Research Article
BibTex RIS Cite

THERMAL DESIGN, ANALYSIS AND TEST VALIDATION OF TURKSAT-3USAT SATELLITE

Year 2021, Volume: 7 Issue: 3, 468 - 482, 01.03.2021
https://doi.org/10.18186/thermal.887316

Abstract

When CubeSat projects are a useful means by which universities can engage their students in space-related activities. TURKSAT-3USAT is a three-unit amateur radio CubeSat jointly developed by the Space Systems Design and Test Laboratory and the Radio Frequency Electronics Laboratory of Istanbul Technical University (ITU), in collaboration with TURKSAT, A.S. company as well as the Turkish Amateur Technology Organization. It was launched on April 26, 2013 as a secondary payload on a CZ-2D rocket from China’s Jiuquan Space Center to an altitude of approximately 680 km. The mission of the satellite has two primary goals: (1) to voice communication at Low Earth Orbit (LEO) and (2) to educate students by providing hands-on experience. TURKSAT-3USAT was designed to sustain a circular, near sun-synchronous LEO, and has dimensions of 10 x 10 x 34 cm3. Within the course of this paper, TURKSAT-3USAT’s thermal control will be addressed. TURKSAT-3USAT’s thermal control model was developed using ThermXL and ESATAN-TMS software. Using this model, temperature distributions of the CubeSat when subjected to various experimental conditions of interest were computed. Using a thermal vacuum chamber (TVAC), thermal cycling and bake-out testing were carried out on the flight model to verify the thermal design performance and check the mathematical model. Based on thermal analysis results, the temperature of equipment was within the allowable temperature range except for the batteries that were between 42.56 oC and -20.31 oC. Heaters were used for the batteries in order to maintain the batteries’ temperature within the allowable temperature range.

Supporting Institution

TURKSAT

References

  • [1] Poghosyan A, Golkar A. CubeSat evolution: Analyzing cubesat capabilities for conducting science missions, Prog. in Aerospace Sciences 2017; 88: 59-83. https://doi.org/10.1016/j.paerosci.2016.11.002
  • [2] Puig-Suari J, Turner C, Twiggs R. Cubesat: the development and launch support infrastructure for eighteen different satellite customers on one launch. 15th Annual AIAA/USU Conference on Small Satellites, Logan, Utah, 2001.
  • [3] Cerveno A, Zandbergen B, Guerrieri DC, De Athayde Costa e Silva M, Krusharev I, Van Zeijl H. Green micro-resistojet research at Delft University of Technology: New options for cubesat propulsion, CESA Space J 2017; 9:111-25.
  • [4] Willams AD, Palo SA, Korpela SA. Issues and implications of the thermal control systems on the ‘six day spacecraft’. 4th Responsive Space Conference, Los Angeles, California, USA, 2006.
  • [5] Toorian A, Blundell E, Puig Suari J, Twiggs R. Cubesats as responsive satellites. 3rd Responsive Space Conference 2005, Los Angeles, CA, 2005.
  • [6] Dinh D. Thermal modeling of nanosat. Thesis, San Jose State University, California, USA, 2012.
  • [7] CubeSat Design Specification, revision 13, http://www.cubesat.org/resources/;2018 [Accessed 10 July 2018].
  • [8] Selva D, Krejci D. A Survey and assessment of the capabilities of cubesats for Earth observation. Acta Astronautica 2009; 70: 50-68. https://doi.org/10.1016/j.actaastro.2011.12.014
  • [9] Swartwout M. The first one hundred cubesats: A statical look. Journal of Small Satellites 2013; 2 (2): 213-33.
  • [10] SpaceWorks Enterprises Inc. Nano/Microsatellite Market Forecast. 8th Edition, Tech. report, 03 February 2018.
  • [11] Garzon M. Development and analysis of the thermal design for the OSIRIS-3U CubeSat. Thesis, The Pennsylvania State University, Pennsylvania, USA, 2012.
  • [12] Moffitt BA, Batty JC. Predictive thermal analysis of the combat sentinel satellite. 16th AIAA/USU Conference on Small Satellites, Logan, Utah, USA, 2002.
  • [13] Tsai JR. Overview of satellite thermal analytical model. J of Spacecraft and Rockets 2004; 41 (1): 120-5.
  • [14] Reiss P. New methodologies for the thermal modelling of cubesats. 26th Annual AIAA/USU Conference on Small Satellites, Logan, Utah, USA, 2012.
  • [15] Escobar E, Diaz M, Zagal JC. Design automation for satellite passive thermal control, the 4S Symposium, Portoroz, Slovenia, 2012.
  • [16] Thanarasi K. Thermal analysis of cubesat in worse case hot and cold environment using FEA method. Applied Mechanics and Materials 2012; 225: 497-502. https://doi.org/10.4028/www.scientific.net/AMM.225.497
  • [17] Bulut M, Kahriman A, Sozbir N. Design and analysis for the thermal control system of nanosatellite. ASME 2010 International Mechanical Congress and Exposition, Vancouver, British Columbia, Canada, 2010.
  • [18] Onetto R, Paas H, Perez H. Cube satellite design final report. EML design project. Florida International University, Florida, USA, 2010.
  • [19] Bulut M, Sozbir N. Analytical investigation of a nanosatellite panel surface temperatures for different altitudes and panel combinations, Appl Therm Eng 2015; 75: 1076-83. https://doi.org/10.1016/j.applthermaleng.2014.10.059.
  • [20] Brouwer GF, Ubbels WJ, Vaartjes AA, Te Hennepe F. Assembly, integration, and testing of the Delfi-C3 nanosatellite, Space systems symposium Lessons learned in space systems. 59th International Astronautical Congress, Glasgow, 2008.
  • [21] Escobar E, Diaz M, Zagal JC. Evolutionary design of a satellite thermal control system: Real experiments for a Cubesat mission. Appl Therm Eng 2016; 105: 490-500. https://doi.org/10.1016/j.applthermaleng.2016.03.024.
  • [22] Corpino S, Caldera M, Masoero M, Nichele F, Viola N. Thermal design and analysis of a nanosatellite in low earth orbit. Acta Astronaut 2015; 115: 247-261. https://doi.org/10.1016/j.actaastro.2015.05.012
  • [23] Diaz-Aguado MF, Greenbaum J, Fowler WT, Glenn Lightsey E. Small satellite thermal design, test, and analysis. Proc. SPIE 6221, Modeling, Simulation, and Verification of Space-based Systems III, 2006.
  • [24] Bauer J, Carter M, Kelley K, Mello E, Neu S., Orphanos A, Shaffer T, Withrow A. Mechanical, power, and thermal subsystem design for a cubesat mission. Worcester Polytechnic Institute, Project: JB3-CBS2, Worchester Polytechnic Institute, Worcester, Massachusetts, 2012
  • [25] Czernik S. Design of the thermal control system for compass-1. University of Applied Sciences Aachen, Germany, 2004.
  • [26] Moffitt BA. Predictive thermal analysis of the combat sentinel satellite test article. Thesis, Utah State University, Logan, Utah, USA, 2003.
  • [27] Smith KD. Environmental testing and thermal analysis of the NPS solar cell array tester (NPS-SCAT) cubesat. Thesis, Naval Postgraduate School, Monterey, California, USA, 2011.
  • [28] Trinh GT. Environmental testing and orbital decay analysis for a cubesat. Thesis, San Jose State University, San Jose, California, USA, 2013.
  • [29] Osdol TCV, Dorsey C, Hedlund J, Hoye T, Jacobs O, Klarreich-Giglio K, Martin E, Ruiz M, Schlesselmann M, Singh Z. Design, fabrication, and analysis of a 3U cubesat platform, Bachelor of Science Thesis, Santa Clara University, Santa Clara, California, USA, 2013.
  • [30] Chandrashekar S. Thermal analysis and control of MIST cubesat. Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2017.
  • [31] Fernandes GF, Santos MB, Silva VD, Almeida JS, Nogueira PRM. Thermal tests for Cubesat in Brazil: lessons learned and the challenges for the future. 67th International Astronautical Congress (IAC), Guadalajara, Mexico, 2016.
  • [32] Blom E, Narverud E, Birkeland R. Technical satellite specification. Technical report, 2006.
  • [33] Gilmore DG. Spacecraft Thermal Control Handbook Volume I: Fundamental Technologies. 2nd ed., El Segundo, CA: The Aerospace Press; 2002.
  • [34] Spremo S, Bregman J, Dallara C, Ghassemieh S, Hanratty J. Low cost rapid response space spacecraft (LCRRS), A research project in low cost spacecraft design and fabrication in a rapid prototyping environment. 22nd Annual AIAA/USU Conference on Small Satellites, Logan, Utah, 2008.
  • [35] Bulut M, Gulgonul S, Sozbir N. Thermal control design of TUSAT. 6th International Energy Conversion Engineering Conference, AIAA, Cleveland, Ohio, USA, 2008.
  • [36] Sozbir N, Bulut M. Thermal control of CM and SM panels for Turkish satellite. SAE 39th International Conference on Environmental Systems, Savannah, Georgia, USA, 2009
  • [37] Bulut M. Thermal simulation software based on excel for spacecraft applications. Selcuk Univ. J. Eng. Sci. Techn. 2018; 6 (4): 592-600. https://doi.org/10.15317/Scitech.2018.154
  • [38] Bulut M, Sozbir N. Thermal design of a geostationary orbit communications satellite. Electronics World 2016; 122 (1964): 28-32.
  • [39] Bulut M, Sozbir N. Heat rejection capability for geostationary satellites. 9. Ankara International Aerospace Conference, Ankara, Turkey, 2017.
  • [40] Pisacane LV. Fundamentals of Space Systems. 2nd ed., New York, USA: Oxford University Press, 2005.
  • [41] Karam RD. Satellite Thermal Control for Systems Engineers. Vol.181, AIAA, Reston, VA, 1998.
  • [42] Bratcher JR. Testing program for KYSAT-1. Thesis, University of Kentucky, USA, 2010.
  • [43] Bowen J, Villa M, Williams A. Cubesat based rendezvous, proximity operations, and docking in the CPOD mission. 29th Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA, 2015.
  • [44] Bulut, M. Thermal design, analysis, and testing of the first Turkish 3U communication CubeSat in low earth orbit. J Therm Anal Calorim 2021. https://doi.org/10.1007/s10973-021-10566-z
  • [45] Ampatzoglou A, Kostopoulos V. Design, analysis, optimization, manufacturing, and testing of a 2U cubesat, Hindawi Int J of Aerospace Engineering, 2018, Article ID 9724263 (2018) 15 pages. https://doi.org/10.1155/2018/9724263
  • [46] Süer M. TURKSAT 3USAT Isıl tasarım raporu, ITU, İstanbul, Turkey, 2011.
Year 2021, Volume: 7 Issue: 3, 468 - 482, 01.03.2021
https://doi.org/10.18186/thermal.887316

Abstract

References

  • [1] Poghosyan A, Golkar A. CubeSat evolution: Analyzing cubesat capabilities for conducting science missions, Prog. in Aerospace Sciences 2017; 88: 59-83. https://doi.org/10.1016/j.paerosci.2016.11.002
  • [2] Puig-Suari J, Turner C, Twiggs R. Cubesat: the development and launch support infrastructure for eighteen different satellite customers on one launch. 15th Annual AIAA/USU Conference on Small Satellites, Logan, Utah, 2001.
  • [3] Cerveno A, Zandbergen B, Guerrieri DC, De Athayde Costa e Silva M, Krusharev I, Van Zeijl H. Green micro-resistojet research at Delft University of Technology: New options for cubesat propulsion, CESA Space J 2017; 9:111-25.
  • [4] Willams AD, Palo SA, Korpela SA. Issues and implications of the thermal control systems on the ‘six day spacecraft’. 4th Responsive Space Conference, Los Angeles, California, USA, 2006.
  • [5] Toorian A, Blundell E, Puig Suari J, Twiggs R. Cubesats as responsive satellites. 3rd Responsive Space Conference 2005, Los Angeles, CA, 2005.
  • [6] Dinh D. Thermal modeling of nanosat. Thesis, San Jose State University, California, USA, 2012.
  • [7] CubeSat Design Specification, revision 13, http://www.cubesat.org/resources/;2018 [Accessed 10 July 2018].
  • [8] Selva D, Krejci D. A Survey and assessment of the capabilities of cubesats for Earth observation. Acta Astronautica 2009; 70: 50-68. https://doi.org/10.1016/j.actaastro.2011.12.014
  • [9] Swartwout M. The first one hundred cubesats: A statical look. Journal of Small Satellites 2013; 2 (2): 213-33.
  • [10] SpaceWorks Enterprises Inc. Nano/Microsatellite Market Forecast. 8th Edition, Tech. report, 03 February 2018.
  • [11] Garzon M. Development and analysis of the thermal design for the OSIRIS-3U CubeSat. Thesis, The Pennsylvania State University, Pennsylvania, USA, 2012.
  • [12] Moffitt BA, Batty JC. Predictive thermal analysis of the combat sentinel satellite. 16th AIAA/USU Conference on Small Satellites, Logan, Utah, USA, 2002.
  • [13] Tsai JR. Overview of satellite thermal analytical model. J of Spacecraft and Rockets 2004; 41 (1): 120-5.
  • [14] Reiss P. New methodologies for the thermal modelling of cubesats. 26th Annual AIAA/USU Conference on Small Satellites, Logan, Utah, USA, 2012.
  • [15] Escobar E, Diaz M, Zagal JC. Design automation for satellite passive thermal control, the 4S Symposium, Portoroz, Slovenia, 2012.
  • [16] Thanarasi K. Thermal analysis of cubesat in worse case hot and cold environment using FEA method. Applied Mechanics and Materials 2012; 225: 497-502. https://doi.org/10.4028/www.scientific.net/AMM.225.497
  • [17] Bulut M, Kahriman A, Sozbir N. Design and analysis for the thermal control system of nanosatellite. ASME 2010 International Mechanical Congress and Exposition, Vancouver, British Columbia, Canada, 2010.
  • [18] Onetto R, Paas H, Perez H. Cube satellite design final report. EML design project. Florida International University, Florida, USA, 2010.
  • [19] Bulut M, Sozbir N. Analytical investigation of a nanosatellite panel surface temperatures for different altitudes and panel combinations, Appl Therm Eng 2015; 75: 1076-83. https://doi.org/10.1016/j.applthermaleng.2014.10.059.
  • [20] Brouwer GF, Ubbels WJ, Vaartjes AA, Te Hennepe F. Assembly, integration, and testing of the Delfi-C3 nanosatellite, Space systems symposium Lessons learned in space systems. 59th International Astronautical Congress, Glasgow, 2008.
  • [21] Escobar E, Diaz M, Zagal JC. Evolutionary design of a satellite thermal control system: Real experiments for a Cubesat mission. Appl Therm Eng 2016; 105: 490-500. https://doi.org/10.1016/j.applthermaleng.2016.03.024.
  • [22] Corpino S, Caldera M, Masoero M, Nichele F, Viola N. Thermal design and analysis of a nanosatellite in low earth orbit. Acta Astronaut 2015; 115: 247-261. https://doi.org/10.1016/j.actaastro.2015.05.012
  • [23] Diaz-Aguado MF, Greenbaum J, Fowler WT, Glenn Lightsey E. Small satellite thermal design, test, and analysis. Proc. SPIE 6221, Modeling, Simulation, and Verification of Space-based Systems III, 2006.
  • [24] Bauer J, Carter M, Kelley K, Mello E, Neu S., Orphanos A, Shaffer T, Withrow A. Mechanical, power, and thermal subsystem design for a cubesat mission. Worcester Polytechnic Institute, Project: JB3-CBS2, Worchester Polytechnic Institute, Worcester, Massachusetts, 2012
  • [25] Czernik S. Design of the thermal control system for compass-1. University of Applied Sciences Aachen, Germany, 2004.
  • [26] Moffitt BA. Predictive thermal analysis of the combat sentinel satellite test article. Thesis, Utah State University, Logan, Utah, USA, 2003.
  • [27] Smith KD. Environmental testing and thermal analysis of the NPS solar cell array tester (NPS-SCAT) cubesat. Thesis, Naval Postgraduate School, Monterey, California, USA, 2011.
  • [28] Trinh GT. Environmental testing and orbital decay analysis for a cubesat. Thesis, San Jose State University, San Jose, California, USA, 2013.
  • [29] Osdol TCV, Dorsey C, Hedlund J, Hoye T, Jacobs O, Klarreich-Giglio K, Martin E, Ruiz M, Schlesselmann M, Singh Z. Design, fabrication, and analysis of a 3U cubesat platform, Bachelor of Science Thesis, Santa Clara University, Santa Clara, California, USA, 2013.
  • [30] Chandrashekar S. Thermal analysis and control of MIST cubesat. Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2017.
  • [31] Fernandes GF, Santos MB, Silva VD, Almeida JS, Nogueira PRM. Thermal tests for Cubesat in Brazil: lessons learned and the challenges for the future. 67th International Astronautical Congress (IAC), Guadalajara, Mexico, 2016.
  • [32] Blom E, Narverud E, Birkeland R. Technical satellite specification. Technical report, 2006.
  • [33] Gilmore DG. Spacecraft Thermal Control Handbook Volume I: Fundamental Technologies. 2nd ed., El Segundo, CA: The Aerospace Press; 2002.
  • [34] Spremo S, Bregman J, Dallara C, Ghassemieh S, Hanratty J. Low cost rapid response space spacecraft (LCRRS), A research project in low cost spacecraft design and fabrication in a rapid prototyping environment. 22nd Annual AIAA/USU Conference on Small Satellites, Logan, Utah, 2008.
  • [35] Bulut M, Gulgonul S, Sozbir N. Thermal control design of TUSAT. 6th International Energy Conversion Engineering Conference, AIAA, Cleveland, Ohio, USA, 2008.
  • [36] Sozbir N, Bulut M. Thermal control of CM and SM panels for Turkish satellite. SAE 39th International Conference on Environmental Systems, Savannah, Georgia, USA, 2009
  • [37] Bulut M. Thermal simulation software based on excel for spacecraft applications. Selcuk Univ. J. Eng. Sci. Techn. 2018; 6 (4): 592-600. https://doi.org/10.15317/Scitech.2018.154
  • [38] Bulut M, Sozbir N. Thermal design of a geostationary orbit communications satellite. Electronics World 2016; 122 (1964): 28-32.
  • [39] Bulut M, Sozbir N. Heat rejection capability for geostationary satellites. 9. Ankara International Aerospace Conference, Ankara, Turkey, 2017.
  • [40] Pisacane LV. Fundamentals of Space Systems. 2nd ed., New York, USA: Oxford University Press, 2005.
  • [41] Karam RD. Satellite Thermal Control for Systems Engineers. Vol.181, AIAA, Reston, VA, 1998.
  • [42] Bratcher JR. Testing program for KYSAT-1. Thesis, University of Kentucky, USA, 2010.
  • [43] Bowen J, Villa M, Williams A. Cubesat based rendezvous, proximity operations, and docking in the CPOD mission. 29th Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA, 2015.
  • [44] Bulut, M. Thermal design, analysis, and testing of the first Turkish 3U communication CubeSat in low earth orbit. J Therm Anal Calorim 2021. https://doi.org/10.1007/s10973-021-10566-z
  • [45] Ampatzoglou A, Kostopoulos V. Design, analysis, optimization, manufacturing, and testing of a 2U cubesat, Hindawi Int J of Aerospace Engineering, 2018, Article ID 9724263 (2018) 15 pages. https://doi.org/10.1155/2018/9724263
  • [46] Süer M. TURKSAT 3USAT Isıl tasarım raporu, ITU, İstanbul, Turkey, 2011.
There are 46 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Murat Bulut This is me 0000-0002-9024-7722

Nedim Sözbir This is me 0000-0003-4633-2521

Publication Date March 1, 2021
Submission Date February 11, 2019
Published in Issue Year 2021 Volume: 7 Issue: 3

Cite

APA Bulut, M., & Sözbir, N. (2021). THERMAL DESIGN, ANALYSIS AND TEST VALIDATION OF TURKSAT-3USAT SATELLITE. Journal of Thermal Engineering, 7(3), 468-482. https://doi.org/10.18186/thermal.887316
AMA Bulut M, Sözbir N. THERMAL DESIGN, ANALYSIS AND TEST VALIDATION OF TURKSAT-3USAT SATELLITE. Journal of Thermal Engineering. March 2021;7(3):468-482. doi:10.18186/thermal.887316
Chicago Bulut, Murat, and Nedim Sözbir. “THERMAL DESIGN, ANALYSIS AND TEST VALIDATION OF TURKSAT-3USAT SATELLITE”. Journal of Thermal Engineering 7, no. 3 (March 2021): 468-82. https://doi.org/10.18186/thermal.887316.
EndNote Bulut M, Sözbir N (March 1, 2021) THERMAL DESIGN, ANALYSIS AND TEST VALIDATION OF TURKSAT-3USAT SATELLITE. Journal of Thermal Engineering 7 3 468–482.
IEEE M. Bulut and N. Sözbir, “THERMAL DESIGN, ANALYSIS AND TEST VALIDATION OF TURKSAT-3USAT SATELLITE”, Journal of Thermal Engineering, vol. 7, no. 3, pp. 468–482, 2021, doi: 10.18186/thermal.887316.
ISNAD Bulut, Murat - Sözbir, Nedim. “THERMAL DESIGN, ANALYSIS AND TEST VALIDATION OF TURKSAT-3USAT SATELLITE”. Journal of Thermal Engineering 7/3 (March 2021), 468-482. https://doi.org/10.18186/thermal.887316.
JAMA Bulut M, Sözbir N. THERMAL DESIGN, ANALYSIS AND TEST VALIDATION OF TURKSAT-3USAT SATELLITE. Journal of Thermal Engineering. 2021;7:468–482.
MLA Bulut, Murat and Nedim Sözbir. “THERMAL DESIGN, ANALYSIS AND TEST VALIDATION OF TURKSAT-3USAT SATELLITE”. Journal of Thermal Engineering, vol. 7, no. 3, 2021, pp. 468-82, doi:10.18186/thermal.887316.
Vancouver Bulut M, Sözbir N. THERMAL DESIGN, ANALYSIS AND TEST VALIDATION OF TURKSAT-3USAT SATELLITE. Journal of Thermal Engineering. 2021;7(3):468-82.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering