Research Article
BibTex RIS Cite
Year 2021, Volume: 7 Issue: 1, 161 - 171, 01.01.2021
https://doi.org/10.18186/thermal.847316

Abstract

References

  • [1] Austin BT, Sumathy K. Transcritical carbon dioxide heat pump systems: A review. Renewable and Sustainable Energy Reviews 2011;4013:4029-15. doi:10.1016/j.rser.2011.07.021.
  • [2] Bulgurcu H, Kon O, İlten N. Soğutucu Akışkanların Çevresel Etkileri ile ilgili Yeni Yasal Düzenlemeler Ve Hedefler. VIII. Ulusal Tesisat Mühendisliği Kongresi 2007.
  • [3] Kasap F, Acül H, Canbaz H, Erbil S. R744 (CO2) Soğutucu Akışkanlı Soğutma Sistemleri, Kanatlı Borulu R744 (CO2) Evaporatör ve Gaz Soğutucu Tasarım Esasları. X. UlusalTesisat Mühendisliği Kongresi 2011.
  • [4] Kaji R, Yoshioka S, Fujino H. The Effect of Inner Grooved Tubes on the Heat Transfer Performace of Air-Cooled Heat Exchangers of Co2 Heat Pump System. International Refrigeration and Air Conditioning Conference 2012;1268-1276.
  • [5] Cho JM, Kim MS. Experimental studies on the evaporative heat transfer and pressure drop of CO2 in smooth and microfin tubes of the diameters of 5 and 9.52 mm. International Journal of Refrigeration 2007;986:994-30. doi:10.1016/j.ijrefrig.2007.01.007.
  • [6] Zhao X, Bansal P. Flow boiling heat transfer analysis of new experimental data of CO2 in a microfin tube at -30°C. International Journal of Thermal Sciences 2012;38:44-59. doi:10.1016/j.ijthermalsci.2012.04.005.
  • [7] Onbaşıoğlu H, Türkkan B, Çağlayan A. Karbondioksit Akışkanlı Kanatlı Borulu Buharlaştırıcılarda Boru Özelliklerinin Isı Kapasiteye Etkisinin İncelenmesi. 13. Ulusal Tesisat Mühendisliği Kongresi 2017.
  • [8] Schael AE, Kind M. Flow pattern and heat transfer characteristics during flow boiling of CO2 in a horizontal microfin tube and comparison with smooth tube data. International Journal of Refrigeration 2005;1186:1195-28. doi:10.1016/j.ijrefrig.2005.09.002.
  • [9] Yun R, Kim Y, Seo K, Kim HY. A generalized correlation for evaporation heat transfer of refrigerants in microfin tubes. International Journal of Heat and Mass Transfer 2002;2003:2010-45. PII:S0017-9310(01)00321-0.
  • [10] Yoon SH, Cho ES, Hwang YW, Kim MS, Min K, Kim Y. Characteristics of evaporative heat transfer and pressure drop of carbon dioxide and correlation development. International Journal of Refrigeration 2004;111:119-27. doi:10.1016/j.ijrefrig.2003.08.006.
  • [11] Yoon JI, Son CH, Jung SH, Jeon MJ, Yang D. Evaporation heat transfer of carbon dioxide at low temperature inside a horizontal smooth tube. Heat Mass Transfer 2017;1631:1642-53. doi:10.1007/s00231-016-1922-2.
  • [12] Diani A, Rossetto L. Experimental analysis of refrigerants flow boiling inside small sized microfin tubes. Heat Mass Transfer 2017. doi:10.1007/s00231-017-2111-7.
  • [13] Inoue N, Jige D, Sagawa K. Evaporation Heat Transfer and Pressure Drop of R32 inside Small-diameter 4.0mm Tubes. International Refrigeration and Air Conditioning Conference 2016;1730.
  • [14] Mncin S, Diani A, Roseetto L. R134a flow boiling heat transfer and pressure dropinside a 3.4 mm ID microfin tube. 68th Conference of the Italian Thermal Machines Engineering Association, 2014 ATI2013.
  • [15] McLinden MO, Marcia L, Huber, Lemmon EW. NIST thermodynamic and transport properties of refrigerants and refrigerant mixtures database (REFPROP), version 8.0. Gaithersburg (MD, USA): National Institute of Standards and Technology.
  • [16] Gungor KE, Winterton RHS. A General Correlation for Flow Boiling in Tubes and Annuli. Int.J.Heat and, 1986;351:358-29. doi:0017-9310/86s3.00+0.00
  • [17] Zhang X, Yuan X. Heat Transfer Correlations for Evaporation of Refrigerant Mixtures Flowing Inside Horizantal Microfin Tubes. Energy Conversion and Management, 2008;3198:3204-49. doi:10.1016/j.enconman.2008.05.018.

A THEORETICAL INVESTIGATION ON THE EVAPORATIVE HEAT TRANSFER OF CO2 IN SMOOTH AND MICROFIN TUBE

Year 2021, Volume: 7 Issue: 1, 161 - 171, 01.01.2021
https://doi.org/10.18186/thermal.847316

Abstract

Nowadays, global environmental events such as thinning of the ozone layer and climate changes are increasing. These types of events are not only affecting all creatures living on the Earth, but also decreasing the quality of life. For this reason, natural refrigerants which are not harmful to environment, have been preferred in cooling systems. In this study, heat transfer coefficient of CO2 was investigated during the evaporation process in smooth tube and designed microfin tube. Features of the tube used in evaporator of these cooling systems directly affect to the heat transfer coefficient. The geometric parameters of the microfin tubes are an outer diameter of 9.52 mm, number of fins 50, apex angle of 38°, helix angle of 20° and fin height of 0.12 mm. Theoretical model was created on MATLAB environment. The heat transfer coefficient was investigated based on vapor quality. When theoretical results obtained for microfin tube were compared with experimental results, 6% approach was seen. A theoretical model was created for smooth and microfin tube by selecting heat flux as 10 kw/m^2 and mass flux as 380 kg/m2s and heat transfer coefficients in different evaporation temperatures were compared based on vapor quality. It has been concluded that heat transfer coefficients of microfin tube at 5°C, 0°C and -8°C were 52%, 44% and 34% higher than that of smooth tube, respectively.

References

  • [1] Austin BT, Sumathy K. Transcritical carbon dioxide heat pump systems: A review. Renewable and Sustainable Energy Reviews 2011;4013:4029-15. doi:10.1016/j.rser.2011.07.021.
  • [2] Bulgurcu H, Kon O, İlten N. Soğutucu Akışkanların Çevresel Etkileri ile ilgili Yeni Yasal Düzenlemeler Ve Hedefler. VIII. Ulusal Tesisat Mühendisliği Kongresi 2007.
  • [3] Kasap F, Acül H, Canbaz H, Erbil S. R744 (CO2) Soğutucu Akışkanlı Soğutma Sistemleri, Kanatlı Borulu R744 (CO2) Evaporatör ve Gaz Soğutucu Tasarım Esasları. X. UlusalTesisat Mühendisliği Kongresi 2011.
  • [4] Kaji R, Yoshioka S, Fujino H. The Effect of Inner Grooved Tubes on the Heat Transfer Performace of Air-Cooled Heat Exchangers of Co2 Heat Pump System. International Refrigeration and Air Conditioning Conference 2012;1268-1276.
  • [5] Cho JM, Kim MS. Experimental studies on the evaporative heat transfer and pressure drop of CO2 in smooth and microfin tubes of the diameters of 5 and 9.52 mm. International Journal of Refrigeration 2007;986:994-30. doi:10.1016/j.ijrefrig.2007.01.007.
  • [6] Zhao X, Bansal P. Flow boiling heat transfer analysis of new experimental data of CO2 in a microfin tube at -30°C. International Journal of Thermal Sciences 2012;38:44-59. doi:10.1016/j.ijthermalsci.2012.04.005.
  • [7] Onbaşıoğlu H, Türkkan B, Çağlayan A. Karbondioksit Akışkanlı Kanatlı Borulu Buharlaştırıcılarda Boru Özelliklerinin Isı Kapasiteye Etkisinin İncelenmesi. 13. Ulusal Tesisat Mühendisliği Kongresi 2017.
  • [8] Schael AE, Kind M. Flow pattern and heat transfer characteristics during flow boiling of CO2 in a horizontal microfin tube and comparison with smooth tube data. International Journal of Refrigeration 2005;1186:1195-28. doi:10.1016/j.ijrefrig.2005.09.002.
  • [9] Yun R, Kim Y, Seo K, Kim HY. A generalized correlation for evaporation heat transfer of refrigerants in microfin tubes. International Journal of Heat and Mass Transfer 2002;2003:2010-45. PII:S0017-9310(01)00321-0.
  • [10] Yoon SH, Cho ES, Hwang YW, Kim MS, Min K, Kim Y. Characteristics of evaporative heat transfer and pressure drop of carbon dioxide and correlation development. International Journal of Refrigeration 2004;111:119-27. doi:10.1016/j.ijrefrig.2003.08.006.
  • [11] Yoon JI, Son CH, Jung SH, Jeon MJ, Yang D. Evaporation heat transfer of carbon dioxide at low temperature inside a horizontal smooth tube. Heat Mass Transfer 2017;1631:1642-53. doi:10.1007/s00231-016-1922-2.
  • [12] Diani A, Rossetto L. Experimental analysis of refrigerants flow boiling inside small sized microfin tubes. Heat Mass Transfer 2017. doi:10.1007/s00231-017-2111-7.
  • [13] Inoue N, Jige D, Sagawa K. Evaporation Heat Transfer and Pressure Drop of R32 inside Small-diameter 4.0mm Tubes. International Refrigeration and Air Conditioning Conference 2016;1730.
  • [14] Mncin S, Diani A, Roseetto L. R134a flow boiling heat transfer and pressure dropinside a 3.4 mm ID microfin tube. 68th Conference of the Italian Thermal Machines Engineering Association, 2014 ATI2013.
  • [15] McLinden MO, Marcia L, Huber, Lemmon EW. NIST thermodynamic and transport properties of refrigerants and refrigerant mixtures database (REFPROP), version 8.0. Gaithersburg (MD, USA): National Institute of Standards and Technology.
  • [16] Gungor KE, Winterton RHS. A General Correlation for Flow Boiling in Tubes and Annuli. Int.J.Heat and, 1986;351:358-29. doi:0017-9310/86s3.00+0.00
  • [17] Zhang X, Yuan X. Heat Transfer Correlations for Evaporation of Refrigerant Mixtures Flowing Inside Horizantal Microfin Tubes. Energy Conversion and Management, 2008;3198:3204-49. doi:10.1016/j.enconman.2008.05.018.
There are 17 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Pınar Alataş This is me 0000-0002-7549-6288

Derya Burcu Özkan This is me 0000-0002-8964-3015

Publication Date January 1, 2021
Submission Date December 9, 2018
Published in Issue Year 2021 Volume: 7 Issue: 1

Cite

APA Alataş, P., & Özkan, D. B. (2021). A THEORETICAL INVESTIGATION ON THE EVAPORATIVE HEAT TRANSFER OF CO2 IN SMOOTH AND MICROFIN TUBE. Journal of Thermal Engineering, 7(1), 161-171. https://doi.org/10.18186/thermal.847316
AMA Alataş P, Özkan DB. A THEORETICAL INVESTIGATION ON THE EVAPORATIVE HEAT TRANSFER OF CO2 IN SMOOTH AND MICROFIN TUBE. Journal of Thermal Engineering. January 2021;7(1):161-171. doi:10.18186/thermal.847316
Chicago Alataş, Pınar, and Derya Burcu Özkan. “A THEORETICAL INVESTIGATION ON THE EVAPORATIVE HEAT TRANSFER OF CO2 IN SMOOTH AND MICROFIN TUBE”. Journal of Thermal Engineering 7, no. 1 (January 2021): 161-71. https://doi.org/10.18186/thermal.847316.
EndNote Alataş P, Özkan DB (January 1, 2021) A THEORETICAL INVESTIGATION ON THE EVAPORATIVE HEAT TRANSFER OF CO2 IN SMOOTH AND MICROFIN TUBE. Journal of Thermal Engineering 7 1 161–171.
IEEE P. Alataş and D. B. Özkan, “A THEORETICAL INVESTIGATION ON THE EVAPORATIVE HEAT TRANSFER OF CO2 IN SMOOTH AND MICROFIN TUBE”, Journal of Thermal Engineering, vol. 7, no. 1, pp. 161–171, 2021, doi: 10.18186/thermal.847316.
ISNAD Alataş, Pınar - Özkan, Derya Burcu. “A THEORETICAL INVESTIGATION ON THE EVAPORATIVE HEAT TRANSFER OF CO2 IN SMOOTH AND MICROFIN TUBE”. Journal of Thermal Engineering 7/1 (January 2021), 161-171. https://doi.org/10.18186/thermal.847316.
JAMA Alataş P, Özkan DB. A THEORETICAL INVESTIGATION ON THE EVAPORATIVE HEAT TRANSFER OF CO2 IN SMOOTH AND MICROFIN TUBE. Journal of Thermal Engineering. 2021;7:161–171.
MLA Alataş, Pınar and Derya Burcu Özkan. “A THEORETICAL INVESTIGATION ON THE EVAPORATIVE HEAT TRANSFER OF CO2 IN SMOOTH AND MICROFIN TUBE”. Journal of Thermal Engineering, vol. 7, no. 1, 2021, pp. 161-7, doi:10.18186/thermal.847316.
Vancouver Alataş P, Özkan DB. A THEORETICAL INVESTIGATION ON THE EVAPORATIVE HEAT TRANSFER OF CO2 IN SMOOTH AND MICROFIN TUBE. Journal of Thermal Engineering. 2021;7(1):161-7.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering