Note
BibTex RIS Cite

PARTICIPATING MEDIA FOR VOLUMETRIC HEAT GENERATION

Year 2019, Volume: 5 Issue: 1, 93 - 99, 03.10.2018
https://doi.org/10.18186/thermal.505495

Abstract

When an electromagnetic wave interacts with participating media
(e.g. particulate media); the intensity of the radiation may be changed by the absorption,
emission and scattering phenomena. Subsequently, the incident radiation will be
attenuated and/or augmented under the effect of
these phenomena. Light
scattering and absorption by small particles are quite important in a wide
range of applications such as meteorology, biomedicine, biophysics, astronomy,
combustion, fire and flame, and solar thermal applications. Particulate media
have been introduced as a working medium to improve the efficiency of thermal
systems such as solar thermal power plants. The efficiency of the direct
absorption solar thermal collectors (DASC) can be improved by using particulate
media because of the unique thermo-optical properties, which in turn leads to
enhance the thermal performance. The main objective of the present study is to
investigate the effect of the participating media in the volumetric heat
generation under the concept of photo-thermal energy conversion.

References

  • [1] Duffie J. A. and Beckman W. A. (1991). Solar Engineering of Thermal Processes, 2nd edition, John Wiley & Sons, New York.
  • [2] Green M. A. (1981). Solar Cells: Operation Principles, Technology, and System Applications, Prentice Hall, Englewood Cliffs, NJ.
  • [3] Choi C., Yoo H. S. and Oh J. M. (2008). Preparation and heat transfer properties of nanoparticle-in-transformer oil dispersions as advanced energy-efficient coolants, Current Applied Physics 8 710-712.
  • [4] Luo, Z., Wang, C., Wei, W., Xiao, G., & Ni, M. (2014). Performance improvement of a nanofluid solar collector based on direct absorption collection (DAC) concepts. International Journal of Heat and Mass Transfer, 75, 262-271.
  • [5] Myers, D. (1999). Wetting and spreading. In Surfaces, interfaces and colloids. Principles and applications (pp. 415-447). John Wiley & Sons, New York.
  • [6] Kozan, M., Thangala, J., Bogale, R., Mengüç, M. P., & Sunkara, M. K. (2008). In-situ characterization of dispersion stability of WO3 nanoparticles and nanowires. Journal of Nanoparticle Research, 10(4), 599-612.
  • [7] Mischenko, M. I., Wiscombe, W. J., Hovenier, J. W., & Travis, L. D. (2000). Overview of scattering by nonsperical particles.
  • [8] Du, M., & Tang, G. H. (2015). Optical property of nanofluids with particle agglomeration. Solar Energy, 122, 864-872.
  • [9] Tyagi, H., Phelan, P., & Prasher, R. (2009). Predicted efficiency of a low-temperature nanofluid-based direct absorption solar collector. Journal of solar energy engineering, 131(4), 041004.
  • [10] Said, Z., Sajid, M. H., Saidur, R., Mahdiraji, G. A., & Rahim, N. A. (2015). Evaluating the optical properties of TiO2 nanofluid for a direct absorption solar collector. Numerical Heat Transfer, Part A: Applications, 67(9), 1010-1027.
  • [11] Milanese, M., Colangelo, G., Cretì, A., Lomascolo, M., Iacobazzi, F., & De Risi, A. (2016). Optical absorption measurements of oxide nanoparticles for application as nanofluid in direct absorption solar power systems–Part I: water-based nanofluids behavior. Solar Energy Materials and Solar Cells, 147, 315-320.
  • [12] Milanese, M., Colangelo, G., Cretì, A., Lomascolo, M., Iacobazzi, F., & De Risi, A. (2016). Optical absorption measurements of oxide nanoparticles for application as nanofluid in direct absorption solar power systems–Part II: ZnO, CeO2, Fe2O3 nanoparticles behavior. Solar Energy Materials and Solar Cells, 147, 321-326.
  • [13] Goutam, S., & Paul, M. C. (2014). Discrete phase approach for nanofluids flow in pipe.
  • [14] Diggs, A., & Balachandar, S. (2016). Evaluation of methods for calculating volume fraction in Eulerian-Lagrangian multiphase flow simulations. Journal of Computational Physics, 313, 775-798.
  • [15] Modest M. F., “Radiative Heat Transfer”, Academic Press-Elsevier science”, USA, 2003.
  • [16] Howell, J. R., Menguc, M. P., & Siegel, R. (2015). Thermal radiation heat transfer. CRC press.
  • [17] Fan, L. S., & Zhu, C. (1998). Principles of Gas-Solid Flows, Cambridge Series in Chemical Engineering. Cambridge University Press, United Kingdom.
  • [18] Otanicar, T., Taylor, R. A., Phelan, P. E., & Prasher, R. (2009, January). Impact of size and scattering mode on the optimal solar absorbing nanofluid. In ASME 2009 3rd International Conference on Energy Sustainability collocated with the Heat Transfer and InterPACK09 Conferences. American Society of Mechanical Engineers, 791-796.
Year 2019, Volume: 5 Issue: 1, 93 - 99, 03.10.2018
https://doi.org/10.18186/thermal.505495

Abstract

References

  • [1] Duffie J. A. and Beckman W. A. (1991). Solar Engineering of Thermal Processes, 2nd edition, John Wiley & Sons, New York.
  • [2] Green M. A. (1981). Solar Cells: Operation Principles, Technology, and System Applications, Prentice Hall, Englewood Cliffs, NJ.
  • [3] Choi C., Yoo H. S. and Oh J. M. (2008). Preparation and heat transfer properties of nanoparticle-in-transformer oil dispersions as advanced energy-efficient coolants, Current Applied Physics 8 710-712.
  • [4] Luo, Z., Wang, C., Wei, W., Xiao, G., & Ni, M. (2014). Performance improvement of a nanofluid solar collector based on direct absorption collection (DAC) concepts. International Journal of Heat and Mass Transfer, 75, 262-271.
  • [5] Myers, D. (1999). Wetting and spreading. In Surfaces, interfaces and colloids. Principles and applications (pp. 415-447). John Wiley & Sons, New York.
  • [6] Kozan, M., Thangala, J., Bogale, R., Mengüç, M. P., & Sunkara, M. K. (2008). In-situ characterization of dispersion stability of WO3 nanoparticles and nanowires. Journal of Nanoparticle Research, 10(4), 599-612.
  • [7] Mischenko, M. I., Wiscombe, W. J., Hovenier, J. W., & Travis, L. D. (2000). Overview of scattering by nonsperical particles.
  • [8] Du, M., & Tang, G. H. (2015). Optical property of nanofluids with particle agglomeration. Solar Energy, 122, 864-872.
  • [9] Tyagi, H., Phelan, P., & Prasher, R. (2009). Predicted efficiency of a low-temperature nanofluid-based direct absorption solar collector. Journal of solar energy engineering, 131(4), 041004.
  • [10] Said, Z., Sajid, M. H., Saidur, R., Mahdiraji, G. A., & Rahim, N. A. (2015). Evaluating the optical properties of TiO2 nanofluid for a direct absorption solar collector. Numerical Heat Transfer, Part A: Applications, 67(9), 1010-1027.
  • [11] Milanese, M., Colangelo, G., Cretì, A., Lomascolo, M., Iacobazzi, F., & De Risi, A. (2016). Optical absorption measurements of oxide nanoparticles for application as nanofluid in direct absorption solar power systems–Part I: water-based nanofluids behavior. Solar Energy Materials and Solar Cells, 147, 315-320.
  • [12] Milanese, M., Colangelo, G., Cretì, A., Lomascolo, M., Iacobazzi, F., & De Risi, A. (2016). Optical absorption measurements of oxide nanoparticles for application as nanofluid in direct absorption solar power systems–Part II: ZnO, CeO2, Fe2O3 nanoparticles behavior. Solar Energy Materials and Solar Cells, 147, 321-326.
  • [13] Goutam, S., & Paul, M. C. (2014). Discrete phase approach for nanofluids flow in pipe.
  • [14] Diggs, A., & Balachandar, S. (2016). Evaluation of methods for calculating volume fraction in Eulerian-Lagrangian multiphase flow simulations. Journal of Computational Physics, 313, 775-798.
  • [15] Modest M. F., “Radiative Heat Transfer”, Academic Press-Elsevier science”, USA, 2003.
  • [16] Howell, J. R., Menguc, M. P., & Siegel, R. (2015). Thermal radiation heat transfer. CRC press.
  • [17] Fan, L. S., & Zhu, C. (1998). Principles of Gas-Solid Flows, Cambridge Series in Chemical Engineering. Cambridge University Press, United Kingdom.
  • [18] Otanicar, T., Taylor, R. A., Phelan, P. E., & Prasher, R. (2009, January). Impact of size and scattering mode on the optimal solar absorbing nanofluid. In ASME 2009 3rd International Conference on Energy Sustainability collocated with the Heat Transfer and InterPACK09 Conferences. American Society of Mechanical Engineers, 791-796.
There are 18 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Layth Al-gebory This is me 0000-0002-5943-7763

Publication Date October 3, 2018
Submission Date May 28, 2017
Published in Issue Year 2019 Volume: 5 Issue: 1

Cite

APA Al-gebory, L. (2018). PARTICIPATING MEDIA FOR VOLUMETRIC HEAT GENERATION. Journal of Thermal Engineering, 5(1), 93-99. https://doi.org/10.18186/thermal.505495
AMA Al-gebory L. PARTICIPATING MEDIA FOR VOLUMETRIC HEAT GENERATION. Journal of Thermal Engineering. October 2018;5(1):93-99. doi:10.18186/thermal.505495
Chicago Al-gebory, Layth. “PARTICIPATING MEDIA FOR VOLUMETRIC HEAT GENERATION”. Journal of Thermal Engineering 5, no. 1 (October 2018): 93-99. https://doi.org/10.18186/thermal.505495.
EndNote Al-gebory L (October 1, 2018) PARTICIPATING MEDIA FOR VOLUMETRIC HEAT GENERATION. Journal of Thermal Engineering 5 1 93–99.
IEEE L. Al-gebory, “PARTICIPATING MEDIA FOR VOLUMETRIC HEAT GENERATION”, Journal of Thermal Engineering, vol. 5, no. 1, pp. 93–99, 2018, doi: 10.18186/thermal.505495.
ISNAD Al-gebory, Layth. “PARTICIPATING MEDIA FOR VOLUMETRIC HEAT GENERATION”. Journal of Thermal Engineering 5/1 (October 2018), 93-99. https://doi.org/10.18186/thermal.505495.
JAMA Al-gebory L. PARTICIPATING MEDIA FOR VOLUMETRIC HEAT GENERATION. Journal of Thermal Engineering. 2018;5:93–99.
MLA Al-gebory, Layth. “PARTICIPATING MEDIA FOR VOLUMETRIC HEAT GENERATION”. Journal of Thermal Engineering, vol. 5, no. 1, 2018, pp. 93-99, doi:10.18186/thermal.505495.
Vancouver Al-gebory L. PARTICIPATING MEDIA FOR VOLUMETRIC HEAT GENERATION. Journal of Thermal Engineering. 2018;5(1):93-9.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering