Review
BibTex RIS Cite
Year 2021, Volume: 7 Issue: 4, 970 - 983, 01.05.2021
https://doi.org/10.18186/thermal.931165

Abstract

References

  • REFERENCES [1] Agyenim F., Knight I.,and Rhodes M. Design and experimental testing of the performance of an outdoor LiBr/H2O solar thermal absorption cooling system with a cold store. Solar Energy 2010, Vol.84: 735-744. doi:/10.1016/.2010.01.013.
  • [2] Ahmed Hamza H., Peter Noeres, and Clemens Pollerberg. Performance assessment of an integrated free cooling and solar powered single-effect lithium bromide- water absorption chiller. Solar Energy, 2008; 82: 1021 -1030.‏ doi: /10.1016/.2008.04.011.
  • [3] AL-UGLA A., M.A.I. El-Shaarawi, S.A.M. Said, and A.M. Al-Qutub. Techno-economic analysis of solar- assisted air-conditioning systems for commercial buildings in Saudi Arabia. Renewable and Sustainable Energy Reviews, 2016; 54: 1301 -1310.‏ doi: /10.1016/.2015.10.047.
  • [4] Allouhi A., Kousksou T., Jamil A., El Rhafiki T., Mourad Y., and Zeraouli Y. Economic and environmental assessment of solar air-conditioning systems in Morocco. Renewable and Sustainable Energy Reviews, 2015;50: 770 - 781.‏ doi: /10.1016/.2015.05.044.
  • [5] Al-Alili A., Hwang Y., and Radermacher R. Review of solar thermal air conditioning technologies. International Journal of Refrigeration, 2014; 39: 4 - 22.‏ doi: /10.1016/.2013.11.028.
  • [6] Al-Alili, A., Islam, M.D., Kubo, I., Hwang, Y., and Radermacher, R. Modeling of a solar powered absorption cycle for Abu Dhabi. Appl. Energy, 2012; 93: 160-167. doi:10.1016/.2010.11.034.
  • [7] Al-Dadah, R.K., Jackson, G., and Rezk, A. "Solar powered vapor absorption system using propane and alkylated benzene AB300 oil". Appl. Therm. Eng. 2011; 31: 1936-1942. doi /10.1016/. 2011.02.040.
  • [8] Assilzadeh F., Kalogirou S.A., Ali Y., and Sopian K. Simulation and optimization of a LiBr solar absorption cooling system with evacuated tube collectors. Renew Energy, 2005; 30 (8):1143–59.doi:/10.1016/.2011.02.040.
  • [9] Atmaca I, and Yigit A. Simulation of solar-powered absorption cooling system. Renew Energy 2003;28(8):1277–93. doi: /10.1016/S0960-1481(02)00252-5.
  • [10] Baniyounes, Ali M., M. G. Rasul, and Mohammad Masud K. Assessment of solar assisted air conditioning in Central Queensland's subtropical climate, Australia. Renewable energy 2013; 50: 334 - 341.doi:/10.1016/.2012.06.042.
  • [11] Balghouthi M., Chahbani M. H., and Guizani A. Feasibility of solar absorption air conditioning in Tunisia. Build Environ, 2008; 43(9):1459–70.doi:/10.1016/.2007.08.003.
  • [12] Bujedo, L.A., Rodrı´guez, J., Martı´nez, P.J., Experimental results of different control strategies in a solar air conditioning system at part load. Solar Energy, 2011; 85: 1302-1315 doi.:/10.1016/.2011.03.009.
  • [13] Casals, Xavier Garcia. Solar absorption cooling in Spain: perspectives and outcomes from the simulation of recent installations. Renewable energy, 2006; 31(9): 1371 - 1389.‏ doi:/10.1016/.2005.07.002.
  • [14] Desideri, Umberto, Stefania Proietti, and Paolo Sdringola. Solar-powered cooling systems: Technical and economic analysis on industrial refrigeration and air- conditioning applications. Applied Energy, 2009;86(9): 1376 -1386.‏ doi:/10.1016/.2009.01.011.
  • [15] Evangelos Bellos., & Christos Tzivanidis. Energetic and financial analysis of solar cooling systems with single effect absorption chiller in various climates. Applied Thermal Engineering, 126, 809-821. doi:/10.1016/.2011.10.025.
  • [16] Eicker, U., Pietruschka, D., Pesch, R., Heat rejection and primary energy efficiency of solar driven absorption cooling systems. Int. J. of Refrigeration, 2012; 35: 729- 738. doi:/10.1016/.2012.01.012.
  • [17] Fasfous, A., J. Asfar, A. Al-Salaymeh, A. Sakhrieh, Z. Al_hamamre, A. Al-bawwab, and M. Hamdan. Potential of utilizing solar cooling in The University of Jordan. Energy conversion and management, 2013; 65: 729-735. doi:10.1016/.2012.01.045. ‏ [18] Farshi L. G., Mahmoudi S.M., Rosen M. A., Yari M., and Amidpour M. Exergoeconomic analysis of double effect absorption refrigeration systems". Energy Convers Management, 2013; 65:13–25. doi:/10.1016/.2012.07.019.
  • [19] Fong, K. F., T.T. Chow, C.K. Lee, Z. Lin, and L.S. Chan. Comparative study of different solar cooling systems for buildings in subtropical city. Solar Energy, 2010; 84(2): 227- 244.‏ doi:/10.1016/.2009.11.002.
  • [20] Gomri and Rabah. Investigation of the potential of application of single effect and multiple effect absorption cooling systems. Energy Conversion and Management, 2010; 51(8): 1629 - 1636.‏ doi:/10.1016/.2009.12.039.
  • [21] Hang, Yin, Ming Qu, and Fu Zhao. Economical and environmental assessment of an optimized solar cooling system for a medium-sized benchmark office building in Los Angeles, California. Renewable Energy, 2011; 36(2): 648- 658.‏ doi:/10.1016/.2010.08.005.
  • [22] Helm M, Keil C, Hiebler S, Mehling H, and Schweigler C. Solar heating and cooling system with absorption chiller and low temperature latent heat storage: energetic performance and operational experience. Int. J. of Refrigeration 2009; 32(4):596–606. doi:/10.1016/.2009.02.010.
  • [23] Hidalgo, M.C.R., Aumente, P.R., Milla´ n, M.I., Neumann, A.L., and Mangual, R.S., Energy and carbon emission savings in Spanish housing air-conditioning using solar driven absorption system. Appl. Therm. Eng, 2008; 28: 1734-1744. doi:/10.1016/.2007.11.013.
  • [24] Izquierdo M, Venegas M, Rodriguez P, and Lecuona A. Crystallization as a limit to develop solar air-cooled LiBr–H2O absorption systems using low-grade heat. Sol. Energy Mater Sol. C., 2004; 81:205–216.
  • [25] Jelinek, M., Levy, A., and Borde, I. Performance of a triple pressure level absorption/compression cycle. Applied Thermal Engineering, 2012; 42: 2-5. doi:/10.1016/.2003.11.002.
  • [26] Jelinek, M., Levy, A., and Borde, I. The performance of a triple pressure level absorption cycle (TPLAC) with working fluids based on the absorbent DMEU and the refrigerants R22, R32, R124, R125, R134a and R152a. Applied Thermal Engineering,2008; 28:1551-1555. doi:/10.1016/.2008.01.023.
  • [27] Joudi K. A. and Abdul-Ghafour Q.J. Development of design charts for solar cooling systems. Part I: Computer simulation for a solar cooling system and development of solar cooling design charts. Energy Convers Manage, 2003; 44(2): 313–39. doi:/10.1016/S0196-8904(02)00045-6.
  • [28] Kim D.S. and Infante Ferreira C. A. Air cooled LiBr–water absorption chillers forsolar air conditioning in extremely hot weathers. Energy Convers Manage, 2009; 50(4):1018–25. doi:/10.1016/.2008.12.021.
  • [29] Koroneos C, Nanaki E, and Xydis G. Solar air conditioning systems and their applicability – an exergyapproach. Resour Conserv Recycl, 2010; 55:74–82. doi:/10.1016/.2010.07.005.
  • [30] Lizarte, R., Izquierdo, M., Marcos, J.D., and Palacios, E. An innovative solar-driven directly air-cooled LiBreH2O absorption chiller prototype for residential use. Energy Build, 2012; 47: 1-11. doi:/10.1016/.2011.11.011.
  • [31] Li Z. F., and Sumathy K. Experimental studies on a solar powered air conditioning system with partitioned hot water storage tank. Solar Energy, 2001; 71(5) : 285-297.‏ doi:/10.1016/S0038-092X(01)00064-0.
  • [32] Mammoli A, Vorobieff P, Barsun H, Burnett R, and Fisher D. Energetic economic and environmental performance of a solar-thermal-assisted HVAC system. Energy Build, 2010; 42(9):524–1535. doi:/10.1016/.2010.03.023.
  • [33] Marc O, Lucas F, Sinama F, and Monceyron E. Experimental investigation of a solar cooling absorption system operating without any backup system under tropical climate. Energy Build, 2010; 42(6):774–782. doi:/10.1016/.2009.12.006.
  • [34] Mazloumi M, Naghashzadegan M, Javaherdeh K. Simulation of solar lithium bromide–water absorption cooling system with parabolic trough collector. Energy Convers Manage, 2008; 49(10):2820–2832. doi:/10.1016/.2008.03.014.
  • [35] Monné, C., S. Alonso, F. Palacín, and L. Serra. Monitoring and simulation of an existing solar powered a bsorption cooling system in Zaragoza (Spain). Applied Thermal Engineering, 2011; 31(1): 28-35.‏ doi:/10.1016/.2010.08.002.
  • [36] Ortiz M., Barsun H., He H., Vorobieff P., and Mammoli A. Modeling of a solar-assisted HVAC system with thermal storage. Energy Build, 2010;42(4):500–509. doi:/10.1016/.2009.10.019.
  • [37] Pongtornkulpanich A., Thepa S., Amornkitbamrung M., and Butcher C. Experience with fully operational solar-driven 10-ton LiBr/H2O single-effect absorption cooling system in Thailand. Renew Energy, 2008; 33(5): 943- 949. doi:/10.1016/.2007.09.022.
  • [38] Praene JP, Marc O, Lucas F, Miranville F. Simulation and experimental investigation of solar absorption cooling system in Reunion Island." Applied Energy, 2011; 88(3): 831-839.‏ doi:/10.1016/.2010.09.016.
  • [39] Prasartkaew B., and Kumar S. A low carbon cooling system using renewable energy resources and technologies. Energy Build 2010; 42(9):1453–1462. doi:/10.1016/.2010.03.015.
  • [40] Qu M., Yin H., and David H., Archer a solar thermal cooling and heating system for a building: experimental and model based performance analysis and design. Solar Energy, 2010; 84(2):166–182. doi:/10.1016/.2009.10.010.
  • [41] Rosiek, Sabina, and Francisco Javier Batlles Garrido. Performance evaluation of solar-assisted air-conditioning system with chilled water storage (CIESOL building). Energy conversion and management, 2012; 55: 81-92.‏ doi:/10.1016/.2011.10.025.
  • [42] Rosiek S., and Batlles F.J. Integration of the solar thermal energy in the construction: analysis of the solar-assisted air-conditioning system installed in CIESOL building. Renew Energy, 2009; 34(6):1423–1431. doi:/10.1016/j.renene.2008.11.021.
  • [43] Said S.A.M., El-Shaarawi M.A.I., and Siddiqui, M.U. Alternative designs for a 24-h operating solar-powered absorption refrigeration technology. Int. J. of Refrigeration, 2012; 35: 1967-1977. doi:/10.1016/.2012.06.008.
  • [44] Sarabia Escriva E.J., Lamas Sivila E.V., and Soto Frances V.M. Air conditioning production by a single effect absorption cooling machine directly coupled to a solar collector field. Application to Spanish climates. Solar Energy, 2011; 85: 2108-2121. doi:/10.1016/.2011.05.019.
  • [45] Sayegh, and Marderos Ara The solar contribution to air conditioning systems for residential buildings. Desalination,2007; 209: 171-176.‏ doi:/10.1016/.2007.04.038.
  • [46] Syed A., Izquierdo M., Rodriguez P., Maidment G., Missenden J., Lecuona A. A novel experimental investigation of a solar cooling system in Madrid. Int. J. Refrigeration, 2005; 28(6):859–871. doi:/10.1016/.2005.01.007.
  • [47] Shekarchiana M., Moghavvemib M., Motasemic F., Mahliaa T.M.I. Energy savings and cost–benefit analysis of using compression and absorption chillers for air conditioners in Iran. Renewable Sustainable Energy, 2011;15:1950–1960. doi:/10.1016.2010.12.020.
  • [48] Thomas, Sébastien, and Philippe André. Dynamic simulation of a complete solar assisted air-conditioning system in an office building using TRNSYS. (2009).‏ doi:/10.1016/j.renene.2008.11.021.
  • [49] Tsoutsos, Th, et al. Design of a solar absorption cooling system in a Greek hospital. Energy and Buildings, 2010;42(2): 265 -272. ‏ [50] Ullah K.R., Saidur R., Ping H.W., Akikur R.K., and Shuvo N.H. A review of solar thermal refrigeration and cooling methods. Renew Sustain Energy Rev, 2013; 24: 499– 513. doi: /10.1016/.2013.03.024.
  • [51] Alirezaie, A., Hajmohammad, M. H., Ahangar, M. R. H., & Esfe, M. H.. Price-performance evaluation of thermal conductivity enhancement of nanofluids with different particle sizes. Applied Thermal Engineering, 2018; 128: 373-380.‏ doi:/10.1016/.2017.08.143.
  • [52] Esfe, M. H., Hajmohammad, H., Toghraie, D., Rostamian, H., Mahian, O., & Wongwises, S. Multi-objective optimization of nanofluid flow in double tube heat exchangers for applications in energy systems. Energy, 2017; 137: 160-171.‏ doi:/10.1016/.2017.06.104.
  • [53] Esfe, M. H., Saedodin, S., Biglari, M., & Rostamian, H. An experimental study on thermophysical properties and heat transfer characteristics of low volume concentrations of Ag-water nanofluid. International Communications in Heat and Mass Transfer, 2016; 74: 91-97.‏ doi:/10.1016/.2016.03.004.
  • [54] Esfe, M. H., Saedodin, S., Biglari, M., & Rostamian, H. Experimental investigation of thermal conductivity of CNTs-Al2O3/water: a statistical approach. International Communications in Heat and Mass Transfer, 2015; 69:29-33.‏ doi:/10.1016/ 2015.10.005.
  • [55] Bellos, E., Tzivanidis, C., Symeou, C., & Antonopoulos, K. A. Energetic, exergetic and financial evaluation of a solar driven absorption chiller–A dynamic approach. Energy conversion and management, 2017; 137: 34-48.‏ doi:/10.1016/.2017.01.041.

SOLAR ABSORPTION COOLING SYSTEMS: A REVIEW

Year 2021, Volume: 7 Issue: 4, 970 - 983, 01.05.2021
https://doi.org/10.18186/thermal.931165

Abstract

Reduction of the green-house effect can be obtained by reducing the emissions of CO2. One of the technologies that contributes to this purpose is using solar cooling systems. An example of such systems is Lithium Bromide Absorption Chillers-Driven by Hot Water (LiBr/H2O absorption chillers). These chillers are normally powered by solar collectors (ordinary plate or evacuate tubular), which are widely accessible. This paper includes a review of previous experimental and theoretical studies on the effect of single cooling absorption systems. In addition, new proposals regarding the design of the solar collectors, supporting systems for energy and cooling methods will be provided. Furthermore, the present paper also summarizes the major double influence of the cooling absorption systems, add to the two-stage and half-effect absorption coolers. The influence of double cooling absorption systems using solar power could be considered for the buildings with more cooling capacity requirements, but with structure of space restrictions. However, for these cases is important to consider the direct irradiation, which needs high levels. For dry regions with water shortage, half-absorption and two-stage absorption coolers are more suitable. Solar-powered cooling systems designs should follow and incorporate standard rules based on the characteristics of various areas in order to be applicable on a large scale.

References

  • REFERENCES [1] Agyenim F., Knight I.,and Rhodes M. Design and experimental testing of the performance of an outdoor LiBr/H2O solar thermal absorption cooling system with a cold store. Solar Energy 2010, Vol.84: 735-744. doi:/10.1016/.2010.01.013.
  • [2] Ahmed Hamza H., Peter Noeres, and Clemens Pollerberg. Performance assessment of an integrated free cooling and solar powered single-effect lithium bromide- water absorption chiller. Solar Energy, 2008; 82: 1021 -1030.‏ doi: /10.1016/.2008.04.011.
  • [3] AL-UGLA A., M.A.I. El-Shaarawi, S.A.M. Said, and A.M. Al-Qutub. Techno-economic analysis of solar- assisted air-conditioning systems for commercial buildings in Saudi Arabia. Renewable and Sustainable Energy Reviews, 2016; 54: 1301 -1310.‏ doi: /10.1016/.2015.10.047.
  • [4] Allouhi A., Kousksou T., Jamil A., El Rhafiki T., Mourad Y., and Zeraouli Y. Economic and environmental assessment of solar air-conditioning systems in Morocco. Renewable and Sustainable Energy Reviews, 2015;50: 770 - 781.‏ doi: /10.1016/.2015.05.044.
  • [5] Al-Alili A., Hwang Y., and Radermacher R. Review of solar thermal air conditioning technologies. International Journal of Refrigeration, 2014; 39: 4 - 22.‏ doi: /10.1016/.2013.11.028.
  • [6] Al-Alili, A., Islam, M.D., Kubo, I., Hwang, Y., and Radermacher, R. Modeling of a solar powered absorption cycle for Abu Dhabi. Appl. Energy, 2012; 93: 160-167. doi:10.1016/.2010.11.034.
  • [7] Al-Dadah, R.K., Jackson, G., and Rezk, A. "Solar powered vapor absorption system using propane and alkylated benzene AB300 oil". Appl. Therm. Eng. 2011; 31: 1936-1942. doi /10.1016/. 2011.02.040.
  • [8] Assilzadeh F., Kalogirou S.A., Ali Y., and Sopian K. Simulation and optimization of a LiBr solar absorption cooling system with evacuated tube collectors. Renew Energy, 2005; 30 (8):1143–59.doi:/10.1016/.2011.02.040.
  • [9] Atmaca I, and Yigit A. Simulation of solar-powered absorption cooling system. Renew Energy 2003;28(8):1277–93. doi: /10.1016/S0960-1481(02)00252-5.
  • [10] Baniyounes, Ali M., M. G. Rasul, and Mohammad Masud K. Assessment of solar assisted air conditioning in Central Queensland's subtropical climate, Australia. Renewable energy 2013; 50: 334 - 341.doi:/10.1016/.2012.06.042.
  • [11] Balghouthi M., Chahbani M. H., and Guizani A. Feasibility of solar absorption air conditioning in Tunisia. Build Environ, 2008; 43(9):1459–70.doi:/10.1016/.2007.08.003.
  • [12] Bujedo, L.A., Rodrı´guez, J., Martı´nez, P.J., Experimental results of different control strategies in a solar air conditioning system at part load. Solar Energy, 2011; 85: 1302-1315 doi.:/10.1016/.2011.03.009.
  • [13] Casals, Xavier Garcia. Solar absorption cooling in Spain: perspectives and outcomes from the simulation of recent installations. Renewable energy, 2006; 31(9): 1371 - 1389.‏ doi:/10.1016/.2005.07.002.
  • [14] Desideri, Umberto, Stefania Proietti, and Paolo Sdringola. Solar-powered cooling systems: Technical and economic analysis on industrial refrigeration and air- conditioning applications. Applied Energy, 2009;86(9): 1376 -1386.‏ doi:/10.1016/.2009.01.011.
  • [15] Evangelos Bellos., & Christos Tzivanidis. Energetic and financial analysis of solar cooling systems with single effect absorption chiller in various climates. Applied Thermal Engineering, 126, 809-821. doi:/10.1016/.2011.10.025.
  • [16] Eicker, U., Pietruschka, D., Pesch, R., Heat rejection and primary energy efficiency of solar driven absorption cooling systems. Int. J. of Refrigeration, 2012; 35: 729- 738. doi:/10.1016/.2012.01.012.
  • [17] Fasfous, A., J. Asfar, A. Al-Salaymeh, A. Sakhrieh, Z. Al_hamamre, A. Al-bawwab, and M. Hamdan. Potential of utilizing solar cooling in The University of Jordan. Energy conversion and management, 2013; 65: 729-735. doi:10.1016/.2012.01.045. ‏ [18] Farshi L. G., Mahmoudi S.M., Rosen M. A., Yari M., and Amidpour M. Exergoeconomic analysis of double effect absorption refrigeration systems". Energy Convers Management, 2013; 65:13–25. doi:/10.1016/.2012.07.019.
  • [19] Fong, K. F., T.T. Chow, C.K. Lee, Z. Lin, and L.S. Chan. Comparative study of different solar cooling systems for buildings in subtropical city. Solar Energy, 2010; 84(2): 227- 244.‏ doi:/10.1016/.2009.11.002.
  • [20] Gomri and Rabah. Investigation of the potential of application of single effect and multiple effect absorption cooling systems. Energy Conversion and Management, 2010; 51(8): 1629 - 1636.‏ doi:/10.1016/.2009.12.039.
  • [21] Hang, Yin, Ming Qu, and Fu Zhao. Economical and environmental assessment of an optimized solar cooling system for a medium-sized benchmark office building in Los Angeles, California. Renewable Energy, 2011; 36(2): 648- 658.‏ doi:/10.1016/.2010.08.005.
  • [22] Helm M, Keil C, Hiebler S, Mehling H, and Schweigler C. Solar heating and cooling system with absorption chiller and low temperature latent heat storage: energetic performance and operational experience. Int. J. of Refrigeration 2009; 32(4):596–606. doi:/10.1016/.2009.02.010.
  • [23] Hidalgo, M.C.R., Aumente, P.R., Milla´ n, M.I., Neumann, A.L., and Mangual, R.S., Energy and carbon emission savings in Spanish housing air-conditioning using solar driven absorption system. Appl. Therm. Eng, 2008; 28: 1734-1744. doi:/10.1016/.2007.11.013.
  • [24] Izquierdo M, Venegas M, Rodriguez P, and Lecuona A. Crystallization as a limit to develop solar air-cooled LiBr–H2O absorption systems using low-grade heat. Sol. Energy Mater Sol. C., 2004; 81:205–216.
  • [25] Jelinek, M., Levy, A., and Borde, I. Performance of a triple pressure level absorption/compression cycle. Applied Thermal Engineering, 2012; 42: 2-5. doi:/10.1016/.2003.11.002.
  • [26] Jelinek, M., Levy, A., and Borde, I. The performance of a triple pressure level absorption cycle (TPLAC) with working fluids based on the absorbent DMEU and the refrigerants R22, R32, R124, R125, R134a and R152a. Applied Thermal Engineering,2008; 28:1551-1555. doi:/10.1016/.2008.01.023.
  • [27] Joudi K. A. and Abdul-Ghafour Q.J. Development of design charts for solar cooling systems. Part I: Computer simulation for a solar cooling system and development of solar cooling design charts. Energy Convers Manage, 2003; 44(2): 313–39. doi:/10.1016/S0196-8904(02)00045-6.
  • [28] Kim D.S. and Infante Ferreira C. A. Air cooled LiBr–water absorption chillers forsolar air conditioning in extremely hot weathers. Energy Convers Manage, 2009; 50(4):1018–25. doi:/10.1016/.2008.12.021.
  • [29] Koroneos C, Nanaki E, and Xydis G. Solar air conditioning systems and their applicability – an exergyapproach. Resour Conserv Recycl, 2010; 55:74–82. doi:/10.1016/.2010.07.005.
  • [30] Lizarte, R., Izquierdo, M., Marcos, J.D., and Palacios, E. An innovative solar-driven directly air-cooled LiBreH2O absorption chiller prototype for residential use. Energy Build, 2012; 47: 1-11. doi:/10.1016/.2011.11.011.
  • [31] Li Z. F., and Sumathy K. Experimental studies on a solar powered air conditioning system with partitioned hot water storage tank. Solar Energy, 2001; 71(5) : 285-297.‏ doi:/10.1016/S0038-092X(01)00064-0.
  • [32] Mammoli A, Vorobieff P, Barsun H, Burnett R, and Fisher D. Energetic economic and environmental performance of a solar-thermal-assisted HVAC system. Energy Build, 2010; 42(9):524–1535. doi:/10.1016/.2010.03.023.
  • [33] Marc O, Lucas F, Sinama F, and Monceyron E. Experimental investigation of a solar cooling absorption system operating without any backup system under tropical climate. Energy Build, 2010; 42(6):774–782. doi:/10.1016/.2009.12.006.
  • [34] Mazloumi M, Naghashzadegan M, Javaherdeh K. Simulation of solar lithium bromide–water absorption cooling system with parabolic trough collector. Energy Convers Manage, 2008; 49(10):2820–2832. doi:/10.1016/.2008.03.014.
  • [35] Monné, C., S. Alonso, F. Palacín, and L. Serra. Monitoring and simulation of an existing solar powered a bsorption cooling system in Zaragoza (Spain). Applied Thermal Engineering, 2011; 31(1): 28-35.‏ doi:/10.1016/.2010.08.002.
  • [36] Ortiz M., Barsun H., He H., Vorobieff P., and Mammoli A. Modeling of a solar-assisted HVAC system with thermal storage. Energy Build, 2010;42(4):500–509. doi:/10.1016/.2009.10.019.
  • [37] Pongtornkulpanich A., Thepa S., Amornkitbamrung M., and Butcher C. Experience with fully operational solar-driven 10-ton LiBr/H2O single-effect absorption cooling system in Thailand. Renew Energy, 2008; 33(5): 943- 949. doi:/10.1016/.2007.09.022.
  • [38] Praene JP, Marc O, Lucas F, Miranville F. Simulation and experimental investigation of solar absorption cooling system in Reunion Island." Applied Energy, 2011; 88(3): 831-839.‏ doi:/10.1016/.2010.09.016.
  • [39] Prasartkaew B., and Kumar S. A low carbon cooling system using renewable energy resources and technologies. Energy Build 2010; 42(9):1453–1462. doi:/10.1016/.2010.03.015.
  • [40] Qu M., Yin H., and David H., Archer a solar thermal cooling and heating system for a building: experimental and model based performance analysis and design. Solar Energy, 2010; 84(2):166–182. doi:/10.1016/.2009.10.010.
  • [41] Rosiek, Sabina, and Francisco Javier Batlles Garrido. Performance evaluation of solar-assisted air-conditioning system with chilled water storage (CIESOL building). Energy conversion and management, 2012; 55: 81-92.‏ doi:/10.1016/.2011.10.025.
  • [42] Rosiek S., and Batlles F.J. Integration of the solar thermal energy in the construction: analysis of the solar-assisted air-conditioning system installed in CIESOL building. Renew Energy, 2009; 34(6):1423–1431. doi:/10.1016/j.renene.2008.11.021.
  • [43] Said S.A.M., El-Shaarawi M.A.I., and Siddiqui, M.U. Alternative designs for a 24-h operating solar-powered absorption refrigeration technology. Int. J. of Refrigeration, 2012; 35: 1967-1977. doi:/10.1016/.2012.06.008.
  • [44] Sarabia Escriva E.J., Lamas Sivila E.V., and Soto Frances V.M. Air conditioning production by a single effect absorption cooling machine directly coupled to a solar collector field. Application to Spanish climates. Solar Energy, 2011; 85: 2108-2121. doi:/10.1016/.2011.05.019.
  • [45] Sayegh, and Marderos Ara The solar contribution to air conditioning systems for residential buildings. Desalination,2007; 209: 171-176.‏ doi:/10.1016/.2007.04.038.
  • [46] Syed A., Izquierdo M., Rodriguez P., Maidment G., Missenden J., Lecuona A. A novel experimental investigation of a solar cooling system in Madrid. Int. J. Refrigeration, 2005; 28(6):859–871. doi:/10.1016/.2005.01.007.
  • [47] Shekarchiana M., Moghavvemib M., Motasemic F., Mahliaa T.M.I. Energy savings and cost–benefit analysis of using compression and absorption chillers for air conditioners in Iran. Renewable Sustainable Energy, 2011;15:1950–1960. doi:/10.1016.2010.12.020.
  • [48] Thomas, Sébastien, and Philippe André. Dynamic simulation of a complete solar assisted air-conditioning system in an office building using TRNSYS. (2009).‏ doi:/10.1016/j.renene.2008.11.021.
  • [49] Tsoutsos, Th, et al. Design of a solar absorption cooling system in a Greek hospital. Energy and Buildings, 2010;42(2): 265 -272. ‏ [50] Ullah K.R., Saidur R., Ping H.W., Akikur R.K., and Shuvo N.H. A review of solar thermal refrigeration and cooling methods. Renew Sustain Energy Rev, 2013; 24: 499– 513. doi: /10.1016/.2013.03.024.
  • [51] Alirezaie, A., Hajmohammad, M. H., Ahangar, M. R. H., & Esfe, M. H.. Price-performance evaluation of thermal conductivity enhancement of nanofluids with different particle sizes. Applied Thermal Engineering, 2018; 128: 373-380.‏ doi:/10.1016/.2017.08.143.
  • [52] Esfe, M. H., Hajmohammad, H., Toghraie, D., Rostamian, H., Mahian, O., & Wongwises, S. Multi-objective optimization of nanofluid flow in double tube heat exchangers for applications in energy systems. Energy, 2017; 137: 160-171.‏ doi:/10.1016/.2017.06.104.
  • [53] Esfe, M. H., Saedodin, S., Biglari, M., & Rostamian, H. An experimental study on thermophysical properties and heat transfer characteristics of low volume concentrations of Ag-water nanofluid. International Communications in Heat and Mass Transfer, 2016; 74: 91-97.‏ doi:/10.1016/.2016.03.004.
  • [54] Esfe, M. H., Saedodin, S., Biglari, M., & Rostamian, H. Experimental investigation of thermal conductivity of CNTs-Al2O3/water: a statistical approach. International Communications in Heat and Mass Transfer, 2015; 69:29-33.‏ doi:/10.1016/ 2015.10.005.
  • [55] Bellos, E., Tzivanidis, C., Symeou, C., & Antonopoulos, K. A. Energetic, exergetic and financial evaluation of a solar driven absorption chiller–A dynamic approach. Energy conversion and management, 2017; 137: 34-48.‏ doi:/10.1016/.2017.01.041.
There are 53 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Ali Abdulqader Mustafa This is me 0000-0002-2647-2909

Zamri Noranai This is me

Ahmed Abdulnabi Imran This is me

Publication Date May 1, 2021
Submission Date April 15, 2019
Published in Issue Year 2021 Volume: 7 Issue: 4

Cite

APA Mustafa, A. A., Noranai, Z., & Imran, A. A. (2021). SOLAR ABSORPTION COOLING SYSTEMS: A REVIEW. Journal of Thermal Engineering, 7(4), 970-983. https://doi.org/10.18186/thermal.931165
AMA Mustafa AA, Noranai Z, Imran AA. SOLAR ABSORPTION COOLING SYSTEMS: A REVIEW. Journal of Thermal Engineering. May 2021;7(4):970-983. doi:10.18186/thermal.931165
Chicago Mustafa, Ali Abdulqader, Zamri Noranai, and Ahmed Abdulnabi Imran. “SOLAR ABSORPTION COOLING SYSTEMS: A REVIEW”. Journal of Thermal Engineering 7, no. 4 (May 2021): 970-83. https://doi.org/10.18186/thermal.931165.
EndNote Mustafa AA, Noranai Z, Imran AA (May 1, 2021) SOLAR ABSORPTION COOLING SYSTEMS: A REVIEW. Journal of Thermal Engineering 7 4 970–983.
IEEE A. A. Mustafa, Z. Noranai, and A. A. Imran, “SOLAR ABSORPTION COOLING SYSTEMS: A REVIEW”, Journal of Thermal Engineering, vol. 7, no. 4, pp. 970–983, 2021, doi: 10.18186/thermal.931165.
ISNAD Mustafa, Ali Abdulqader et al. “SOLAR ABSORPTION COOLING SYSTEMS: A REVIEW”. Journal of Thermal Engineering 7/4 (May 2021), 970-983. https://doi.org/10.18186/thermal.931165.
JAMA Mustafa AA, Noranai Z, Imran AA. SOLAR ABSORPTION COOLING SYSTEMS: A REVIEW. Journal of Thermal Engineering. 2021;7:970–983.
MLA Mustafa, Ali Abdulqader et al. “SOLAR ABSORPTION COOLING SYSTEMS: A REVIEW”. Journal of Thermal Engineering, vol. 7, no. 4, 2021, pp. 970-83, doi:10.18186/thermal.931165.
Vancouver Mustafa AA, Noranai Z, Imran AA. SOLAR ABSORPTION COOLING SYSTEMS: A REVIEW. Journal of Thermal Engineering. 2021;7(4):970-83.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering