Research Article
BibTex RIS Cite
Year 2018, Volume: 4 Issue: 6, 2408 - 2422, 29.09.2018
https://doi.org/10.18186/thermal.465650

Abstract

References

  • [1] Bergles, A. E. (1988). Some perspectives on enhanced heat transfer—second-generation heat transfer technology. Journal of Heat Transfer, 110(4b), 1082-1096.
  • [2] Tuckerman, D. B., & Pease, R. F. W. (1981). High-performance heat sinking for VLSI. IEEE Electron device letters, 2(5), 126-129.
  • [3] Choi, S. U. S., & Estman, J. A. (1995). Enhancing thermal conductivity of fluids with nanoparticles. ASME-Publications-Fed, 231, 99-106.
  • [4] Yoo, D. H., Hong, K. S., & Yang, H. S. (2007). Study of thermal conductivity of nanofluids for the application of heat transfer fluids. Thermochimica Acta, 455(1-2), 66-69.
  • [5] Choi, S. U. S., Zhang, Z. G., Yu, W., Lockwood, F. E., & Grulke, E. A. (2001). Anomalous thermal conductivity enhancement in nanotube suspensions. Applied physics letters, 79(14), 2252-2254.
  • [6] Hamilton, R. L., & Crosser, O. K. (1962). Thermal conductivity of heterogeneous two-component systems. Industrial & Engineering Chemistry Fundamentals, 1(3), 187-191.
  • [7] Murshed, S. M. S., Leong, K. C., & Yang, C. (2005). Enhanced thermal conductivity of TiO2—water based nanofluids. International Journal of thermal sciences, 44(4), 367-373.
  • [8] Ansari, D., Husain, A., & Kim, K. Y. (2010). Multiobjective optimization of a grooved micro-channel heat sink. IEEE transactions on components and packaging technologies, 33(4), 767-776.
  • [9] Ghale, Z. Y., Haghshenasfard, M., & Esfahany, M. N. (2015). Investigation of nanofluids heat transfer in a ribbed microchannel heat sink using single-phase and multiphase CFD models. International Communications in Heat and Mass Transfer, 68, 122-129.
  • [10] Huh, M., Liu, Y. H., & Han, J. C. (2009). Effect of rib height on heat transfer in a two pass rectangular channel (AR= 1: 4) with a sharp entrance at high rotation numbers. International Journal of Heat and Mass Transfer, 52(19-20), 4635-4649.
  • [11] Karimipour, A., Alipour, H., Akbari, O. A., Semiromi, D. T., & Esfe, M. H. (2015). Studying the effect of indentation on flow parameters and slow heat transfer of water-silver nano-fluid with varying volume fraction in a rectangular two-dimensional micro channel. Indian Journal of Science and Technology, 8(15).
  • [12] Akbari, O. A., Toghraie, D., Karimipour, A., Safaei, M. R., Goodarzi, M., Alipour, H., & Dahari, M. (2016). Investigation of rib's height effect on heat transfer and flow parameters of laminar water–Al2O3 nanofluid in a rib-microchannel. Applied Mathematics and Computation, 290, 135-153.
  • [13] Al-Shamani, A. N., Sopian, K., Mohammed, H. A., Mat, S., Ruslan, M. H., & Abed, A. M. (2015). Enhancement heat transfer characteristics in the channel with Trapezoidal rib–groove using nanofluids. Case Studies in Thermal Engineering, 5, 48-58.
  • [14] Manca, O., Nardini, S., & Ricci, D. (2012). A numerical study of nanofluid forced convection in ribbed channels. Applied Thermal Engineering, 37, 280-292.
  • [15] Wang, L., & Sundén, B. (2007). Experimental investigation of local heat transfer in a square duct with various-shaped ribs. Heat and Mass Transfer, 43(8), 759.
  • [16] Andreozzi, A., Manca, O., Nardini, S., & Ricci, D. (2016). Forced convection enhancement in channels with transversal ribs and nanofluids. Applied Thermal Engineering, 98, 1044-1053.
  • [17] Maiga, S. E. B., Palm, S. J., Nguyen, C. T., Roy, G., & Galanis, N. (2005). Heat transfer enhancement by using nanofluids in forced convection flows. International journal of heat and fluid flow, 26(4), 530-546.
  • [18] El Bécaye Maïga, S., Tam Nguyen, C., Galanis, N., Roy, G., Maré, T., & Coqueux, M. (2006). Heat transfer enhancement in turbulent tube flow using Al2O3 nanoparticle suspension. International Journal of Numerical Methods for Heat & Fluid Flow, 16(3), 275-292.
  • [19] Xuan, Y., & Roetzel, W. (2000). Conceptions for heat transfer correlation of nanofluids. International Journal of heat and Mass transfer, 43(19), 3701-3707.
  • [20] Mintsa, H. A., Roy, G., Nguyen, C. T., & Doucet, D. (2009). New temperature dependent thermal conductivity data for water-based nanofluids. International Journal of Thermal Sciences, 48(2), 363-371.
  • [21] Kandlikar, S., Garimella, S., Li, D., Colin, S., & King, M. R. (2005). Heat transfer and fluid flow in minichannels and microchannels. elsevier.

NUMERICAL INVESTIGATION OF COOLING A RIBBED MICROCHANNEL USING NANOFLUID

Year 2018, Volume: 4 Issue: 6, 2408 - 2422, 29.09.2018
https://doi.org/10.18186/thermal.465650

Abstract

A 2-D numerical investigation was carried out to study
the effect of spacing between ribs on nanofluid flow and heat transfer inside a horizontal micro-channel. Two
identical ribs were placed at the lower wall of micro-channel with variable
spacing between them. The alumina oxide nanoparticles was suspended in water as
based fluid at different volume fraction 0, 2 and 4%. The finite volume method
was used to solve the
continuity, momentum and energy equations. The effects of
different parameters such as nanoparticles volume fraction, Reynolds number,
and the spacing between ribs has been evaluated.
The results showed that increasing nanoparticles volume fraction and
Reynolds number significantly enhanced the heat transfer and the
Poiseuille
number
. The presence of ribs improves the heat
transfer. However, increasing the spacing between ribs leads to decrease the
heat transfer rate.   

References

  • [1] Bergles, A. E. (1988). Some perspectives on enhanced heat transfer—second-generation heat transfer technology. Journal of Heat Transfer, 110(4b), 1082-1096.
  • [2] Tuckerman, D. B., & Pease, R. F. W. (1981). High-performance heat sinking for VLSI. IEEE Electron device letters, 2(5), 126-129.
  • [3] Choi, S. U. S., & Estman, J. A. (1995). Enhancing thermal conductivity of fluids with nanoparticles. ASME-Publications-Fed, 231, 99-106.
  • [4] Yoo, D. H., Hong, K. S., & Yang, H. S. (2007). Study of thermal conductivity of nanofluids for the application of heat transfer fluids. Thermochimica Acta, 455(1-2), 66-69.
  • [5] Choi, S. U. S., Zhang, Z. G., Yu, W., Lockwood, F. E., & Grulke, E. A. (2001). Anomalous thermal conductivity enhancement in nanotube suspensions. Applied physics letters, 79(14), 2252-2254.
  • [6] Hamilton, R. L., & Crosser, O. K. (1962). Thermal conductivity of heterogeneous two-component systems. Industrial & Engineering Chemistry Fundamentals, 1(3), 187-191.
  • [7] Murshed, S. M. S., Leong, K. C., & Yang, C. (2005). Enhanced thermal conductivity of TiO2—water based nanofluids. International Journal of thermal sciences, 44(4), 367-373.
  • [8] Ansari, D., Husain, A., & Kim, K. Y. (2010). Multiobjective optimization of a grooved micro-channel heat sink. IEEE transactions on components and packaging technologies, 33(4), 767-776.
  • [9] Ghale, Z. Y., Haghshenasfard, M., & Esfahany, M. N. (2015). Investigation of nanofluids heat transfer in a ribbed microchannel heat sink using single-phase and multiphase CFD models. International Communications in Heat and Mass Transfer, 68, 122-129.
  • [10] Huh, M., Liu, Y. H., & Han, J. C. (2009). Effect of rib height on heat transfer in a two pass rectangular channel (AR= 1: 4) with a sharp entrance at high rotation numbers. International Journal of Heat and Mass Transfer, 52(19-20), 4635-4649.
  • [11] Karimipour, A., Alipour, H., Akbari, O. A., Semiromi, D. T., & Esfe, M. H. (2015). Studying the effect of indentation on flow parameters and slow heat transfer of water-silver nano-fluid with varying volume fraction in a rectangular two-dimensional micro channel. Indian Journal of Science and Technology, 8(15).
  • [12] Akbari, O. A., Toghraie, D., Karimipour, A., Safaei, M. R., Goodarzi, M., Alipour, H., & Dahari, M. (2016). Investigation of rib's height effect on heat transfer and flow parameters of laminar water–Al2O3 nanofluid in a rib-microchannel. Applied Mathematics and Computation, 290, 135-153.
  • [13] Al-Shamani, A. N., Sopian, K., Mohammed, H. A., Mat, S., Ruslan, M. H., & Abed, A. M. (2015). Enhancement heat transfer characteristics in the channel with Trapezoidal rib–groove using nanofluids. Case Studies in Thermal Engineering, 5, 48-58.
  • [14] Manca, O., Nardini, S., & Ricci, D. (2012). A numerical study of nanofluid forced convection in ribbed channels. Applied Thermal Engineering, 37, 280-292.
  • [15] Wang, L., & Sundén, B. (2007). Experimental investigation of local heat transfer in a square duct with various-shaped ribs. Heat and Mass Transfer, 43(8), 759.
  • [16] Andreozzi, A., Manca, O., Nardini, S., & Ricci, D. (2016). Forced convection enhancement in channels with transversal ribs and nanofluids. Applied Thermal Engineering, 98, 1044-1053.
  • [17] Maiga, S. E. B., Palm, S. J., Nguyen, C. T., Roy, G., & Galanis, N. (2005). Heat transfer enhancement by using nanofluids in forced convection flows. International journal of heat and fluid flow, 26(4), 530-546.
  • [18] El Bécaye Maïga, S., Tam Nguyen, C., Galanis, N., Roy, G., Maré, T., & Coqueux, M. (2006). Heat transfer enhancement in turbulent tube flow using Al2O3 nanoparticle suspension. International Journal of Numerical Methods for Heat & Fluid Flow, 16(3), 275-292.
  • [19] Xuan, Y., & Roetzel, W. (2000). Conceptions for heat transfer correlation of nanofluids. International Journal of heat and Mass transfer, 43(19), 3701-3707.
  • [20] Mintsa, H. A., Roy, G., Nguyen, C. T., & Doucet, D. (2009). New temperature dependent thermal conductivity data for water-based nanofluids. International Journal of Thermal Sciences, 48(2), 363-371.
  • [21] Kandlikar, S., Garimella, S., Li, D., Colin, S., & King, M. R. (2005). Heat transfer and fluid flow in minichannels and microchannels. elsevier.
There are 21 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Khadija Madani This is me

Publication Date September 29, 2018
Submission Date June 17, 2017
Published in Issue Year 2018 Volume: 4 Issue: 6

Cite

APA Madani, K. (2018). NUMERICAL INVESTIGATION OF COOLING A RIBBED MICROCHANNEL USING NANOFLUID. Journal of Thermal Engineering, 4(6), 2408-2422. https://doi.org/10.18186/thermal.465650
AMA Madani K. NUMERICAL INVESTIGATION OF COOLING A RIBBED MICROCHANNEL USING NANOFLUID. Journal of Thermal Engineering. September 2018;4(6):2408-2422. doi:10.18186/thermal.465650
Chicago Madani, Khadija. “NUMERICAL INVESTIGATION OF COOLING A RIBBED MICROCHANNEL USING NANOFLUID”. Journal of Thermal Engineering 4, no. 6 (September 2018): 2408-22. https://doi.org/10.18186/thermal.465650.
EndNote Madani K (September 1, 2018) NUMERICAL INVESTIGATION OF COOLING A RIBBED MICROCHANNEL USING NANOFLUID. Journal of Thermal Engineering 4 6 2408–2422.
IEEE K. Madani, “NUMERICAL INVESTIGATION OF COOLING A RIBBED MICROCHANNEL USING NANOFLUID”, Journal of Thermal Engineering, vol. 4, no. 6, pp. 2408–2422, 2018, doi: 10.18186/thermal.465650.
ISNAD Madani, Khadija. “NUMERICAL INVESTIGATION OF COOLING A RIBBED MICROCHANNEL USING NANOFLUID”. Journal of Thermal Engineering 4/6 (September 2018), 2408-2422. https://doi.org/10.18186/thermal.465650.
JAMA Madani K. NUMERICAL INVESTIGATION OF COOLING A RIBBED MICROCHANNEL USING NANOFLUID. Journal of Thermal Engineering. 2018;4:2408–2422.
MLA Madani, Khadija. “NUMERICAL INVESTIGATION OF COOLING A RIBBED MICROCHANNEL USING NANOFLUID”. Journal of Thermal Engineering, vol. 4, no. 6, 2018, pp. 2408-22, doi:10.18186/thermal.465650.
Vancouver Madani K. NUMERICAL INVESTIGATION OF COOLING A RIBBED MICROCHANNEL USING NANOFLUID. Journal of Thermal Engineering. 2018;4(6):2408-22.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering