Research Article
BibTex RIS Cite
Year 2021, Volume: 7 Issue: 1, 172 - 189, 01.01.2021
https://doi.org/10.18186/thermal.847334

Abstract

References

  • [1] Kalogirou S A, Solar Energy Engineering : Processes and Systems. 1st ed. Academic Press; 2009.
  • [2] Ghodbane M, Boumeddane B, Said N. A linear Fresnel reflector as a solar system for heating water: theoretical and experimental study. Case Studies in Thermal Engineering 2016; 8(C): 176-186. http://dx.doi.org/10.1016/j.csite.2016.06.006.
  • [3] Ghodbane M, Boumeddane B, Moummi N, Largot S, Berkane H. Study and numerical simulation of solar system for air heating. Journal of Fundamental and Applied Sciences 2016; 8(1): 41- 60. http://dx.doi.org/10.4314/jfas.v8i1.3.
  • [4] Rahman S, Issa S, Said Z, El Haj Assad M, Zadeh R, Barani Y. Performance enhancement of a solar powered air conditioning system using passive techniques and SWCNT /R-407c nano refrigerant. Case Studies in Thermal Engineering 2019; 16: 100565. https://doi.org/10.1016/j.csite.2019.100565.
  • [5] Ghodbane M, Said Z, Hachicha AA, Boumeddane B. Performance assessment of linear Fresnel solar reflector using MWCNTs/DW nanofluids. Renewable Energy 2020; 151: 43-56. https://doi.org/10.1016/j.renene.2019.10.137.
  • [6] Ghodbane M, Boumeddane B, Said N. Design and experimental study of a solar system for heating water utilizing a linear Fresnel reflector. Journal of Fundamental and Applied Sciences 2016; 8(3): 804-825. http://dx.doi.org/10.4314/jfas.v8i3.8.
  • [7] Ghodbane M, Bellos E, Said Z, Boumeddane B, Hussein AK, Kolsi L. Evaluating energy efficiency and economic effect of heat transfer in copper tube for small solar linear Fresnel reflector. Journal of Thermal Analysis and Calorimetry 2020. https://doi.org/10.1007/s10973-020-09384-6.
  • [8] Mosleh HJ, Hakkaki-Fard A, DaqiqShirazi M. A year-round dynamic simulation of a solar combined, ejector cooling, heating and power generation system. Applied Thermal Engineering 2019. https://doi.org/10.1016/j.applthermaleng.2019.02.114.
  • [9] Bellos E, Tzivanidis C, Antonopoulos KA. Parametric investigation and optimization of an innovative trigeneration system. Energy Conversion and Management 2016; 127: 515–525. http://dx.doi.org/10.1016/j.enconman.2016.09.044.
  • [10] Bellos, E. and C. Tzivanidis. Parametric analysis and optimization of a solar driven trigeneration system based on ORC and absorption heat pump. Journal of Cleaner Production 2017; 161: 493-509. http://dx.doi.org/10.1016/j.jclepro.2017.05.159.
  • [11] Bellos E, Tzivanidis C. Energetic and exergetic evaluation of a novel trigeneration system driven by parabolic trough solar collectors. Thermal Science and Engineering Progress 2018; 6: p. 41–47. https://doi.org/10.1016/j.tsep.2018.03.008.
  • [12] Bellos E, Tzivanidis C. Multi-objective optimization of a solar driven trigeneration system. Energy 2018; 149: 47-62. https://doi.org/10.1016/j.energy.2018.02.054.
  • [13] Bellos E, Tzivanidis C. Multi-objective optimization of a solar assisted heat pump-driven by hybrid PV. Applied Thermal Engineering, 2019; 149: 528–535. https://doi.org/10.1016/j.applthermaleng.2018.12.059.
  • [14] Bellos E, Tzivanidis C, Torosian K. Energetic, exergetic and financial evaluation of a solar driven trigeneration system. Thermal Science and Engineering Progress 2018; 7: 99–106. https://doi.org/10.1016/j.tsep.2018.06.001.
  • [15] Ghodbane M, Boumeddane B, Khechekhouche A, Benmenine D. Study of a solar air conditioning system with ejector International Journal of Energetica 2020; 5(1): 14-21. http://dx.doi.org/10.47238/ijeca.v5i1.115.
  • [16] Urbanucci L, Bruno JC, Testi D. Thermodynamic and economic analysis of the integration of high-temperature heat pumps in trigeneration systems. Applied Energy 2019; 238: 516–533. https://doi.org/10.1016/j.apenergy.2019.01.115.
  • [17] Arabkoohsar A, Andresen GB. Design and optimization of a novel system for trigeneration. Energy 2019; 168: 247-260. https://doi.org/10.1016/j.energy.2018.11.086.
  • [18] Yıldırım C. Theoretical Investigation of a Solar Air Heater Roughened by Ribs and Grooves. Journal of Thermal Engineering 2018; 4(1): 1702-1712. https:/dx.doi.org/10.18186/journal-of-thermal-engineering.365713.
  • [19] Kerme E, Kaneesamkandi Z. Performance Analysis and Design of Liquid Based Solar Heating System. Journal of Thermal Engineering 2015; 1(5): 182-191. https://dx.doi.org/10.18186/jte.02359.
  • [20] Pridasawas W, Lundqvist P. An exergy analysis of a solar-driven ejector refrigeration system. Solar Energy 2004; 76: 369–379. https://doi-org/10.1016/j.solener.2003.11.004.
  • [21] Varga S, Lebre PMS, Oliveira AC. CFD study of a variable area ratio ejector using R600a and R152a refrigerants. International journal of refrigeration 2013; 36: 157-165. http://dx.doi.org/10.1016/j.ijrefrig.2012.10.016.
  • [22] Pridasawas W, Lundqvist P. A year-round dynamic simulation of a solar-driven ejector refrigeration system with iso-butane as a refrigerant. International Journal of Refrigeration 2007; 30: 840-850. https://doi-org/10.1016/j.ijrefrig.2006.11.012.
  • [23] Ghodbane M, Boumeddane B. Numerical simulation of a solar-driven ejector refrigeration cycle coupled to a parabolic trough concentrator. International Journal of Chemical and Petroleum Sciences 2016; 5(1): 1-12. https://www.asjp.cerist.dz/en/article/4608.
  • [24] Bello E, Theodosiou IC, Vellios L, Tzivanidis C. Investigation of a novel solar-driven refrigeration system with ejector. Thermal Science and Engineering Progress 2018; 8: 284–295. https://doi.org/10.1016/j.tsep.2018.09.005.
  • [25] Bellos E, Tzivanidis C. Assessment of linear solar concentrating technologies for Greek climate. Energy Conversion and Management 2018; 171: 1502-1513. https://doi.org/10.1016/j.enconman.2018.06.076.
  • [26] Bellos E, Tzivanidis C, Daniil I. Energetic and exergetic investigation of a parabolic trough collector with internal fins operating with carbon dioxide. International Journal of Energy and Environmental Engineering 2017; 8(2): 109-122. https://doi.org/10.1007/s40095-017-0229-5.
  • [27] Besagni G. Ejectors on the cutting edge: The past, the present and the perspective. Energy 2019; 170: 998-1003. https://doi.org/10.1016/j.energy.2018.12.214.
  • [28] Besagni G, Mereu R, Inzoli F. Ejector refrigeration: A comprehensive review. Renewable and Sustainable Energy Reviews 2016; 53: 373–407. http://dx.doi.org/10.1016/j.rser.2015.08.059.
  • [29] Bellos E, Theodosiou IC, Vellios L, Tzivanidis C. Investigation of a novel solar-driven refrigeration system with ejector. Thermal Science and Engineering Progress 2018; 8: 284-295. https://doi.org/10.1016/j.tsep.2018.09.005.
  • [30] Bellos E, Tzivanidis C. Optimum design of a solar ejector refrigeration system for various operating scenarios. Energy Conversion and Management 2017; 154: 11-24. https://doi.org/10.1016/j.enconman.2017.10.057.
  • [31] Sumeru K, Sukri MF, Pratikto P, Badarudin A. Investigation of Modified Ejector Cycle on Residential Air Conditioner with Environmentally Benign Refrigerant of R290. Journal of Thermal Engineering 2020; 6(3): 297-312. https://dx.doi.org/10.18186/thermal.711539.
  • [32] Seçkin C. Investigation of The Effect of The Primary Nozzle Throat Diameter on The Evaporator Performance of an Ejector Expansion Refrigeration Cycle. Journal of Thermal Engineering 2018; 4(3): 1939-1953. https://dx.doi.org/10.18186/journal-of-thermal-engineering.408659.
  • [33] Kutlu Ç, Ünal S, and Erdinç MT. Thermodynamic Analysis of Bi-Evaporater Ejector Refrigeration Cycle Using R744 as Natural Refrigerant. Journal of Thermal Engineering 2016; 2(2): 735-740. https://dx.doi.org/10.18186/jte.78114.
  • [34] Dixit M, Arora A, Kaushik SC. Energy and Exergy Analysis of a Waste Heat Driven Cycle for Triple Effect Refrigeration. Journal of Thermal Engineering 2016; 2(5): 954-961. https://dx.doi.org/10.18186/jte.84533.
  • [35] Ghodbane M. Étude et optimisation des performances d'une machine de climatisation a éjecteur reliée à un concentrateur solaire (2017), Saad Dahleb University of Blida 1, Algeria: www.univ-blida.dz: Thesis available to the Library of the Faculty and the Central Library of the University. p. 200.
  • [36] Ghodbane M, Boumeddane B. Physical description of an isentropic flow in a Laval nozzle. https://www.cder.dz/download/Art19-1_5.pdf. Revue des Energies Renouvelables 2016; 19(1): 41-47.
  • [37] Ghodbane M, Boumeddane B. Engineering design and optical investigation of a concentrating collector: Case study of a parabolic trough concentrator J. Fundam. Appl. Sci. 2018; 10(2): 148-171. http://dx.doi.org/10.4314/jfas.v10i2.11.
  • [38] Ghodbane M, Boumeddane B. Optical modeling and thermal behavior of a parabolic trough solar collector in the Algerian sahara AMSE JOURNALS-AMSE IIETA, MMC_B 2017; 86(2): 406-426. https://doi.org/10.18280/mmc_b.860207.
  • [39] Ghodbane M, Boumeddane B. A parabolic trough solar collector as a solar system for heating water: a study based on numerical simulation International Journal of Energetica (IJECA) 2017; 2(2): 29-37. https://www.ijeca.info/index.php/IJECA/article/view/32.
  • [40] Ghodbane M, Benmenine D, Khechekhouche A, Boumeddane B. Brief on Solar Concentrators: Differences and Applications. Instrumentation Mesure Metrologie 2020; 19(5): 371-378. https://dx.doi.org/10.18280/i2m.190507.
  • [41] Bellos E. Progress in the design and the applications of Linear Fresnel Reflectors – A critical review. Thermal Science and Engineering Progress 2019; 10: 112-137. https://doi.org/10.1016/j.tsep.2019.01.014.
  • [42] Bellos E, Tzivanidis, Papadopoulos A. Enhancing the performance of a linear Fresnel reflector using nanofluids and internal finned absorber. Journal of Thermal Analysis and Calorimetry, 2019. 135(1): p. 237-255. https://doi.org/10.1007/s10973-018-6989-1.
  • [43] Bellos E, Tzivanidis C. Multi-criteria evaluation of a nanofluid-based linear Fresnel solar collector. Solar Energy 2018; 163: 200-214. https://doi.org/10.1016/j.solener.2018.02.007.
  • [44] Said Z, Ghodbane M, Sundar LS, Tiwari AK, Sheikholeslami M, Boumeddane B. Heat transfer, entropy generation, economic and environmental analyses of linear Fresnel reflector using novel rGO-Co3O4 hybrid nanofluids. Renewable Energy 2021; 165(Part 1): 420-437. https://doi.org/10.1016/j.renene.2020.11.054.
  • [45] Hussein AK, Ghodbane M, Said Z, Ward RS. The Effect of the Baffle Length on the Natural Convection in an Enclosure Filled with Different Nanofluids. Journal of Thermal Analysis and Calorimetry 2020. https://doi.org/10.1007/s10973-020-10300-1.
  • [46] Bellos E, Tzivanidis C, Papadopoulos A. Optical and thermal analysis of a linear Fresnel reflector operating with thermal oil, molten salt and liquid sodium. Applied Thermal Engineering 2018; 133: 70-80. https://doi.org/10.1016/j.applthermaleng.2018.01.038.
  • [47] Bellos E, Tzivanidis C, Papadopoulos A. Daily, monthly and yearly performance of a linear Fresnel reflector. Solar Energy 2018; 173: 517-529. https://doi.org/10.1016/j.solener.2018.08.008).
  • [48] Bellos E, Mathioulakis E, Tzivanidis C, Belessiotis V, Antonopoulos KA. Experimental and numerical investigation of a linear Fresnel solar collector with flat plate receiver. Energy Conversion and Management 2016; 130: 44-59. https://doi.org/10.1016/j.enconman.2016.10.041.
  • [49] Roostaee A, Ameri M. Effect of Linear Fresnel Concentrators field key parameters on reflectors configuration, Trapezoidal Cavity Receiver dimension, and heat loss. Renewable Energy 2019; 134: 1447-1464. https://doi.org/10.1016/j.renene.2018.09.053.
  • [50] Pulido-Iparraguirre D al. Optimized design of a Linear Fresnel reflector for solar process heat applications. Renewable Energy 2019; 131: 1089-1106. https://doi.org/10.1016/j.renene.2018.08.018.
  • [51] Marugán-Cruz C, Serrano D, Gómez-Hernández J, Sánchez-Delgado S. Solar multiple optimization of a DSG linear Fresnel power plant. Energy Conversion and Management 2019; 184: 571-580. https://doi.org/10.1016/j.enconman.2019.01.054.
  • [52] Barbón A, Sánchez-Rodríguez JA, Bayón L, Bayón-Cuelic C. Cost estimation relationships of a small scale linear Fresnel reflector. Renewable Energy 2019; 134: 1273-1284. https://doi.org/10.1016/j.renene.2018.09.060.
  • [53] Barbón A, Sánchez-Rodríguez JA, Bayón L, Barbón N. Development of a fiber daylighting system based on a small scale linear Fresnel reflector: Theoretical elements. Applied Energy 2018; 212: 733-745. https://doi.org/10.1016/j.apenergy.2017.12.071.
  • [54] Ghodbane M, Bellos E, Said Z, Boumeddane B, Khechekhouche A, Sheikholeslami M, Ali ZM. Energy, Financial and Environmental investigation of a direct steam production power plant driven by linear Fresnel solar reflectors. Journal of Solar Energy Engineering 2021; 143(2): 021008 (11 pages). https://doi.org/10.1115/1.4048158.
  • [55] Ghodbane M, Boumeddane B, Said Z, Bellos E. A numerical simulation of a linear Fresnel solar reflector directed to produce steam for the power plant. Journal of Cleaner Production 2019; 231: 494-508. https://doi.org/10.1016/j.jclepro.2019.05.201.
  • [56] Said Z, Ghodbane M, Hachicha AA, Boumeddane B. Optical performance assessment of a small experimental prototype of linear Fresnel reflector Case Studies in Thermal Engineering 2019; 16: 100541. https://doi.org/10.1016/j.csite.2019.100541.
  • [57] Moghimi MA, Craig KJ, and Meyer JP, Optimization of a trapezoidal cavity absorber for the Linear Fresnel Reflector. Solar Energy 2015; 119: 343–361, http://dx.doi.org/10.1016/j.solener.2015.07.009.
  • [58] Moghimi MA, Craig KJ, and Meyer JP, A novel computational approach to combine the optical and thermal modelling of Linear Fresnel Collectors using the finite volume method. Solar Energy 2015; 116: 407–427, http://dx.doi.org/10.1016/j.solener.2015.04.014.
  • [59] Ghodbane M, Boumeddane B, Largot S. Simulation Numérique d’un Concentrateur Cylindro-Parabolique en El Oued, Algérie. International Journal of Scientific Research & Engineering Technology (IJSET) 2015; 3(2): 68-74.
  • [60] Bonnet S, Alphilippe M, Stouffs P. Conversion thermodynamique de l'énergie solaire dans des installations de faible ou de moyenne puissance: Réflexion sur choix du meilleurs degré de concentration. in 11 ème journée internationales de thermique. 2003. Revue d'énergie renouvelable.
  • [61] Duffie JA, Beckman WA. Solar Engineering of Thermal Processes. 4th ed. Wiley; 2013.
  • [62] Wagner, M.J. Results and comparison from the sam linear fresnel technology performance model. in World Renewable Energy Forum Denver, Colorado May 13–17. National Renewable Energy Laboratory (NREL) 2012.
  • [63] Diebel J, Norda J, Kretchmer O. Usual weather, July 17 in Oued Souf, Algeria. Weather Spark (2019). https://fr.weatherspark.com

PERFORMANCE ANALYSIS OF A SOLAR-DRIVEN EJECTOR AIR CONDITIONING SYSTEM UNDER EL-OUED CLIMATIC CONDITIONS, ALGERIA

Year 2021, Volume: 7 Issue: 1, 172 - 189, 01.01.2021
https://doi.org/10.18186/thermal.847334

Abstract

In order to understand the behavior and to determine the effective operational parameters of a solar-driven ejector air conditioning system at low or medium temperature, a dynamic model depends on the principles of conservation, the momentum mass and energy is developed. For this purpose, the thermodynamic characteristics of the liquid and vapor refrigerant were identified using the Engineering Equation Solver (EES) software. Linear Fresnel solar reflector has been used as a tool to convert solar energy into thermal energy. Water (R718) was used as a refrigerant. The operational conditions for the studied solar-driven ejector air conditioning system are as follows: evaporator temperature “Te =283.15 K”, condenser temperature “Tc =305.15 K”, and generator temperature “Tg = 373.15 K”. The performance of the ejector air conditioning system was compared as a function of the operating parameters of the subsystem. The average value of thermal efficiency of the Fresnel linear concentrator has reached 31.60 %, the drive ratio “ω” is 0.4934, the performance value of the ejector air conditioning subsystem “COPejc” is 60.664 % and the average value of the thermal performance of the machine “STR” has touched 19.17 %. The results obtained through this scientific subject are stimulating and encouraging, where this technique can be used for air conditioning in desert areas in southern Algeria, where fossil energy (petroleum, gas, etc.) is extracted and produced in various types.

References

  • [1] Kalogirou S A, Solar Energy Engineering : Processes and Systems. 1st ed. Academic Press; 2009.
  • [2] Ghodbane M, Boumeddane B, Said N. A linear Fresnel reflector as a solar system for heating water: theoretical and experimental study. Case Studies in Thermal Engineering 2016; 8(C): 176-186. http://dx.doi.org/10.1016/j.csite.2016.06.006.
  • [3] Ghodbane M, Boumeddane B, Moummi N, Largot S, Berkane H. Study and numerical simulation of solar system for air heating. Journal of Fundamental and Applied Sciences 2016; 8(1): 41- 60. http://dx.doi.org/10.4314/jfas.v8i1.3.
  • [4] Rahman S, Issa S, Said Z, El Haj Assad M, Zadeh R, Barani Y. Performance enhancement of a solar powered air conditioning system using passive techniques and SWCNT /R-407c nano refrigerant. Case Studies in Thermal Engineering 2019; 16: 100565. https://doi.org/10.1016/j.csite.2019.100565.
  • [5] Ghodbane M, Said Z, Hachicha AA, Boumeddane B. Performance assessment of linear Fresnel solar reflector using MWCNTs/DW nanofluids. Renewable Energy 2020; 151: 43-56. https://doi.org/10.1016/j.renene.2019.10.137.
  • [6] Ghodbane M, Boumeddane B, Said N. Design and experimental study of a solar system for heating water utilizing a linear Fresnel reflector. Journal of Fundamental and Applied Sciences 2016; 8(3): 804-825. http://dx.doi.org/10.4314/jfas.v8i3.8.
  • [7] Ghodbane M, Bellos E, Said Z, Boumeddane B, Hussein AK, Kolsi L. Evaluating energy efficiency and economic effect of heat transfer in copper tube for small solar linear Fresnel reflector. Journal of Thermal Analysis and Calorimetry 2020. https://doi.org/10.1007/s10973-020-09384-6.
  • [8] Mosleh HJ, Hakkaki-Fard A, DaqiqShirazi M. A year-round dynamic simulation of a solar combined, ejector cooling, heating and power generation system. Applied Thermal Engineering 2019. https://doi.org/10.1016/j.applthermaleng.2019.02.114.
  • [9] Bellos E, Tzivanidis C, Antonopoulos KA. Parametric investigation and optimization of an innovative trigeneration system. Energy Conversion and Management 2016; 127: 515–525. http://dx.doi.org/10.1016/j.enconman.2016.09.044.
  • [10] Bellos, E. and C. Tzivanidis. Parametric analysis and optimization of a solar driven trigeneration system based on ORC and absorption heat pump. Journal of Cleaner Production 2017; 161: 493-509. http://dx.doi.org/10.1016/j.jclepro.2017.05.159.
  • [11] Bellos E, Tzivanidis C. Energetic and exergetic evaluation of a novel trigeneration system driven by parabolic trough solar collectors. Thermal Science and Engineering Progress 2018; 6: p. 41–47. https://doi.org/10.1016/j.tsep.2018.03.008.
  • [12] Bellos E, Tzivanidis C. Multi-objective optimization of a solar driven trigeneration system. Energy 2018; 149: 47-62. https://doi.org/10.1016/j.energy.2018.02.054.
  • [13] Bellos E, Tzivanidis C. Multi-objective optimization of a solar assisted heat pump-driven by hybrid PV. Applied Thermal Engineering, 2019; 149: 528–535. https://doi.org/10.1016/j.applthermaleng.2018.12.059.
  • [14] Bellos E, Tzivanidis C, Torosian K. Energetic, exergetic and financial evaluation of a solar driven trigeneration system. Thermal Science and Engineering Progress 2018; 7: 99–106. https://doi.org/10.1016/j.tsep.2018.06.001.
  • [15] Ghodbane M, Boumeddane B, Khechekhouche A, Benmenine D. Study of a solar air conditioning system with ejector International Journal of Energetica 2020; 5(1): 14-21. http://dx.doi.org/10.47238/ijeca.v5i1.115.
  • [16] Urbanucci L, Bruno JC, Testi D. Thermodynamic and economic analysis of the integration of high-temperature heat pumps in trigeneration systems. Applied Energy 2019; 238: 516–533. https://doi.org/10.1016/j.apenergy.2019.01.115.
  • [17] Arabkoohsar A, Andresen GB. Design and optimization of a novel system for trigeneration. Energy 2019; 168: 247-260. https://doi.org/10.1016/j.energy.2018.11.086.
  • [18] Yıldırım C. Theoretical Investigation of a Solar Air Heater Roughened by Ribs and Grooves. Journal of Thermal Engineering 2018; 4(1): 1702-1712. https:/dx.doi.org/10.18186/journal-of-thermal-engineering.365713.
  • [19] Kerme E, Kaneesamkandi Z. Performance Analysis and Design of Liquid Based Solar Heating System. Journal of Thermal Engineering 2015; 1(5): 182-191. https://dx.doi.org/10.18186/jte.02359.
  • [20] Pridasawas W, Lundqvist P. An exergy analysis of a solar-driven ejector refrigeration system. Solar Energy 2004; 76: 369–379. https://doi-org/10.1016/j.solener.2003.11.004.
  • [21] Varga S, Lebre PMS, Oliveira AC. CFD study of a variable area ratio ejector using R600a and R152a refrigerants. International journal of refrigeration 2013; 36: 157-165. http://dx.doi.org/10.1016/j.ijrefrig.2012.10.016.
  • [22] Pridasawas W, Lundqvist P. A year-round dynamic simulation of a solar-driven ejector refrigeration system with iso-butane as a refrigerant. International Journal of Refrigeration 2007; 30: 840-850. https://doi-org/10.1016/j.ijrefrig.2006.11.012.
  • [23] Ghodbane M, Boumeddane B. Numerical simulation of a solar-driven ejector refrigeration cycle coupled to a parabolic trough concentrator. International Journal of Chemical and Petroleum Sciences 2016; 5(1): 1-12. https://www.asjp.cerist.dz/en/article/4608.
  • [24] Bello E, Theodosiou IC, Vellios L, Tzivanidis C. Investigation of a novel solar-driven refrigeration system with ejector. Thermal Science and Engineering Progress 2018; 8: 284–295. https://doi.org/10.1016/j.tsep.2018.09.005.
  • [25] Bellos E, Tzivanidis C. Assessment of linear solar concentrating technologies for Greek climate. Energy Conversion and Management 2018; 171: 1502-1513. https://doi.org/10.1016/j.enconman.2018.06.076.
  • [26] Bellos E, Tzivanidis C, Daniil I. Energetic and exergetic investigation of a parabolic trough collector with internal fins operating with carbon dioxide. International Journal of Energy and Environmental Engineering 2017; 8(2): 109-122. https://doi.org/10.1007/s40095-017-0229-5.
  • [27] Besagni G. Ejectors on the cutting edge: The past, the present and the perspective. Energy 2019; 170: 998-1003. https://doi.org/10.1016/j.energy.2018.12.214.
  • [28] Besagni G, Mereu R, Inzoli F. Ejector refrigeration: A comprehensive review. Renewable and Sustainable Energy Reviews 2016; 53: 373–407. http://dx.doi.org/10.1016/j.rser.2015.08.059.
  • [29] Bellos E, Theodosiou IC, Vellios L, Tzivanidis C. Investigation of a novel solar-driven refrigeration system with ejector. Thermal Science and Engineering Progress 2018; 8: 284-295. https://doi.org/10.1016/j.tsep.2018.09.005.
  • [30] Bellos E, Tzivanidis C. Optimum design of a solar ejector refrigeration system for various operating scenarios. Energy Conversion and Management 2017; 154: 11-24. https://doi.org/10.1016/j.enconman.2017.10.057.
  • [31] Sumeru K, Sukri MF, Pratikto P, Badarudin A. Investigation of Modified Ejector Cycle on Residential Air Conditioner with Environmentally Benign Refrigerant of R290. Journal of Thermal Engineering 2020; 6(3): 297-312. https://dx.doi.org/10.18186/thermal.711539.
  • [32] Seçkin C. Investigation of The Effect of The Primary Nozzle Throat Diameter on The Evaporator Performance of an Ejector Expansion Refrigeration Cycle. Journal of Thermal Engineering 2018; 4(3): 1939-1953. https://dx.doi.org/10.18186/journal-of-thermal-engineering.408659.
  • [33] Kutlu Ç, Ünal S, and Erdinç MT. Thermodynamic Analysis of Bi-Evaporater Ejector Refrigeration Cycle Using R744 as Natural Refrigerant. Journal of Thermal Engineering 2016; 2(2): 735-740. https://dx.doi.org/10.18186/jte.78114.
  • [34] Dixit M, Arora A, Kaushik SC. Energy and Exergy Analysis of a Waste Heat Driven Cycle for Triple Effect Refrigeration. Journal of Thermal Engineering 2016; 2(5): 954-961. https://dx.doi.org/10.18186/jte.84533.
  • [35] Ghodbane M. Étude et optimisation des performances d'une machine de climatisation a éjecteur reliée à un concentrateur solaire (2017), Saad Dahleb University of Blida 1, Algeria: www.univ-blida.dz: Thesis available to the Library of the Faculty and the Central Library of the University. p. 200.
  • [36] Ghodbane M, Boumeddane B. Physical description of an isentropic flow in a Laval nozzle. https://www.cder.dz/download/Art19-1_5.pdf. Revue des Energies Renouvelables 2016; 19(1): 41-47.
  • [37] Ghodbane M, Boumeddane B. Engineering design and optical investigation of a concentrating collector: Case study of a parabolic trough concentrator J. Fundam. Appl. Sci. 2018; 10(2): 148-171. http://dx.doi.org/10.4314/jfas.v10i2.11.
  • [38] Ghodbane M, Boumeddane B. Optical modeling and thermal behavior of a parabolic trough solar collector in the Algerian sahara AMSE JOURNALS-AMSE IIETA, MMC_B 2017; 86(2): 406-426. https://doi.org/10.18280/mmc_b.860207.
  • [39] Ghodbane M, Boumeddane B. A parabolic trough solar collector as a solar system for heating water: a study based on numerical simulation International Journal of Energetica (IJECA) 2017; 2(2): 29-37. https://www.ijeca.info/index.php/IJECA/article/view/32.
  • [40] Ghodbane M, Benmenine D, Khechekhouche A, Boumeddane B. Brief on Solar Concentrators: Differences and Applications. Instrumentation Mesure Metrologie 2020; 19(5): 371-378. https://dx.doi.org/10.18280/i2m.190507.
  • [41] Bellos E. Progress in the design and the applications of Linear Fresnel Reflectors – A critical review. Thermal Science and Engineering Progress 2019; 10: 112-137. https://doi.org/10.1016/j.tsep.2019.01.014.
  • [42] Bellos E, Tzivanidis, Papadopoulos A. Enhancing the performance of a linear Fresnel reflector using nanofluids and internal finned absorber. Journal of Thermal Analysis and Calorimetry, 2019. 135(1): p. 237-255. https://doi.org/10.1007/s10973-018-6989-1.
  • [43] Bellos E, Tzivanidis C. Multi-criteria evaluation of a nanofluid-based linear Fresnel solar collector. Solar Energy 2018; 163: 200-214. https://doi.org/10.1016/j.solener.2018.02.007.
  • [44] Said Z, Ghodbane M, Sundar LS, Tiwari AK, Sheikholeslami M, Boumeddane B. Heat transfer, entropy generation, economic and environmental analyses of linear Fresnel reflector using novel rGO-Co3O4 hybrid nanofluids. Renewable Energy 2021; 165(Part 1): 420-437. https://doi.org/10.1016/j.renene.2020.11.054.
  • [45] Hussein AK, Ghodbane M, Said Z, Ward RS. The Effect of the Baffle Length on the Natural Convection in an Enclosure Filled with Different Nanofluids. Journal of Thermal Analysis and Calorimetry 2020. https://doi.org/10.1007/s10973-020-10300-1.
  • [46] Bellos E, Tzivanidis C, Papadopoulos A. Optical and thermal analysis of a linear Fresnel reflector operating with thermal oil, molten salt and liquid sodium. Applied Thermal Engineering 2018; 133: 70-80. https://doi.org/10.1016/j.applthermaleng.2018.01.038.
  • [47] Bellos E, Tzivanidis C, Papadopoulos A. Daily, monthly and yearly performance of a linear Fresnel reflector. Solar Energy 2018; 173: 517-529. https://doi.org/10.1016/j.solener.2018.08.008).
  • [48] Bellos E, Mathioulakis E, Tzivanidis C, Belessiotis V, Antonopoulos KA. Experimental and numerical investigation of a linear Fresnel solar collector with flat plate receiver. Energy Conversion and Management 2016; 130: 44-59. https://doi.org/10.1016/j.enconman.2016.10.041.
  • [49] Roostaee A, Ameri M. Effect of Linear Fresnel Concentrators field key parameters on reflectors configuration, Trapezoidal Cavity Receiver dimension, and heat loss. Renewable Energy 2019; 134: 1447-1464. https://doi.org/10.1016/j.renene.2018.09.053.
  • [50] Pulido-Iparraguirre D al. Optimized design of a Linear Fresnel reflector for solar process heat applications. Renewable Energy 2019; 131: 1089-1106. https://doi.org/10.1016/j.renene.2018.08.018.
  • [51] Marugán-Cruz C, Serrano D, Gómez-Hernández J, Sánchez-Delgado S. Solar multiple optimization of a DSG linear Fresnel power plant. Energy Conversion and Management 2019; 184: 571-580. https://doi.org/10.1016/j.enconman.2019.01.054.
  • [52] Barbón A, Sánchez-Rodríguez JA, Bayón L, Bayón-Cuelic C. Cost estimation relationships of a small scale linear Fresnel reflector. Renewable Energy 2019; 134: 1273-1284. https://doi.org/10.1016/j.renene.2018.09.060.
  • [53] Barbón A, Sánchez-Rodríguez JA, Bayón L, Barbón N. Development of a fiber daylighting system based on a small scale linear Fresnel reflector: Theoretical elements. Applied Energy 2018; 212: 733-745. https://doi.org/10.1016/j.apenergy.2017.12.071.
  • [54] Ghodbane M, Bellos E, Said Z, Boumeddane B, Khechekhouche A, Sheikholeslami M, Ali ZM. Energy, Financial and Environmental investigation of a direct steam production power plant driven by linear Fresnel solar reflectors. Journal of Solar Energy Engineering 2021; 143(2): 021008 (11 pages). https://doi.org/10.1115/1.4048158.
  • [55] Ghodbane M, Boumeddane B, Said Z, Bellos E. A numerical simulation of a linear Fresnel solar reflector directed to produce steam for the power plant. Journal of Cleaner Production 2019; 231: 494-508. https://doi.org/10.1016/j.jclepro.2019.05.201.
  • [56] Said Z, Ghodbane M, Hachicha AA, Boumeddane B. Optical performance assessment of a small experimental prototype of linear Fresnel reflector Case Studies in Thermal Engineering 2019; 16: 100541. https://doi.org/10.1016/j.csite.2019.100541.
  • [57] Moghimi MA, Craig KJ, and Meyer JP, Optimization of a trapezoidal cavity absorber for the Linear Fresnel Reflector. Solar Energy 2015; 119: 343–361, http://dx.doi.org/10.1016/j.solener.2015.07.009.
  • [58] Moghimi MA, Craig KJ, and Meyer JP, A novel computational approach to combine the optical and thermal modelling of Linear Fresnel Collectors using the finite volume method. Solar Energy 2015; 116: 407–427, http://dx.doi.org/10.1016/j.solener.2015.04.014.
  • [59] Ghodbane M, Boumeddane B, Largot S. Simulation Numérique d’un Concentrateur Cylindro-Parabolique en El Oued, Algérie. International Journal of Scientific Research & Engineering Technology (IJSET) 2015; 3(2): 68-74.
  • [60] Bonnet S, Alphilippe M, Stouffs P. Conversion thermodynamique de l'énergie solaire dans des installations de faible ou de moyenne puissance: Réflexion sur choix du meilleurs degré de concentration. in 11 ème journée internationales de thermique. 2003. Revue d'énergie renouvelable.
  • [61] Duffie JA, Beckman WA. Solar Engineering of Thermal Processes. 4th ed. Wiley; 2013.
  • [62] Wagner, M.J. Results and comparison from the sam linear fresnel technology performance model. in World Renewable Energy Forum Denver, Colorado May 13–17. National Renewable Energy Laboratory (NREL) 2012.
  • [63] Diebel J, Norda J, Kretchmer O. Usual weather, July 17 in Oued Souf, Algeria. Weather Spark (2019). https://fr.weatherspark.com
There are 63 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Mokhtar Ghodbane This is me 0000-0003-1350-8631

Ahmed Kadhim Hussein This is me 0000-0002-4360-0159

Publication Date January 1, 2021
Submission Date December 26, 2018
Published in Issue Year 2021 Volume: 7 Issue: 1

Cite

APA Ghodbane, M., & Hussein, A. K. (2021). PERFORMANCE ANALYSIS OF A SOLAR-DRIVEN EJECTOR AIR CONDITIONING SYSTEM UNDER EL-OUED CLIMATIC CONDITIONS, ALGERIA. Journal of Thermal Engineering, 7(1), 172-189. https://doi.org/10.18186/thermal.847334
AMA Ghodbane M, Hussein AK. PERFORMANCE ANALYSIS OF A SOLAR-DRIVEN EJECTOR AIR CONDITIONING SYSTEM UNDER EL-OUED CLIMATIC CONDITIONS, ALGERIA. Journal of Thermal Engineering. January 2021;7(1):172-189. doi:10.18186/thermal.847334
Chicago Ghodbane, Mokhtar, and Ahmed Kadhim Hussein. “PERFORMANCE ANALYSIS OF A SOLAR-DRIVEN EJECTOR AIR CONDITIONING SYSTEM UNDER EL-OUED CLIMATIC CONDITIONS, ALGERIA”. Journal of Thermal Engineering 7, no. 1 (January 2021): 172-89. https://doi.org/10.18186/thermal.847334.
EndNote Ghodbane M, Hussein AK (January 1, 2021) PERFORMANCE ANALYSIS OF A SOLAR-DRIVEN EJECTOR AIR CONDITIONING SYSTEM UNDER EL-OUED CLIMATIC CONDITIONS, ALGERIA. Journal of Thermal Engineering 7 1 172–189.
IEEE M. Ghodbane and A. K. Hussein, “PERFORMANCE ANALYSIS OF A SOLAR-DRIVEN EJECTOR AIR CONDITIONING SYSTEM UNDER EL-OUED CLIMATIC CONDITIONS, ALGERIA”, Journal of Thermal Engineering, vol. 7, no. 1, pp. 172–189, 2021, doi: 10.18186/thermal.847334.
ISNAD Ghodbane, Mokhtar - Hussein, Ahmed Kadhim. “PERFORMANCE ANALYSIS OF A SOLAR-DRIVEN EJECTOR AIR CONDITIONING SYSTEM UNDER EL-OUED CLIMATIC CONDITIONS, ALGERIA”. Journal of Thermal Engineering 7/1 (January 2021), 172-189. https://doi.org/10.18186/thermal.847334.
JAMA Ghodbane M, Hussein AK. PERFORMANCE ANALYSIS OF A SOLAR-DRIVEN EJECTOR AIR CONDITIONING SYSTEM UNDER EL-OUED CLIMATIC CONDITIONS, ALGERIA. Journal of Thermal Engineering. 2021;7:172–189.
MLA Ghodbane, Mokhtar and Ahmed Kadhim Hussein. “PERFORMANCE ANALYSIS OF A SOLAR-DRIVEN EJECTOR AIR CONDITIONING SYSTEM UNDER EL-OUED CLIMATIC CONDITIONS, ALGERIA”. Journal of Thermal Engineering, vol. 7, no. 1, 2021, pp. 172-89, doi:10.18186/thermal.847334.
Vancouver Ghodbane M, Hussein AK. PERFORMANCE ANALYSIS OF A SOLAR-DRIVEN EJECTOR AIR CONDITIONING SYSTEM UNDER EL-OUED CLIMATIC CONDITIONS, ALGERIA. Journal of Thermal Engineering. 2021;7(1):172-89.

Cited By


















IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering