Review
BibTex RIS Cite
Year 2019, Volume: 5 Issue: 2 - Issue Name: Special Issue 9: International Conference on Mechanical Engineering 2017, Istanbul, Turkey, 108 - 118, 29.01.2019
https://doi.org/10.18186/thermal.532252

Abstract

References

  • [1] Yang, K., Fox, J. T., & Hunsicker, R. (2016). Characterizing diesel particulate filter failure during commercial fleet use due to pinholes, melting, cracking, and fouling. Emission Control Science and Technology, 2(3), 145-155.
  • [2] Shankar, S., Astagi, H. V., Hotti, S. R., Hebbal, O., Dixit, M., Kaushik, S. C., ..& Sharifishourabi, M. (2016). Effect of Exhaust Gas Recirculation (EGR) on Performance, Emissions and Combustion Characteristics of a Low Heat Rejection (LHR) Diesel Engine Using Pongamia Biodiesel. Journal Of Thermal Engineering, 2(6), 1007-1016.
  • [3] Liati, A., Schreiber, D., Dimopoulos Eggenschwiler, P., & Arroyo Rojas Dasilva, Y. (2013). Metal particle emissions in the exhaust stream of diesel engines: an electron microscope study. Environmental science & technology, 47(24), 14495-14501.
  • [4] McClellan, R. O., Hesterberg, T. W., & Wall, J. C. (2012). Evaluation of carcinogenic hazard of diesel engine exhaust needs to consider revolutionary changes in diesel technology. Regulatory Toxicology and Pharmacology, 63(2), 225-258.
  • [5] C. Kurien and A. K. Srivastava (2017), “Investigation on power aspects in impressed current cathodic protection system,” Journal of Corrosion Science and Engineering, vol. 20.
  • [6] Porpatham, E., Ramesh, A., & Nagalingam, B. (2007). Effect of hydrogen addition on the performance of a biogas fuelled spark ignition engine. International Journal of Hydrogen Energy, 32(12), 2057-2065.
  • [7] Sindhu, R., Rao, G. A. P., & Murthy, K. M. (2017). Effective reduction of NOx emissions from diesel engine using split injections. Alexandria Engineering Journal.
  • [8] Guan, C., Li, X., Liao, B., & Huang, Z. (2016). Effects of fuel injection strategies on emissions characteristics of a diesel engine equipped with a particle oxidation catalyst (POC). Journal of Environmental Chemical Engineering, 4(4), 4822-4829.
  • [9] Pandey, S., Diwan, P., Sahoo, P. K., & Thipse, S. S. (2018). A review of combustion control strategies in diesel HCCI engines. Biofuels, 9(1), 61-74.
  • [10] Chintala, V., Kumar, S., & Pandey, J. K. (2018). A technical review on waste heat recovery from compression ignition engines using organic Rankine cycle. Renewable and Sustainable Energy Reviews, 81, 493-509.
  • [11] Hotti, S., & Hebbal, O. (2015). Biodiesel production and fuel properties from non-edible Champaca (Michelia champaca) seed oil for use in diesel engine. Journal of Thermal Engineering, 1(1), 330-336.
  • [12] Zhang, Z. H., Chua, S. M., & Balasubramanian, R. (2016). Comparative evaluation of the effect of butanol–diesel and pentanol–diesel blends on carbonaceous particulate composition and particle number emissions from a diesel engine. Fuel, 176, 40-47.
  • [13] Wang, D., Liu, Z. C., Tian, J., Liu, J. W., & Zhang, J. R. (2012). Investigation of particle emission characteristics from a diesel engine with a diesel particulate filter for alternative fuels. International Journal of Automotive Technology, 13(7), 1023-1032.
  • [14] Caliskan, H., & Mori, K. (2017). Environmental, enviroeconomic and enhanced thermodynamic analyses of a diesel engine with diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) after treatment systems. Energy, 128, 128-144.
  • [15] Kurien C., Srivastava A.K. (2018) Active Regeneration of Diesel Particulate Filter Using Microwave Energy for Exhaust Emission Control. In: Singh R., Choudhury S., Gehlot A. (eds) Intelligent Communication, Control and Devices. Advances in Intelligent Systems and Computing, vol 624. Springer, Singapore.
  • [16] Carrillo, C., DeLaRiva, A., Xiong, H., Peterson, E. J., Spilde, M. N., Kunwar, D., ... & Challa, S. R. (2017). Regenerative trapping: How Pd improves the durability of Pt diesel oxidation catalysts. Applied Catalysis B: Environmental, 218, 581-590.
  • [17] Taibani, A. Z., & Kalamkar, V. (2012). Experimental and computational analysis of behavior of three-way catalytic converter under axial and radial flow conditions. International Journal of Fluid Machinery and Systems, 5(3), 134-142.
  • [18] Zheng, M., & Banerjee, S. (2009). Diesel oxidation catalyst and particulate filter modeling in active–flow configurations. Applied Thermal Engineering, 29(14-15), 3021-3035.
  • [19] Huang, H., Jiang, B., Gu, L., Qi, Z., & Lu, H. (2015). Promoting effect of vanadium on catalytic activity of Pt/Ce–Zr–O diesel oxidation catalysts. Journal of Environmental Sciences, 33, 135-142.
  • [20] Azis, M. M., Auvray, X., Olsson, L., & Creaser, D. (2015). Evaluation of H2 effect on NO oxidation over a diesel oxidation catalyst. Applied Catalysis B: Environmental, 179, 542-550.
  • [21] Jiao, P., Li, Z., Shen, B., Zhang, W., Kong, X., & Jiang, R. (2017). Research of DPF regeneration with NOx-PM coupled chemical reaction. Applied Thermal Engineering, 110, 737-745.
  • [22] Yoon, C. S., & Cho, G. B. (2009). Study of Design & CFD Analysis for Partial DPF Utilizing Metal Foam. Transactions of the Korean Society of Automotive Engineers, 17(1), 24-34.
  • [23] K. Abay and U. Colak (2018), “Computational Fluid Dynamics Analysis of Flow and Combustion,” Journal of Thermal Engineering, vol. 4, no. 2, pp 1878-1895.
  • [24] Fornarelli, F., Camporeale, S., Dadduzio, R., Fortunato, B., & Torresi, M. (2015). Numerical simulation of the flow field and chemical reactions within a NSC diesel catalyst. Energy Procedia, 82, 381-388.
  • [25] D. Khan and Z. Gul (2017), “Performance Map Measurement, Zero-Dimensional Modelling & Vibration Analysis of A Single Cylinder Diesel Engine,” Journal of Thermal Engineering, vol. 3, no. 4, pp. 1391–1410, 2017.
  • [26] Arthanareeswaren, G., & Varadarajan, K. N. (2015). CFD study on pressure drop and uniformity index of three cylinder LCV exhaust system. Procedia Engineering, 127, 1211-1218.
  • [28] Lee, G. W., Yoon, K., Chun, B., & Jung, H. W. (2018). Lattice Boltzmann simulations for wall-flow dynamics in porous ceramic diesel particulate filters. Applied Surface Science, 429, 72-80.
  • [29] Lapuerta, M., Rodríguez-Fernández, J., & Oliva, F. (2012). Effect of soot accumulation in a diesel particle filter on the combustion process and gaseous emissions. Energy, 47(1), 543-552.
  • [30] Feng, X., Ge, Y., Ma, C., Tan, J., Yu, L., Li, J., & Wang, X. (2014). Experimental study on the nitrogen dioxide and particulate matter emissions from diesel engine retrofitted with particulate oxidation catalyst. Science of the Total Environment, 472, 56-62.
  • [31] Louis, C., Liu, Y., Martinet, S., D'Anna, B., Valiente, A. M., Boreave & André, M. (2017). Dilution effects on ultrafine particle emissions from Euro 5 and Euro 6 diesel and gasoline vehicles. Atmospheric Environment, 169, 80-88.
  • [32] Dittler, A. (2017). The Application of Diesel Particle Filters—From Past to Present and Beyond. Topics in Catalysis, 60(3-5), 342-347.
  • [33] H. Hardenberg (1987), “Urban Bus Application of a Ceramic Fiber Coil Particulate Trap,” SAE Technical Paper, no. 870011, p. 12.
  • [34] D. H. and E. H. Hardenberg H (1987), “Particulate Trap Regeneration Induced by Means of Oxidizing Agents injected Into the Exhaust Gas,” SAE Technical Paper, no. 870016, p. 16.
  • [35] Suarez-Bertoa, R., & Astorga, C. (2018). Impact of cold temperature on Euro 6 passenger car emissions. Environmental Pollution, 234, 318-329.
  • [36] Millo, F., Rafigh, M., Andreata, M., Vlachos, T., Arya, P., & Miceli, P. (2017). Impact of high sulfur fuel and de-sulfation process on a close-coupled diesel oxidation catalyst and diesel particulate filter. Fuel, 198, 58-67.
  • [37] Kang, W., Choi, B., Jung, S., & Park, S. (2018). PM and NOx reduction characteristics of LNT/DPF+ SCR/DPF hybrid system. Energy, 143, 439-447.
  • [38] Bollerhoff, T., Markomanolakis, I., & Koltsakis, G. (2012). Filtration and regeneration modeling for particulate filters with inhomogeneous wall structure. Catalysis today, 188(1), 24-31.
  • [39] Bensaid, S., Marchisio, D. L., & Fino, D. (2010). Numerical simulation of soot filtration and combustion within diesel particulate filters. Chemical Engineering Science, 65(1), 357-363.
  • [40] Zhao, H., Ge, Y., Zhang, T., Zhang, J., Tan, J., & Zhang, H. (2014). Unregulated emissions from diesel engine with particulate filter using Fe-based fuel borne catalyst. Journal of Environmental Sciences, 26(10), 2027-2033.
  • [41] Palma, V., Ciambelli, P., Meloni, E., & Sin, A. (2015). Catalytic DPF microwave assisted active regeneration. Fuel, 140, 50-61.
  • [42] Stępień, Z., Ziemiański, L., Żak, G., Wojtasik, M., Jęczmionek, Ł., & Burnus, Z. (2015). The evaluation of fuel borne catalyst (FBC’s) for DPF regeneration. Fuel, 161, 278-286.
  • [43] P. Salvat, O. Marez and G. and Belot (2000), “Passenger Car Serial Application of a Particulate Filter System on a Common Rail Direct Injection Diesel Engine,” SAE Technical Paper, no. 2000-01–0473, p. 15.
  • [44] Pérez, V. R., & Bueno-López, A. (2015). Catalytic regeneration of diesel particulate filters: comparison of Pt and CePr active phases. Chemical Engineering Journal, 279, 79-85.
  • [45] Yamazaki, K., Sakakibara, Y., Daido, S., & Okawara, S. (2016). Particulate matter oxidation over ash-deposited catalyzed diesel particulate filters. Topics in Catalysis, 59(10-12), 1076-1082.
  • [46 Corro, G., Cebada, S., Pal, U., Fierro, J. L. G., & Alvarado, J. (2015). Hydrogen-reduced Cu/ZnO composite as efficient reusable catalyst for diesel particulate matter oxidation. Applied Catalysis B: Environmental, 165, 555-565.
  • [47] Palma, V., Ciambelli, P., & Meloni, E. (2013). Catalyst load optimization for microwave susceptible catalysed DPF. CHEMICAL ENGINEERING, 32.
  • [48] He, C., Li, J., Ma, Z., Tan, J., & Zhao, L. (2015). High NO2/NOx emissions downstream of the catalytic diesel particulate filter: An influencing factor study. Journal of Environmental Sciences, 35, 55-61.
  • [49] Ramdas, R., Nowicka, E., Jenkins, R., Sellick, D., Davies, C., & Golunski, S. (2015). Using real particulate matter to evaluate combustion catalysts for direct regeneration of diesel soot filters. Applied Catalysis B: Environmental, 176, 436-443.
  • [50] Palma, V., & Meloni, E. (2016). Microwave assisted regeneration of a catalytic diesel soot trap. Fuel, 181, 421-429.
  • [51] Corro, G., Pal, U., Ayala, E., & Vidal, E. (2013). Diesel soot oxidation over silver-loaded SiO2 catalysts. Catalysis today, 212, 63-69.
  • [52] Bai, S., Chen, G., Sun, Q., Wang, G., & Li, G. X. (2017). Influence of active control strategies on exhaust thermal management for diesel particular filter active regeneration. Applied Thermal Engineering, 119, 297-303.
  • [53] Jiaqiang, E., Xie, L., Zuo, Q., & Zhang, G. (2016). Effect analysis on regeneration speed of continuous regeneration-diesel particulate filter based on NO2-assisted regeneration. Atmospheric Pollution Research, 7(1), 9-17.
  • [54] Rodríguez-Fernández, J., Hernández, J. J., & Sánchez-Valdepeñas, J. (2016). Effect of oxygenated and paraffinic alternative diesel fuels on soot reactivity and implications on DPF regeneration. Fuel, 185, 460-467.
  • [55] Dawei, Q., Jun, L., & Yu, L. (2017). Research on particulate filter simulation and regeneration control strategy. Mechanical Systems and Signal Processing, 87, 214-226.
  • [56] Di Sarli, V., & Di Benedetto, A. (2015). Modeling and simulation of soot combustion dynamics in a catalytic diesel particulate filter. Chemical Engineering Science, 137, 69-78.
  • [57] Bermúdez, V., Serrano, J. R., Piqueras, P., & García-Afonso, O. (2015). Pre-DPF water injection technique for pressure drop control in loaded wall-flow diesel particulate filters. Applied Energy, 140, 234-245.
  • [58] V. Palma, E. Meloni, M. Caldera, D. Lipari, V. Pignatelli, and V. Gerardi (2016), “Catalytic wall flow filters for soot abatement from biomass boilers,” Chemical Engineering. Transactions, vol. 50, pp. 253–258.
  • [59] Lupše, J., Campolo, M., & Soldati, A. (2016). Modelling soot deposition and monolith regeneration for optimal design of automotive DPFs. Chemical Engineering Science, 151, 36-50.
  • [60] Ranji-Burachaloo, H., Masoomi-Godarzi, S., Khodadadi, A. A., & Mortazavi, Y. (2016). Synergetic effects of plasma and metal oxide catalysts on diesel soot oxidation. Applied Catalysis B: Environmental, 182, 74-84.
  • [61] Tuler, F. E., Portela, R., Ávila, P., Bortolozzi, J. P., Miró, E. E., & Milt, V. G. (2016). Development of sepiolite/SiC porous catalytic filters for diesel soot abatement. Microporous and Mesoporous Materials, 230, 11-19.
  • [62] Kim, H. J., Han, B., Hong, W. S., Shin, W. H., Cho, G. B., Lee, Y. K., & Kim, Y. J. (2010). Development of electrostatic diesel particulate matter filtration systems combined with a metallic flow-through filter and electrostatic methods. International Journal of Automotive Technology, 11(4), 447-453.
  • [63] Graupner, K., Binner, J., Fox, N., Garner, C. P., Harry, J. E., Hoare, D., ... & Williams, A. M. (2013). Pulsed Discharge Regeneration of Diesel Particulate Filters. Plasma Chemistry and Plasma Processing, 33(2), 467-477.
  • [64] Palma, V., Ciambelli, P., Meloni, E., & Sin, A. (2013). Study of the catalyst load for a microwave susceptible catalytic DPF. Catalysis today, 216, 185-193.
  • [65] V. Palma and E. Meloni (2016), “Microwave susceptible catalytic diesel particulate filter,” Chemical Engineering Transaction, vol. 52, pp. 445–450.
  • [66] Terada, M., Kawamura, K., Kagomiya, I., Kakimoto, K. I., & Ohsato, H. (2007). Effect of Ni substitution on the microwave dielectric properties of cordierite. Journal of the European Ceramic Society, 27(8-9), 3045-3048.
  • [67] Liu, Y., Luo, F., Su, J., Zhou, W., & Zhu, D. (2015). Dielectric and microwave absorption properties of Ti3SiC2/cordierite composite ceramics oxidized at high temperature. Journal of Alloys and Compounds, 632, 623-628.
  • [68] Hauck, H. S. (1970). Design considerations for microwave oven cavities. IEEE Transactions on Industry and General Applications, (1), 74-80.
  • [69] Feulner, M., Seufert, F., Müller, A., Hagen, G., & Moos, R. (2017). Influencing Parameters on the Microwave-Based Soot Load Determination of Diesel Particulate Filters. Topics in Catalysis, 60(3-5), 374-380.
  • [70] Zhang, B., Jiaqiang, E., Gong, J., Yuan, W., Zuo, W., Li, Y., & Fu, J. (2016). Multidisciplinary design optimization of the diesel particulate filter in the composite regeneration process. Applied energy, 181, 14-28.

REVIEW ON POST-TREATMENT EMISSION CONTROL TECHNIQUE BY APPLICATION OF DIESEL OXIDATION CATALYSIS AND DIESEL PARTICULATE FILTRATION

Year 2019, Volume: 5 Issue: 2 - Issue Name: Special Issue 9: International Conference on Mechanical Engineering 2017, Istanbul, Turkey, 108 - 118, 29.01.2019
https://doi.org/10.18186/thermal.532252

Abstract

The toxic nature of exhaust gases released by these engines has led
to environmental concerns, affecting its sustainability. The exhaust emission
from diesel engine includes carbon monoxide, nitrates, hydrocarbons and
particulate matter. Soot particles contained in the particulate matter is also
found to be carcinogenic in nature and also leads to various lung diseases.
Diesel oxidation catalysis system involves oxidation of hydrocarbons, nitrates
and soluble organic fraction. Diesel particulate filtration blocks the soot
particles with the help of alternately plugged diesel particulate filter with
porous walls. The regeneration of accumulated soot is one of the major
challenges faced by automotive industries for effective implementation of
diesel particulate filtration system. A detailed review on the challenges faced
in the implementation of emission control techniques has been carried out in
this study and  it has been explored from
the results of literature study that microwave based regeneration technique
would be an effective technique. This paper provides a platform for
understanding the working principle of post treatment emission control
techniques and also on the role of regeneration in effective operation of
Diesel Particulate Filter.

References

  • [1] Yang, K., Fox, J. T., & Hunsicker, R. (2016). Characterizing diesel particulate filter failure during commercial fleet use due to pinholes, melting, cracking, and fouling. Emission Control Science and Technology, 2(3), 145-155.
  • [2] Shankar, S., Astagi, H. V., Hotti, S. R., Hebbal, O., Dixit, M., Kaushik, S. C., ..& Sharifishourabi, M. (2016). Effect of Exhaust Gas Recirculation (EGR) on Performance, Emissions and Combustion Characteristics of a Low Heat Rejection (LHR) Diesel Engine Using Pongamia Biodiesel. Journal Of Thermal Engineering, 2(6), 1007-1016.
  • [3] Liati, A., Schreiber, D., Dimopoulos Eggenschwiler, P., & Arroyo Rojas Dasilva, Y. (2013). Metal particle emissions in the exhaust stream of diesel engines: an electron microscope study. Environmental science & technology, 47(24), 14495-14501.
  • [4] McClellan, R. O., Hesterberg, T. W., & Wall, J. C. (2012). Evaluation of carcinogenic hazard of diesel engine exhaust needs to consider revolutionary changes in diesel technology. Regulatory Toxicology and Pharmacology, 63(2), 225-258.
  • [5] C. Kurien and A. K. Srivastava (2017), “Investigation on power aspects in impressed current cathodic protection system,” Journal of Corrosion Science and Engineering, vol. 20.
  • [6] Porpatham, E., Ramesh, A., & Nagalingam, B. (2007). Effect of hydrogen addition on the performance of a biogas fuelled spark ignition engine. International Journal of Hydrogen Energy, 32(12), 2057-2065.
  • [7] Sindhu, R., Rao, G. A. P., & Murthy, K. M. (2017). Effective reduction of NOx emissions from diesel engine using split injections. Alexandria Engineering Journal.
  • [8] Guan, C., Li, X., Liao, B., & Huang, Z. (2016). Effects of fuel injection strategies on emissions characteristics of a diesel engine equipped with a particle oxidation catalyst (POC). Journal of Environmental Chemical Engineering, 4(4), 4822-4829.
  • [9] Pandey, S., Diwan, P., Sahoo, P. K., & Thipse, S. S. (2018). A review of combustion control strategies in diesel HCCI engines. Biofuels, 9(1), 61-74.
  • [10] Chintala, V., Kumar, S., & Pandey, J. K. (2018). A technical review on waste heat recovery from compression ignition engines using organic Rankine cycle. Renewable and Sustainable Energy Reviews, 81, 493-509.
  • [11] Hotti, S., & Hebbal, O. (2015). Biodiesel production and fuel properties from non-edible Champaca (Michelia champaca) seed oil for use in diesel engine. Journal of Thermal Engineering, 1(1), 330-336.
  • [12] Zhang, Z. H., Chua, S. M., & Balasubramanian, R. (2016). Comparative evaluation of the effect of butanol–diesel and pentanol–diesel blends on carbonaceous particulate composition and particle number emissions from a diesel engine. Fuel, 176, 40-47.
  • [13] Wang, D., Liu, Z. C., Tian, J., Liu, J. W., & Zhang, J. R. (2012). Investigation of particle emission characteristics from a diesel engine with a diesel particulate filter for alternative fuels. International Journal of Automotive Technology, 13(7), 1023-1032.
  • [14] Caliskan, H., & Mori, K. (2017). Environmental, enviroeconomic and enhanced thermodynamic analyses of a diesel engine with diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) after treatment systems. Energy, 128, 128-144.
  • [15] Kurien C., Srivastava A.K. (2018) Active Regeneration of Diesel Particulate Filter Using Microwave Energy for Exhaust Emission Control. In: Singh R., Choudhury S., Gehlot A. (eds) Intelligent Communication, Control and Devices. Advances in Intelligent Systems and Computing, vol 624. Springer, Singapore.
  • [16] Carrillo, C., DeLaRiva, A., Xiong, H., Peterson, E. J., Spilde, M. N., Kunwar, D., ... & Challa, S. R. (2017). Regenerative trapping: How Pd improves the durability of Pt diesel oxidation catalysts. Applied Catalysis B: Environmental, 218, 581-590.
  • [17] Taibani, A. Z., & Kalamkar, V. (2012). Experimental and computational analysis of behavior of three-way catalytic converter under axial and radial flow conditions. International Journal of Fluid Machinery and Systems, 5(3), 134-142.
  • [18] Zheng, M., & Banerjee, S. (2009). Diesel oxidation catalyst and particulate filter modeling in active–flow configurations. Applied Thermal Engineering, 29(14-15), 3021-3035.
  • [19] Huang, H., Jiang, B., Gu, L., Qi, Z., & Lu, H. (2015). Promoting effect of vanadium on catalytic activity of Pt/Ce–Zr–O diesel oxidation catalysts. Journal of Environmental Sciences, 33, 135-142.
  • [20] Azis, M. M., Auvray, X., Olsson, L., & Creaser, D. (2015). Evaluation of H2 effect on NO oxidation over a diesel oxidation catalyst. Applied Catalysis B: Environmental, 179, 542-550.
  • [21] Jiao, P., Li, Z., Shen, B., Zhang, W., Kong, X., & Jiang, R. (2017). Research of DPF regeneration with NOx-PM coupled chemical reaction. Applied Thermal Engineering, 110, 737-745.
  • [22] Yoon, C. S., & Cho, G. B. (2009). Study of Design & CFD Analysis for Partial DPF Utilizing Metal Foam. Transactions of the Korean Society of Automotive Engineers, 17(1), 24-34.
  • [23] K. Abay and U. Colak (2018), “Computational Fluid Dynamics Analysis of Flow and Combustion,” Journal of Thermal Engineering, vol. 4, no. 2, pp 1878-1895.
  • [24] Fornarelli, F., Camporeale, S., Dadduzio, R., Fortunato, B., & Torresi, M. (2015). Numerical simulation of the flow field and chemical reactions within a NSC diesel catalyst. Energy Procedia, 82, 381-388.
  • [25] D. Khan and Z. Gul (2017), “Performance Map Measurement, Zero-Dimensional Modelling & Vibration Analysis of A Single Cylinder Diesel Engine,” Journal of Thermal Engineering, vol. 3, no. 4, pp. 1391–1410, 2017.
  • [26] Arthanareeswaren, G., & Varadarajan, K. N. (2015). CFD study on pressure drop and uniformity index of three cylinder LCV exhaust system. Procedia Engineering, 127, 1211-1218.
  • [28] Lee, G. W., Yoon, K., Chun, B., & Jung, H. W. (2018). Lattice Boltzmann simulations for wall-flow dynamics in porous ceramic diesel particulate filters. Applied Surface Science, 429, 72-80.
  • [29] Lapuerta, M., Rodríguez-Fernández, J., & Oliva, F. (2012). Effect of soot accumulation in a diesel particle filter on the combustion process and gaseous emissions. Energy, 47(1), 543-552.
  • [30] Feng, X., Ge, Y., Ma, C., Tan, J., Yu, L., Li, J., & Wang, X. (2014). Experimental study on the nitrogen dioxide and particulate matter emissions from diesel engine retrofitted with particulate oxidation catalyst. Science of the Total Environment, 472, 56-62.
  • [31] Louis, C., Liu, Y., Martinet, S., D'Anna, B., Valiente, A. M., Boreave & André, M. (2017). Dilution effects on ultrafine particle emissions from Euro 5 and Euro 6 diesel and gasoline vehicles. Atmospheric Environment, 169, 80-88.
  • [32] Dittler, A. (2017). The Application of Diesel Particle Filters—From Past to Present and Beyond. Topics in Catalysis, 60(3-5), 342-347.
  • [33] H. Hardenberg (1987), “Urban Bus Application of a Ceramic Fiber Coil Particulate Trap,” SAE Technical Paper, no. 870011, p. 12.
  • [34] D. H. and E. H. Hardenberg H (1987), “Particulate Trap Regeneration Induced by Means of Oxidizing Agents injected Into the Exhaust Gas,” SAE Technical Paper, no. 870016, p. 16.
  • [35] Suarez-Bertoa, R., & Astorga, C. (2018). Impact of cold temperature on Euro 6 passenger car emissions. Environmental Pollution, 234, 318-329.
  • [36] Millo, F., Rafigh, M., Andreata, M., Vlachos, T., Arya, P., & Miceli, P. (2017). Impact of high sulfur fuel and de-sulfation process on a close-coupled diesel oxidation catalyst and diesel particulate filter. Fuel, 198, 58-67.
  • [37] Kang, W., Choi, B., Jung, S., & Park, S. (2018). PM and NOx reduction characteristics of LNT/DPF+ SCR/DPF hybrid system. Energy, 143, 439-447.
  • [38] Bollerhoff, T., Markomanolakis, I., & Koltsakis, G. (2012). Filtration and regeneration modeling for particulate filters with inhomogeneous wall structure. Catalysis today, 188(1), 24-31.
  • [39] Bensaid, S., Marchisio, D. L., & Fino, D. (2010). Numerical simulation of soot filtration and combustion within diesel particulate filters. Chemical Engineering Science, 65(1), 357-363.
  • [40] Zhao, H., Ge, Y., Zhang, T., Zhang, J., Tan, J., & Zhang, H. (2014). Unregulated emissions from diesel engine with particulate filter using Fe-based fuel borne catalyst. Journal of Environmental Sciences, 26(10), 2027-2033.
  • [41] Palma, V., Ciambelli, P., Meloni, E., & Sin, A. (2015). Catalytic DPF microwave assisted active regeneration. Fuel, 140, 50-61.
  • [42] Stępień, Z., Ziemiański, L., Żak, G., Wojtasik, M., Jęczmionek, Ł., & Burnus, Z. (2015). The evaluation of fuel borne catalyst (FBC’s) for DPF regeneration. Fuel, 161, 278-286.
  • [43] P. Salvat, O. Marez and G. and Belot (2000), “Passenger Car Serial Application of a Particulate Filter System on a Common Rail Direct Injection Diesel Engine,” SAE Technical Paper, no. 2000-01–0473, p. 15.
  • [44] Pérez, V. R., & Bueno-López, A. (2015). Catalytic regeneration of diesel particulate filters: comparison of Pt and CePr active phases. Chemical Engineering Journal, 279, 79-85.
  • [45] Yamazaki, K., Sakakibara, Y., Daido, S., & Okawara, S. (2016). Particulate matter oxidation over ash-deposited catalyzed diesel particulate filters. Topics in Catalysis, 59(10-12), 1076-1082.
  • [46 Corro, G., Cebada, S., Pal, U., Fierro, J. L. G., & Alvarado, J. (2015). Hydrogen-reduced Cu/ZnO composite as efficient reusable catalyst for diesel particulate matter oxidation. Applied Catalysis B: Environmental, 165, 555-565.
  • [47] Palma, V., Ciambelli, P., & Meloni, E. (2013). Catalyst load optimization for microwave susceptible catalysed DPF. CHEMICAL ENGINEERING, 32.
  • [48] He, C., Li, J., Ma, Z., Tan, J., & Zhao, L. (2015). High NO2/NOx emissions downstream of the catalytic diesel particulate filter: An influencing factor study. Journal of Environmental Sciences, 35, 55-61.
  • [49] Ramdas, R., Nowicka, E., Jenkins, R., Sellick, D., Davies, C., & Golunski, S. (2015). Using real particulate matter to evaluate combustion catalysts for direct regeneration of diesel soot filters. Applied Catalysis B: Environmental, 176, 436-443.
  • [50] Palma, V., & Meloni, E. (2016). Microwave assisted regeneration of a catalytic diesel soot trap. Fuel, 181, 421-429.
  • [51] Corro, G., Pal, U., Ayala, E., & Vidal, E. (2013). Diesel soot oxidation over silver-loaded SiO2 catalysts. Catalysis today, 212, 63-69.
  • [52] Bai, S., Chen, G., Sun, Q., Wang, G., & Li, G. X. (2017). Influence of active control strategies on exhaust thermal management for diesel particular filter active regeneration. Applied Thermal Engineering, 119, 297-303.
  • [53] Jiaqiang, E., Xie, L., Zuo, Q., & Zhang, G. (2016). Effect analysis on regeneration speed of continuous regeneration-diesel particulate filter based on NO2-assisted regeneration. Atmospheric Pollution Research, 7(1), 9-17.
  • [54] Rodríguez-Fernández, J., Hernández, J. J., & Sánchez-Valdepeñas, J. (2016). Effect of oxygenated and paraffinic alternative diesel fuels on soot reactivity and implications on DPF regeneration. Fuel, 185, 460-467.
  • [55] Dawei, Q., Jun, L., & Yu, L. (2017). Research on particulate filter simulation and regeneration control strategy. Mechanical Systems and Signal Processing, 87, 214-226.
  • [56] Di Sarli, V., & Di Benedetto, A. (2015). Modeling and simulation of soot combustion dynamics in a catalytic diesel particulate filter. Chemical Engineering Science, 137, 69-78.
  • [57] Bermúdez, V., Serrano, J. R., Piqueras, P., & García-Afonso, O. (2015). Pre-DPF water injection technique for pressure drop control in loaded wall-flow diesel particulate filters. Applied Energy, 140, 234-245.
  • [58] V. Palma, E. Meloni, M. Caldera, D. Lipari, V. Pignatelli, and V. Gerardi (2016), “Catalytic wall flow filters for soot abatement from biomass boilers,” Chemical Engineering. Transactions, vol. 50, pp. 253–258.
  • [59] Lupše, J., Campolo, M., & Soldati, A. (2016). Modelling soot deposition and monolith regeneration for optimal design of automotive DPFs. Chemical Engineering Science, 151, 36-50.
  • [60] Ranji-Burachaloo, H., Masoomi-Godarzi, S., Khodadadi, A. A., & Mortazavi, Y. (2016). Synergetic effects of plasma and metal oxide catalysts on diesel soot oxidation. Applied Catalysis B: Environmental, 182, 74-84.
  • [61] Tuler, F. E., Portela, R., Ávila, P., Bortolozzi, J. P., Miró, E. E., & Milt, V. G. (2016). Development of sepiolite/SiC porous catalytic filters for diesel soot abatement. Microporous and Mesoporous Materials, 230, 11-19.
  • [62] Kim, H. J., Han, B., Hong, W. S., Shin, W. H., Cho, G. B., Lee, Y. K., & Kim, Y. J. (2010). Development of electrostatic diesel particulate matter filtration systems combined with a metallic flow-through filter and electrostatic methods. International Journal of Automotive Technology, 11(4), 447-453.
  • [63] Graupner, K., Binner, J., Fox, N., Garner, C. P., Harry, J. E., Hoare, D., ... & Williams, A. M. (2013). Pulsed Discharge Regeneration of Diesel Particulate Filters. Plasma Chemistry and Plasma Processing, 33(2), 467-477.
  • [64] Palma, V., Ciambelli, P., Meloni, E., & Sin, A. (2013). Study of the catalyst load for a microwave susceptible catalytic DPF. Catalysis today, 216, 185-193.
  • [65] V. Palma and E. Meloni (2016), “Microwave susceptible catalytic diesel particulate filter,” Chemical Engineering Transaction, vol. 52, pp. 445–450.
  • [66] Terada, M., Kawamura, K., Kagomiya, I., Kakimoto, K. I., & Ohsato, H. (2007). Effect of Ni substitution on the microwave dielectric properties of cordierite. Journal of the European Ceramic Society, 27(8-9), 3045-3048.
  • [67] Liu, Y., Luo, F., Su, J., Zhou, W., & Zhu, D. (2015). Dielectric and microwave absorption properties of Ti3SiC2/cordierite composite ceramics oxidized at high temperature. Journal of Alloys and Compounds, 632, 623-628.
  • [68] Hauck, H. S. (1970). Design considerations for microwave oven cavities. IEEE Transactions on Industry and General Applications, (1), 74-80.
  • [69] Feulner, M., Seufert, F., Müller, A., Hagen, G., & Moos, R. (2017). Influencing Parameters on the Microwave-Based Soot Load Determination of Diesel Particulate Filters. Topics in Catalysis, 60(3-5), 374-380.
  • [70] Zhang, B., Jiaqiang, E., Gong, J., Yuan, W., Zuo, W., Li, Y., & Fu, J. (2016). Multidisciplinary design optimization of the diesel particulate filter in the composite regeneration process. Applied energy, 181, 14-28.
There are 69 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Caneon Kurien This is me

Publication Date January 29, 2019
Submission Date March 7, 2018
Published in Issue Year 2019 Volume: 5 Issue: 2 - Issue Name: Special Issue 9: International Conference on Mechanical Engineering 2017, Istanbul, Turkey

Cite

APA Kurien, C. (2019). REVIEW ON POST-TREATMENT EMISSION CONTROL TECHNIQUE BY APPLICATION OF DIESEL OXIDATION CATALYSIS AND DIESEL PARTICULATE FILTRATION. Journal of Thermal Engineering, 5(2), 108-118. https://doi.org/10.18186/thermal.532252
AMA Kurien C. REVIEW ON POST-TREATMENT EMISSION CONTROL TECHNIQUE BY APPLICATION OF DIESEL OXIDATION CATALYSIS AND DIESEL PARTICULATE FILTRATION. Journal of Thermal Engineering. January 2019;5(2):108-118. doi:10.18186/thermal.532252
Chicago Kurien, Caneon. “REVIEW ON POST-TREATMENT EMISSION CONTROL TECHNIQUE BY APPLICATION OF DIESEL OXIDATION CATALYSIS AND DIESEL PARTICULATE FILTRATION”. Journal of Thermal Engineering 5, no. 2 (January 2019): 108-18. https://doi.org/10.18186/thermal.532252.
EndNote Kurien C (January 1, 2019) REVIEW ON POST-TREATMENT EMISSION CONTROL TECHNIQUE BY APPLICATION OF DIESEL OXIDATION CATALYSIS AND DIESEL PARTICULATE FILTRATION. Journal of Thermal Engineering 5 2 108–118.
IEEE C. Kurien, “REVIEW ON POST-TREATMENT EMISSION CONTROL TECHNIQUE BY APPLICATION OF DIESEL OXIDATION CATALYSIS AND DIESEL PARTICULATE FILTRATION”, Journal of Thermal Engineering, vol. 5, no. 2, pp. 108–118, 2019, doi: 10.18186/thermal.532252.
ISNAD Kurien, Caneon. “REVIEW ON POST-TREATMENT EMISSION CONTROL TECHNIQUE BY APPLICATION OF DIESEL OXIDATION CATALYSIS AND DIESEL PARTICULATE FILTRATION”. Journal of Thermal Engineering 5/2 (January 2019), 108-118. https://doi.org/10.18186/thermal.532252.
JAMA Kurien C. REVIEW ON POST-TREATMENT EMISSION CONTROL TECHNIQUE BY APPLICATION OF DIESEL OXIDATION CATALYSIS AND DIESEL PARTICULATE FILTRATION. Journal of Thermal Engineering. 2019;5:108–118.
MLA Kurien, Caneon. “REVIEW ON POST-TREATMENT EMISSION CONTROL TECHNIQUE BY APPLICATION OF DIESEL OXIDATION CATALYSIS AND DIESEL PARTICULATE FILTRATION”. Journal of Thermal Engineering, vol. 5, no. 2, 2019, pp. 108-1, doi:10.18186/thermal.532252.
Vancouver Kurien C. REVIEW ON POST-TREATMENT EMISSION CONTROL TECHNIQUE BY APPLICATION OF DIESEL OXIDATION CATALYSIS AND DIESEL PARTICULATE FILTRATION. Journal of Thermal Engineering. 2019;5(2):108-1.

Cited By


Study on estimation method of soot loading under dynamic working state
Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering
https://doi.org/10.1177/09544070231179859













IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering