Research Article
BibTex RIS Cite
Year 2020, Volume: 6 Issue: 4, 460 - 473, 01.07.2020
https://doi.org/10.18186/thermal.764153

Abstract

References

  • [1] Hurley MJ, Gottuk DT, Hall Jr. JR, Harada K, Kuligowski ED, Puchovsky M, Torero JL, Watts Jr. JM, Wieczorek CJ, SFPE handbook of fire protection engineering. 5th ed. New York: Springer-Verlag; 2016.
  • [2] Vende PE, Trinquet F, Lacour S, Delahaye A, Fournaison L. Efficiency of water spraying on a heat exchanger: local characterization with the impacted surface. Appl Therm Eng 2018;12:684-95. https://doi.org/10.1016/j.applthermaleng.2017.09.031.
  • [3] White JP, Verma S, Keller E, Hao A, Trouve A, Marshall AW. Water mist suppression of a turbulent line fire. Fire Saf J 2017;91:705-13. https://doi.org/10.1016/j.firesaf.2017.03.014.
  • [4] Deshmukh AM, Sapali SN. Design, Development and Fabrication of a Mist Spray Direct Evaporative Cooling System and Its Performance Evaluation. J Therm Eng 2019;5(1):42-50. https://doi.org/10.18186/thermal.513053.
  • [5] Yang J, Chan KT, Wu, Yu FW, Yang X. An analysis on the energy efficiency of air-cooled chillers with water mist system. Energy Build 2012;55:273-84. https://doi.org/10.1016/j.enbuild.2012.09.018.
  • [6] Mawhinney JR, Richardson JK. A review of water mist fire suppression research and development. Fire Technol 1997;33:54-90. https://doi.org/10.1177/104239159901000303.
  • [7] Chelliah HK. Flame inhibition/suppression by water mist: droplet size/surface area, flame structure, and flow residence time effects. Proc Combust Inst 2007;31(2):2711-19. https://doi.org/10.1016/j.proci.2006.08.065.
  • [8] Yao B, Chow WK. Numerical modeling for compartment fire environment under a solid-cone water spray. Appl Math Modell 2006;30(12):1571-86. https://doi.org/10.1016/j.apm.2005.08.003.
  • [9] Hua J, Kumar K, Khoo BC, Xue H. A numerical study of the interaction of water spray with a fire plume. Fire Saf J 2002;37(7):631-57. https://doi.org/10.1016/S0379-7112(02)00026-7.
  • [10] Yang P, Liu T, Qin X. Experimental and numerical study on water mist suppression system on room fire. Build Environ 2010; 45(10):2309-16. https://doi.org/10.1016/j.buildenv.2010.04.017.
  • [11] Kim SC, Ryou HS. An experimental and numerical study on fire suppression using water mist in an enclosure. Build Environ 2003; 38(11):1309-16. https://doi.org/10.1016/S0360-1323(03)00134-3.
  • [12] Adiga KC, Hatcher Jr RF, Sheinson RS, Williams FW, Ayers S. A Computational and experimental study of ultra-fine water mist as a total flooding agent. Fire Saf J 2007;42(2):150-60. https://doi.org/10.1016/j.firesaf.2006.08.010.
  • [13] Santangelo PE. Characterization of high-pressure water-mist sprays: Experimental analysis of droplet size and dispersion. Exp Therm Fluid Sci 2010;34(8):1353-66. https://doi.org/10.1016/j.expthermflusci.2010.06.008.
  • [14] Collin A, Boulet P, Parent G, Vetrano MR, Buchlin JM. Dynamics and thermal behavior of water sprays. Int J Therm Sci 2008;47(4):399-07. https://doi.org/10.1016/j.ijthermalsci.2007.04.010.
  • [15] Yoon SG, Kim HY, Hewson JC. Effect of initial condition of modeled PDFs on droplet characteristics for coalescing and evaporating turbulent water spray used in fire suppression applications. Fire Saf J 2007;42(5): 393-06. https://doi.org/10.1016/j.firesaf.2007.01.001.
  • [16] LeFort G, Marshall AW, Pabon M. Evaluation of surfactant enhanced water mist performance. Fire Technol 2009;45:341-54. https://doi.org/10.1007/s10694-008-0068-2.
  • [17] Xiaomeng, Guangxuan L, Bo C. Improvement of water mist’s fire-extinguishing efficiency with MC additive. Fire Saf J 2006;41(1):39-45. https://doi.org/10.1016/j.firesaf.2005.08.004.
  • [18] Yinshui L, Zhuo J, Dan W, Xiaohui L. Experimental research on the water mist fire suppression performance in an enclosed space by changing the characteristics of nozzles. Exp Therm Fluid Sci 2014;52:174-81. https://doi.org/10.1016/j.expthermflusci.2013.09.008.
  • [19] Sherigondekar H, Chowdhury A, Prabhu SV. Characterization of a simplex water mist nozzle and its performance in extinguishing liquid pool fire. Exp Therm Fluid Sci 2018;93:441-55. https://doi.org/10.1016/j.expthermflusci.2018.01.015.
  • [20] Iqbal Mahmud HM, Moinuddin KAM, Thorpe GR. Experimental and numerical study of high-pressure water-mist nozzle sprays. Fire Saf J 2016;81:109-17. https://doi.org/10.1016/j.firesaf.2016.01.015.
  • [21] Silver S, Loth E, Baum J, Löhner R. Eulerian-Eulerian and Eulerian-Lagrangian methods in two phase flow. Proc. 13rd Int. Conf. Numerical Methods in Fluid Dynamics. Lecture Notes in Physics, Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-56394-6_270.
  • [22] Faeth GM. Evaporation and Combustion in Sprays. Prog Energy Combust Sci 1983;9:1-76. https://doi.org/10.1016/0360-1285(83)90005-9.
  • [23] Li YF, Chow WK. Study of water droplet behavior in hot air layer in fire extinguishment. Fire Technol 2008;44:351-81. https://doi.org/10.1007/s10694-007-0036-2.
  • [24] Sazhin SS, Abdelghaffar WA, Sazhina EM, Heikal MR. Models for droplet transient heating: Effects on droplet evaporation, ignition, and break-up. Int J Therm Sci 2005;44(7):610-22. https://doi.org/10.1016/j.ijthermalsci.2005.02.004.
  • [25] Abramzon B, Sirignano WA. Droplet vaporization model for spray combustion calculations. Int J Heat Mass Transfer 1989;32(9):1605-18. https://doi.org/10.1016/0017-9310(89)90043-4.
  • [26] Baumgarten C. Mixture Formation in Internal Combustion Engines. 1st ed. Berlin: Springer-Verlag Berlin Heidelberg; 2006.
  • [27] Jiji LM. Heat Conduction. 2nd ed. New York: Begell House; 2009.
  • [28] Sazhin S, Abdelghaffar WA, Sazhina EM, Mikhalovsky SV, Meikle S, Bai C. Radiative heating of semi-transparent diesel fuel droplets. J Heat Transfer 2004;126(1):105-09. https://doi.org/10.1115/1.1643089.
  • [29] Desjardin PE, Gritzo LA. A dilute spray model for fire simulations: Formation, usage and benchmark problems. Sandia National Laboratories, SAND2002-3419, 2002.
  • [30] Han Z, Parrish SE, Farrell PV, Reitz RD. Modeling atomization processes of pressure swirl hollow cone fuel sprays. At Sprays 1997;7:663-84. https://doi.org/10.1615/AtomizSpr.v7.i6.70.
  • [31] Hsiang LP, Faeth GM. Near-limit drop deformation and secondary breakup. Int J Multiphase Flow 1992;18(5):635-52. https://doi.org/10.1016/0301-9322(92)90036-G.
  • [32] Kukulka DJ, Gebhart B, Mollendorf JC. Thermodynamic and transport properties of pure and saline water. Adv Heat Transfer 1987;18:325-63. https://doi.org/10.1016/S0065-2717(08)70121-7.
  • [33] Kincaid DC, Longley TS. A water droplet evaporation and temperature model. Transactions of the ASAE 1989;32(2): 457-63. https://doi.org/10.13031/2013.31026.
  • [34] Sazhin SS. Advanced Models of Fuel Droplet Heating and Evaporation. Prog Energy Combust Sci 2006;32(2):162-14. https://doi.org/10.1016/j.pecs.2005.11.001.

A SIMULATED STUDY ON THE EFFECT OF WATER TEMPERATURE ON COOLING EFFICIENCY OF WATER MIST FIRE EXTINGUISHERS

Year 2020, Volume: 6 Issue: 4, 460 - 473, 01.07.2020
https://doi.org/10.18186/thermal.764153

Abstract

In this paper, the effect of initial water temperature on the cooling performance of a water mist fire suppression system has been investigated. A zero-dimensional analytical model was first developed to study the thermal and dynamic behavior of a single water droplet. The developed model was validated against available experimental data in the literature. The developed model was further extended to simulate the transient heating, evaporation, break-up, and liquid penetration length of a hollow-cone water spray. Results indicated that increasing the initial temperature of the water spray before injection resulted in a decrease in the initial size distribution of the spray droplets. It was further found that the evaporation time of the injected droplets decreased by about 11% and the cooling power of the pre-heated water mist system enhanced by 12% in exchange for increasing the initial temperature of the water spray by 10˚C. It was concluded that pre-heating the sprayed water droplets would likely improve the cooling efficiency of the water mist system. It could be also inferred that at equal cooling power, less water was consumed by the pre-heated spray compared to conventional water mist systems.

References

  • [1] Hurley MJ, Gottuk DT, Hall Jr. JR, Harada K, Kuligowski ED, Puchovsky M, Torero JL, Watts Jr. JM, Wieczorek CJ, SFPE handbook of fire protection engineering. 5th ed. New York: Springer-Verlag; 2016.
  • [2] Vende PE, Trinquet F, Lacour S, Delahaye A, Fournaison L. Efficiency of water spraying on a heat exchanger: local characterization with the impacted surface. Appl Therm Eng 2018;12:684-95. https://doi.org/10.1016/j.applthermaleng.2017.09.031.
  • [3] White JP, Verma S, Keller E, Hao A, Trouve A, Marshall AW. Water mist suppression of a turbulent line fire. Fire Saf J 2017;91:705-13. https://doi.org/10.1016/j.firesaf.2017.03.014.
  • [4] Deshmukh AM, Sapali SN. Design, Development and Fabrication of a Mist Spray Direct Evaporative Cooling System and Its Performance Evaluation. J Therm Eng 2019;5(1):42-50. https://doi.org/10.18186/thermal.513053.
  • [5] Yang J, Chan KT, Wu, Yu FW, Yang X. An analysis on the energy efficiency of air-cooled chillers with water mist system. Energy Build 2012;55:273-84. https://doi.org/10.1016/j.enbuild.2012.09.018.
  • [6] Mawhinney JR, Richardson JK. A review of water mist fire suppression research and development. Fire Technol 1997;33:54-90. https://doi.org/10.1177/104239159901000303.
  • [7] Chelliah HK. Flame inhibition/suppression by water mist: droplet size/surface area, flame structure, and flow residence time effects. Proc Combust Inst 2007;31(2):2711-19. https://doi.org/10.1016/j.proci.2006.08.065.
  • [8] Yao B, Chow WK. Numerical modeling for compartment fire environment under a solid-cone water spray. Appl Math Modell 2006;30(12):1571-86. https://doi.org/10.1016/j.apm.2005.08.003.
  • [9] Hua J, Kumar K, Khoo BC, Xue H. A numerical study of the interaction of water spray with a fire plume. Fire Saf J 2002;37(7):631-57. https://doi.org/10.1016/S0379-7112(02)00026-7.
  • [10] Yang P, Liu T, Qin X. Experimental and numerical study on water mist suppression system on room fire. Build Environ 2010; 45(10):2309-16. https://doi.org/10.1016/j.buildenv.2010.04.017.
  • [11] Kim SC, Ryou HS. An experimental and numerical study on fire suppression using water mist in an enclosure. Build Environ 2003; 38(11):1309-16. https://doi.org/10.1016/S0360-1323(03)00134-3.
  • [12] Adiga KC, Hatcher Jr RF, Sheinson RS, Williams FW, Ayers S. A Computational and experimental study of ultra-fine water mist as a total flooding agent. Fire Saf J 2007;42(2):150-60. https://doi.org/10.1016/j.firesaf.2006.08.010.
  • [13] Santangelo PE. Characterization of high-pressure water-mist sprays: Experimental analysis of droplet size and dispersion. Exp Therm Fluid Sci 2010;34(8):1353-66. https://doi.org/10.1016/j.expthermflusci.2010.06.008.
  • [14] Collin A, Boulet P, Parent G, Vetrano MR, Buchlin JM. Dynamics and thermal behavior of water sprays. Int J Therm Sci 2008;47(4):399-07. https://doi.org/10.1016/j.ijthermalsci.2007.04.010.
  • [15] Yoon SG, Kim HY, Hewson JC. Effect of initial condition of modeled PDFs on droplet characteristics for coalescing and evaporating turbulent water spray used in fire suppression applications. Fire Saf J 2007;42(5): 393-06. https://doi.org/10.1016/j.firesaf.2007.01.001.
  • [16] LeFort G, Marshall AW, Pabon M. Evaluation of surfactant enhanced water mist performance. Fire Technol 2009;45:341-54. https://doi.org/10.1007/s10694-008-0068-2.
  • [17] Xiaomeng, Guangxuan L, Bo C. Improvement of water mist’s fire-extinguishing efficiency with MC additive. Fire Saf J 2006;41(1):39-45. https://doi.org/10.1016/j.firesaf.2005.08.004.
  • [18] Yinshui L, Zhuo J, Dan W, Xiaohui L. Experimental research on the water mist fire suppression performance in an enclosed space by changing the characteristics of nozzles. Exp Therm Fluid Sci 2014;52:174-81. https://doi.org/10.1016/j.expthermflusci.2013.09.008.
  • [19] Sherigondekar H, Chowdhury A, Prabhu SV. Characterization of a simplex water mist nozzle and its performance in extinguishing liquid pool fire. Exp Therm Fluid Sci 2018;93:441-55. https://doi.org/10.1016/j.expthermflusci.2018.01.015.
  • [20] Iqbal Mahmud HM, Moinuddin KAM, Thorpe GR. Experimental and numerical study of high-pressure water-mist nozzle sprays. Fire Saf J 2016;81:109-17. https://doi.org/10.1016/j.firesaf.2016.01.015.
  • [21] Silver S, Loth E, Baum J, Löhner R. Eulerian-Eulerian and Eulerian-Lagrangian methods in two phase flow. Proc. 13rd Int. Conf. Numerical Methods in Fluid Dynamics. Lecture Notes in Physics, Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-56394-6_270.
  • [22] Faeth GM. Evaporation and Combustion in Sprays. Prog Energy Combust Sci 1983;9:1-76. https://doi.org/10.1016/0360-1285(83)90005-9.
  • [23] Li YF, Chow WK. Study of water droplet behavior in hot air layer in fire extinguishment. Fire Technol 2008;44:351-81. https://doi.org/10.1007/s10694-007-0036-2.
  • [24] Sazhin SS, Abdelghaffar WA, Sazhina EM, Heikal MR. Models for droplet transient heating: Effects on droplet evaporation, ignition, and break-up. Int J Therm Sci 2005;44(7):610-22. https://doi.org/10.1016/j.ijthermalsci.2005.02.004.
  • [25] Abramzon B, Sirignano WA. Droplet vaporization model for spray combustion calculations. Int J Heat Mass Transfer 1989;32(9):1605-18. https://doi.org/10.1016/0017-9310(89)90043-4.
  • [26] Baumgarten C. Mixture Formation in Internal Combustion Engines. 1st ed. Berlin: Springer-Verlag Berlin Heidelberg; 2006.
  • [27] Jiji LM. Heat Conduction. 2nd ed. New York: Begell House; 2009.
  • [28] Sazhin S, Abdelghaffar WA, Sazhina EM, Mikhalovsky SV, Meikle S, Bai C. Radiative heating of semi-transparent diesel fuel droplets. J Heat Transfer 2004;126(1):105-09. https://doi.org/10.1115/1.1643089.
  • [29] Desjardin PE, Gritzo LA. A dilute spray model for fire simulations: Formation, usage and benchmark problems. Sandia National Laboratories, SAND2002-3419, 2002.
  • [30] Han Z, Parrish SE, Farrell PV, Reitz RD. Modeling atomization processes of pressure swirl hollow cone fuel sprays. At Sprays 1997;7:663-84. https://doi.org/10.1615/AtomizSpr.v7.i6.70.
  • [31] Hsiang LP, Faeth GM. Near-limit drop deformation and secondary breakup. Int J Multiphase Flow 1992;18(5):635-52. https://doi.org/10.1016/0301-9322(92)90036-G.
  • [32] Kukulka DJ, Gebhart B, Mollendorf JC. Thermodynamic and transport properties of pure and saline water. Adv Heat Transfer 1987;18:325-63. https://doi.org/10.1016/S0065-2717(08)70121-7.
  • [33] Kincaid DC, Longley TS. A water droplet evaporation and temperature model. Transactions of the ASAE 1989;32(2): 457-63. https://doi.org/10.13031/2013.31026.
  • [34] Sazhin SS. Advanced Models of Fuel Droplet Heating and Evaporation. Prog Energy Combust Sci 2006;32(2):162-14. https://doi.org/10.1016/j.pecs.2005.11.001.
There are 34 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Amir Omidvar This is me 0000-0003-1578-5093

Amirhossein Mahdavi This is me 0000-0003-1744-9253

Reza Mehryar This is me 0000-0002-1421-7134

Publication Date July 1, 2020
Submission Date January 9, 2020
Published in Issue Year 2020 Volume: 6 Issue: 4

Cite

APA Omidvar, A., Mahdavi, A., & Mehryar, R. (2020). A SIMULATED STUDY ON THE EFFECT OF WATER TEMPERATURE ON COOLING EFFICIENCY OF WATER MIST FIRE EXTINGUISHERS. Journal of Thermal Engineering, 6(4), 460-473. https://doi.org/10.18186/thermal.764153
AMA Omidvar A, Mahdavi A, Mehryar R. A SIMULATED STUDY ON THE EFFECT OF WATER TEMPERATURE ON COOLING EFFICIENCY OF WATER MIST FIRE EXTINGUISHERS. Journal of Thermal Engineering. July 2020;6(4):460-473. doi:10.18186/thermal.764153
Chicago Omidvar, Amir, Amirhossein Mahdavi, and Reza Mehryar. “A SIMULATED STUDY ON THE EFFECT OF WATER TEMPERATURE ON COOLING EFFICIENCY OF WATER MIST FIRE EXTINGUISHERS”. Journal of Thermal Engineering 6, no. 4 (July 2020): 460-73. https://doi.org/10.18186/thermal.764153.
EndNote Omidvar A, Mahdavi A, Mehryar R (July 1, 2020) A SIMULATED STUDY ON THE EFFECT OF WATER TEMPERATURE ON COOLING EFFICIENCY OF WATER MIST FIRE EXTINGUISHERS. Journal of Thermal Engineering 6 4 460–473.
IEEE A. Omidvar, A. Mahdavi, and R. Mehryar, “A SIMULATED STUDY ON THE EFFECT OF WATER TEMPERATURE ON COOLING EFFICIENCY OF WATER MIST FIRE EXTINGUISHERS”, Journal of Thermal Engineering, vol. 6, no. 4, pp. 460–473, 2020, doi: 10.18186/thermal.764153.
ISNAD Omidvar, Amir et al. “A SIMULATED STUDY ON THE EFFECT OF WATER TEMPERATURE ON COOLING EFFICIENCY OF WATER MIST FIRE EXTINGUISHERS”. Journal of Thermal Engineering 6/4 (July 2020), 460-473. https://doi.org/10.18186/thermal.764153.
JAMA Omidvar A, Mahdavi A, Mehryar R. A SIMULATED STUDY ON THE EFFECT OF WATER TEMPERATURE ON COOLING EFFICIENCY OF WATER MIST FIRE EXTINGUISHERS. Journal of Thermal Engineering. 2020;6:460–473.
MLA Omidvar, Amir et al. “A SIMULATED STUDY ON THE EFFECT OF WATER TEMPERATURE ON COOLING EFFICIENCY OF WATER MIST FIRE EXTINGUISHERS”. Journal of Thermal Engineering, vol. 6, no. 4, 2020, pp. 460-73, doi:10.18186/thermal.764153.
Vancouver Omidvar A, Mahdavi A, Mehryar R. A SIMULATED STUDY ON THE EFFECT OF WATER TEMPERATURE ON COOLING EFFICIENCY OF WATER MIST FIRE EXTINGUISHERS. Journal of Thermal Engineering. 2020;6(4):460-73.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering