 19th International Congress of Mechanical Engineering, Brasilia.
  • [30] Y Wu, Y. T., Ding, Y., Ji, Y. B., Ma, C. F., & Ge, M. C. (2007). Modification and experimental research on vortex tube. International Journal of Refrigeration, 30(6), 1042-1049.
  • [31] Valipour, M. S., Niazi, N. (2011). Experimental modeling of a curved Ranque–Hilsch vortex tube refrigerator. International Journal of Refrigeration, 34(4), 1109-1116.
  • [32] SNimbalkar, S. U., & Muller, M. R. (2009). An experimental investigation of the optimum geometry for the cold end orifice of a vortex tube. Applied Thermal Engineering, 29(2-3), 509-514.
  • [33] Rafiee, S. E., Sadeghiazad, M. M. (2016). Experimental study and 3D CFD analysis on the optimization of throttle angle for a convergent vortex tube. Journal of Marine Science and Application, 15(4), 388-404.
  • [34] Herrada, M. A., Pérez-Saborid, M., & Barrero, A. (1999). Thermal separation in near-axis boundary layers with intense swirl. Physics of Fluids, 11(12), 3678-3687.
  • [35] Takahama, H., Yokosawa, H. (1981). Energy separation in vortex tubes with a divergent chamber. Journal of Heat Transfer, 103(2), 196-203.
  • [36] Poshernev, N. V., & Khodorkov, I. L. (2004). Natural-gas tests on a conical vortex tube (CVT) with external cooling. Chemical and Petroleum Engineering, 40(3-4), 212-217.
  • [37] Devade, K. D., Pise, A. T. (2017). Effect of Mach number, valve angle and length to diameter ratio on thermal performance in flow of air through Ranque Hilsch vortex tube. Heat and Mass Transfer, 53(1), 161-168.
  • [38] Bovand, M., Valipour, M. S., Dincer, K., & Tamayol, A. (2014). Numerical analysis of the curvature effects on Ranque–Hilsch vortex tube refrigerators. Applied Thermal Engineering, 65(1-2), 176-183.
  • [39] Bovand, M., Valipour, M. S., Eiamsa-ard, S., & Tamayol, A. (2014). Numerical analysis for curved vortex tube optimization. International Communications in Heat and Mass Transfer, 50, 98-107.
  • [40] Devade, K. D., Pise, A. T. (2012). Investigation of Refrigeration Effect Using Short Divergent Vortex Tube. International Journal of Earth sciences and engineering, 5(1), 378-384.
  • [41] Devade, K., Pise, A. (2014). Effect of cold orifice diameter and geometry of hot end valves on performance of converging type Ranque Hilsch vortex tube. Energy Procedia, 54, 642-653.
  • [42Guen, M., Natkaniec, C., Kammeyer, J., Seume, J. R., Adjlout, L., & Imine, O. (2013). Effect of the conical-shape on the performance of vortex tube. Heat and Mass Transfer, 49(4), 521-531.
  • [43] Pouraria, H., Zangooee, M. R. (2012). Numerical investigation of vortex tube refrigerator with a divergent hot tube. Energy Procedia, 14, 1554-1559.
  • [44] Marshall, J. (1977). Effect of operating conditions, physical size and fluid characteristics on the gas separation performance of a Linderstrom-Lang vortex tube. International Journal of Heat and Mass Transfer, 20(3), 227-231.
  • [45] Dyskin, L. M. (1989). Characteristics of a vortex tube with detwisting of cold flow. Journal of Engineering Physics and Thermophysics, 57(1), 756-758.
  • [46] Dincer, K., Baskaya, S., Uysal, B. Z., Ucgul, I. (2009). Experimental investigation of the performance of a Ranque–Hilsch vortex tube with regard to a plug located at the hot outlet. International Journal of Refrigeration, 32(1), 87-94.
  • [47] Dincer, K., Yilmaz, Y., Berber, A., Baskaya, S. (2011). Experimental investigation of performance of hot cascade type Ranque–Hilsch vortex tube and exergy analysis. International Journal of Refrigeration, 34(4), 1117-1124.
  • [48] Im, S. Y., Yu, S. S. (2012). Effects of geometric parameters on the separated air flow temperature of a vortex tube for design optimization. Energy, 37(1), 154-160.
  • [49] Rafiee, S. E., Sadeghiazad, M. M. (2016). Experimental study and 3D CFD analysis on the optimization of throttle angle for a convergent vortex tube. Journal of Marine Science and Application, 15(4), 388-404.
  • [50] Stephan, K., Lin, S., Durst, M., Huang, F., Seher, D. (1983). An investigation of energy separation in a vortex tube. International Journal of Heat and Mass Transfer, 26(3), 341-348.
Year 2018, Volume: 4 Issue: 5, 2333 - 2354, 25.06.2018
https://doi.org/10.18186/thermal.439061

Abstract

References

  • [1] Ranque, G. J. (1933). Expériencesd sur la detente giratoire avec productions simultanes d'un echappment d'air chand et d'un echappment d'air froid. Journal de Physique et Le Radium, 112-114.
  • [2] Hilsch, R. (1947). The use of the expansion of gases in a centrifugal field as cooling process. Review of Scientific Instruments, 18(2), 108-113.
  • [3] Westley, R. (1954). A bibliography and survey of the vortex tube.
  • [4] Brun, M. E. (1933). A propose de la communication by Ranque. J de Phys et le radium.
  • [5] Gulyaev, A. I. (1966). Investigation of conical vortex tubes. Journal of Engineering Physics and Thermophysics, 10(3), 193-195.
  • [6] Aydın, O., Baki, M. (2006). An experimental study on the design parameters of a counterflow vortex tube. Energy, 31(14), 2763-2772.
  • [7] Saidi, M. H., Valipour, M. S. (2003). Experimental modeling of vortex tube refrigerator. Applied Thermal Engineering, 23(15), 1971-1980.
  • [8] Cockerill T.T. (1995). Thermodynamic and Fluid Mechanics of Ranque –Hilsch vortexs Tube. Master Thesis, University of Cambridge, England.
  • [9] Piralishvili, S. A., Polyaev, V. M. (1996). Flow and thermodynamic characteristics of energy separation in a double-circuit vortex tube—an experimental investigation. Experimental Thermal and Fluid Science, 12(4), 399-410.
  • [10] Saidi, M. H., Yazdi, M. A. (1999). Exergy model of a vortex tube system with experimental results. Energy, 24(7), 625-632.
  • [11] Markal, B., Aydın, O., Avcı, M. (2010). An experimental study on the effect of the valve angle of counter-flow Ranque–Hilsch vortex tubes on thermal energy separation. Experimental Thermal and Fluid Science, 34(7), 966-971.
  • [12] Behera, U., Paul, P. J., Dinesh, K., Jacob, S. (2008). Numerical investigations on flow behaviour and energy separation in Ranque–Hilsch vortex tube. International Journal of Heat and Mass Transfer, 51(25-26), 6077-6089.
  • [13] Aljuwayhel, N. F., Nellis, G. F., Klein, S. A. (2005). Parametric and internal study of the vortex tube using a CFD model. International Journal of Refrigeration, 28(3), 442-450.
  • [14] Bramo, A. R. (2010). N. pourmahmoud, CFD simulation of length to diameter ratio effects on the energy separation in a vortex tube. Journal of Thermal sciences, 1-16.
  • [15] Takahama, H. (1965). Studies on vortex tubes:(1) experiments on efficiency of energy separation:(2) on profiles of velocity and temperature. Bulletin of JSME, 8(31), 433-440.
  • [16] Takahama, H., Soga, N. (1966). Effects of cold air rate and partial admission of nozzle on the energy separation. Japan Society of Mechanical Engineers, 9(33), 121-130.
  • [17] Promvonge, P., Eiamsa-ard, S. (2005). Investigation on the vortex thermal separation in a vortex tube refrigerator. Science Asia, 31(3), 215-223.
  • [18] Dincer, K., Tasdemir, S., Baskaya, S., Uysal, B. Z. (2008). Modeling of the effects of length to diameter ratio and nozzle number on the performance of counterflow Ranque–Hilsch vortex tubes using artificial neural networks. Applied Thermal Engineering, 28(17-18), 2380-2390.
  • [19] Kırmacı, V. (2009). Exergy analysis and performance of a counter flow Ranque–Hilsch vortex tube having various nozzle numbers at different inlet pressures of oxygen and air. International Journal of Refrigeration, 32(7), 1626-1633.
  • [20] Dincer, K., Avci, A., Baskaya, S., Berber, A. (2010). Experimental investigation and exergy analysis of the performance of a counter flow Ranque–Hilsch vortex tube with regard to nozzle cross-section areas. International Journal of Refrigeration, 33(5), 954-962.
  • [21] Eiamsa-Ard, S. (2010). Experimental investigation of energy separation in a counter-flow Ranque–Hilsch vortex tube with multiple inlet snail entries. International Communications in Heat and Mass Transfer, 37(6), 637-643.
  • [22] Chang, K., Li, Q., Zhou, G., Li, Q. (2011). Experimental investigation of vortex tube refrigerator with a divergent hot tube. International Journal of Refrigeration, 34(1), 322-327.
  • [23] Mohammadi, S., Farhadi, F. (2013). Experimental analysis of a Ranque–Hilsch vortex tube for optimizing nozzle numbers and diameter. Applied Thermal Engineering, 61(2), 500-506.
  • [24] Avcı, M. (2013). The effects of nozzle aspect ratio and nozzle number on the performance of the Ranque–Hilsch vortex tube. Applied Thermal Engineering, 50(1), 302-308.
  • [25] Bovand, M., Rashidi, S., Esfahani, J. A. (2016). New design of Ranque–Hilsch vortex tube: helical multi-intake vortex generator. Journal of Thermophysics and Heat Transfer, 608-613.
  • [26] Pourmahmoud, N., Hassanzadeh, A., Moutaby, O. (2012). Numerical analysis of the effect of helical nozzles gap on the cooling capacity of Ranque–Hilsch vortex tube. International Journal of Refrigeration, 35(5), 1473-1483.
  • [27] Van Deemter, J. J. (1952). On the theory of the Ranque-Hilsch cooling effect. Applied Scientific Research, Section A, 3(3), 174-196.
  • [28] Borisenko, A. I., Safonov, V. A., Yakovlev, A. I. (1968). The effect of geometric parameters on the characteristics of a conical vortex cooling unit. Journal of Engineering Physics and Thermophysics, 15(6), 1158-1162.
  • [29] R. A. Polisel, M. S. Rocha and J. R. Simões-Moreira, (2007). Parametric studies of a ranque-hilsch vortex tube, 19th International Congress of Mechanical Engineering, Brasilia.
  • [30] Y Wu, Y. T., Ding, Y., Ji, Y. B., Ma, C. F., & Ge, M. C. (2007). Modification and experimental research on vortex tube. International Journal of Refrigeration, 30(6), 1042-1049.
  • [31] Valipour, M. S., Niazi, N. (2011). Experimental modeling of a curved Ranque–Hilsch vortex tube refrigerator. International Journal of Refrigeration, 34(4), 1109-1116.
  • [32] SNimbalkar, S. U., & Muller, M. R. (2009). An experimental investigation of the optimum geometry for the cold end orifice of a vortex tube. Applied Thermal Engineering, 29(2-3), 509-514.
  • [33] Rafiee, S. E., Sadeghiazad, M. M. (2016). Experimental study and 3D CFD analysis on the optimization of throttle angle for a convergent vortex tube. Journal of Marine Science and Application, 15(4), 388-404.
  • [34] Herrada, M. A., Pérez-Saborid, M., & Barrero, A. (1999). Thermal separation in near-axis boundary layers with intense swirl. Physics of Fluids, 11(12), 3678-3687.
  • [35] Takahama, H., Yokosawa, H. (1981). Energy separation in vortex tubes with a divergent chamber. Journal of Heat Transfer, 103(2), 196-203.
  • [36] Poshernev, N. V., & Khodorkov, I. L. (2004). Natural-gas tests on a conical vortex tube (CVT) with external cooling. Chemical and Petroleum Engineering, 40(3-4), 212-217.
  • [37] Devade, K. D., Pise, A. T. (2017). Effect of Mach number, valve angle and length to diameter ratio on thermal performance in flow of air through Ranque Hilsch vortex tube. Heat and Mass Transfer, 53(1), 161-168.
  • [38] Bovand, M., Valipour, M. S., Dincer, K., & Tamayol, A. (2014). Numerical analysis of the curvature effects on Ranque–Hilsch vortex tube refrigerators. Applied Thermal Engineering, 65(1-2), 176-183.
  • [39] Bovand, M., Valipour, M. S., Eiamsa-ard, S., & Tamayol, A. (2014). Numerical analysis for curved vortex tube optimization. International Communications in Heat and Mass Transfer, 50, 98-107.
  • [40] Devade, K. D., Pise, A. T. (2012). Investigation of Refrigeration Effect Using Short Divergent Vortex Tube. International Journal of Earth sciences and engineering, 5(1), 378-384.
  • [41] Devade, K., Pise, A. (2014). Effect of cold orifice diameter and geometry of hot end valves on performance of converging type Ranque Hilsch vortex tube. Energy Procedia, 54, 642-653.
  • [42Guen, M., Natkaniec, C., Kammeyer, J., Seume, J. R., Adjlout, L., & Imine, O. (2013). Effect of the conical-shape on the performance of vortex tube. Heat and Mass Transfer, 49(4), 521-531.
  • [43] Pouraria, H., Zangooee, M. R. (2012). Numerical investigation of vortex tube refrigerator with a divergent hot tube. Energy Procedia, 14, 1554-1559.
  • [44] Marshall, J. (1977). Effect of operating conditions, physical size and fluid characteristics on the gas separation performance of a Linderstrom-Lang vortex tube. International Journal of Heat and Mass Transfer, 20(3), 227-231.
  • [45] Dyskin, L. M. (1989). Characteristics of a vortex tube with detwisting of cold flow. Journal of Engineering Physics and Thermophysics, 57(1), 756-758.
  • [46] Dincer, K., Baskaya, S., Uysal, B. Z., Ucgul, I. (2009). Experimental investigation of the performance of a Ranque–Hilsch vortex tube with regard to a plug located at the hot outlet. International Journal of Refrigeration, 32(1), 87-94.
  • [47] Dincer, K., Yilmaz, Y., Berber, A., Baskaya, S. (2011). Experimental investigation of performance of hot cascade type Ranque–Hilsch vortex tube and exergy analysis. International Journal of Refrigeration, 34(4), 1117-1124.
  • [48] Im, S. Y., Yu, S. S. (2012). Effects of geometric parameters on the separated air flow temperature of a vortex tube for design optimization. Energy, 37(1), 154-160.
  • [49] Rafiee, S. E., Sadeghiazad, M. M. (2016). Experimental study and 3D CFD analysis on the optimization of throttle angle for a convergent vortex tube. Journal of Marine Science and Application, 15(4), 388-404.
  • [50] Stephan, K., Lin, S., Durst, M., Huang, F., Seher, D. (1983). An investigation of energy separation in a vortex tube. International Journal of Heat and Mass Transfer, 26(3), 341-348.
There are 50 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Kiran Devade

Publication Date June 25, 2018
Submission Date March 24, 2017
Published in Issue Year 2018 Volume: 4 Issue: 5

Cite

APA Devade, K. (2018). PARAMETRIC ANALYSIS OF THERMAL PERFORMANCE OF RANQUE-HILSCH VORTEX TUBE. Journal of Thermal Engineering, 4(5), 2333-2354. https://doi.org/10.18186/thermal.439061
AMA Devade K. PARAMETRIC ANALYSIS OF THERMAL PERFORMANCE OF RANQUE-HILSCH VORTEX TUBE. Journal of Thermal Engineering. June 2018;4(5):2333-2354. doi:10.18186/thermal.439061
Chicago Devade, Kiran. “PARAMETRIC ANALYSIS OF THERMAL PERFORMANCE OF RANQUE-HILSCH VORTEX TUBE”. Journal of Thermal Engineering 4, no. 5 (June 2018): 2333-54. https://doi.org/10.18186/thermal.439061.
EndNote Devade K (June 1, 2018) PARAMETRIC ANALYSIS OF THERMAL PERFORMANCE OF RANQUE-HILSCH VORTEX TUBE. Journal of Thermal Engineering 4 5 2333–2354.
IEEE K. Devade, “PARAMETRIC ANALYSIS OF THERMAL PERFORMANCE OF RANQUE-HILSCH VORTEX TUBE”, Journal of Thermal Engineering, vol. 4, no. 5, pp. 2333–2354, 2018, doi: 10.18186/thermal.439061.
ISNAD Devade, Kiran. “PARAMETRIC ANALYSIS OF THERMAL PERFORMANCE OF RANQUE-HILSCH VORTEX TUBE”. Journal of Thermal Engineering 4/5 (June 2018), 2333-2354. https://doi.org/10.18186/thermal.439061.
JAMA Devade K. PARAMETRIC ANALYSIS OF THERMAL PERFORMANCE OF RANQUE-HILSCH VORTEX TUBE. Journal of Thermal Engineering. 2018;4:2333–2354.
MLA Devade, Kiran. “PARAMETRIC ANALYSIS OF THERMAL PERFORMANCE OF RANQUE-HILSCH VORTEX TUBE”. Journal of Thermal Engineering, vol. 4, no. 5, 2018, pp. 2333-54, doi:10.18186/thermal.439061.
Vancouver Devade K. PARAMETRIC ANALYSIS OF THERMAL PERFORMANCE OF RANQUE-HILSCH VORTEX TUBE. Journal of Thermal Engineering. 2018;4(5):2333-54.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering