Research Article
BibTex RIS Cite

Optimisation on the thermal insulation layer thickness in buildings with environmental analysis: an updated comprehensive study for Turkey’s all provinces

Year 2021, Volume: 7 Issue: 5, 1239 - 1256, 01.07.2021
https://doi.org/10.18186/thermal.978057

Abstract

This study determines the optimum insulation layer thickness to be applied to external building walls considering the heating degree-day (HDD) method, then energy saving costs, payback periods, and carbon dioxide (CO2) emissions are calculated accordingly. The optimisation analysis is performed for four different thermal insulation materials (glass wool, rock wool, extruded polystyrene, and expanded polystyrene). Natural gas is chosen as fuel for heating purposes, and horizontal perforated brick is preferred in the wall. One of the original features in this study is environmental analysis to determine the CO2 emission for the insulated wall in Turkey provinces. Another feature is that it has the most up-to-date data about HDD values and fuel and insulation material costs. The worst and best insulation materials are obtained as rock wool and glass wool, respectively. The optimum insulation layer thickness for the best case is varied between 0.07 m and 0.23 m, depending on the HDD values of provinces. The annual total energy saving cost is in the range of 4.4–53.5 $/(m2year), and the payback period is 0.11–0.38 years. Besides, the reduction in annual CO2 emission is changed between 53.2% and 94% for the best case, compared to the uninsulated wall.

References

  • [1] Data and statistics. International Energy Agency 2018. https://www.iea.org/data-and-statistics/data-tables (accessed February 25, 2021).
  • [2] Dombaycı ÖA. The prediction of heating energy consumption in a model house by using artificial neural networks in Denizli–Turkey. Advances in Engineering Software 2010;41:141–7. doi:10.1016/j.advengsoft.2009.09.012.
  • [3] Bojić ML, Yik FWH, Sat PSK. Influence of thermal insulation position in building envelope on the space cooling of high-rise residential buildings in Hong Kong. Energy and Buildings 2001;33:569–81. doi:10.1016/S0378-7788(00)00125-0.
  • [4] Energy efficiency law. Official Gazette 2007. http://www.lawsturkey.com/laws (accessed July 27, 2020).
  • [5] Enhancing Turkey’s policy framework for energy efficiency of buildings, and recommendations for the way forward based on international experiences. SHURA Energy Transition Center, Buildings Performance Institute Europe 2009. https://www.shura.org.tr/wp-content/uploads/2019/06/Buildings-Energy-Efficiency-Policy-Working-Paper.pdf (accessed July 27, 2020).
  • [6] Akinshilo AT, Agboola OO, Ilegbusi AO. Thermal comfort and energy utilization analysis of a personalised conditioned space. Engineering Research Express 2020;2:025021. doi:10.1088/2631-8695/ab8ba6.
  • [7] Aktemur C, Atikol U. Optimum insulation thickness for the exterior walls of buildings in Turkey based on different materials, energy sources and climate regions. International Journal of Engineering Technologies 2017;3:72–82. doi:10.19072/ijet.307239.
  • [8] Ozel M. Thermal performance and optimum insulation thickness of building walls with different structure materials. Applied Thermal Engineering 2011;31:3854–63. doi:10.1016/j.applthermaleng.2011.07.033.
  • [9] Çomaklı K, Yüksel B. Optimum insulation thickness of external walls for energy saving. Applied Thermal Engineering 2003;23:473–9. doi:10.1016/S1359-4311(02)00209-0.
  • [10] Uçar A, Dumrul MU. Determination of optimum insulation thickness and energy saving analysis according to heating and cooling loads for exterior walls of a house in Malatya. European Journal of Science and Technology 2019;16:740–9. doi:10.31590/ejosat.586176.
  • [11] Kürekçi NA, Bardakçı AT, Çubuk H, Emanet Ö. Türkiye’nin tüm illeri için optimum yalıtım kalınlığının belirlenmesi. Tesisat Mühendisliği 2012;131:5–21.
  • [12] Kürekçi NA. Determination of optimum insulation thickness for building walls by using heating and cooling degree-day values of all Turkey’s provincial centers. Energy and Buildings 2016;118:197–213. doi:10.1016/j.enbuild.2016.03.004.
  • [13] Bolattürk A. Determination of optimum insulation thickness for building walls with respect to various fuels and climate zones in Turkey. Applied Thermal Engineering 2006;26:1301–9. doi:10.1016/j.applthermaleng.2005.10.019.
  • [14] Işık E, Tuğan V. The calculation of the optimum wall thickness for heat isolation in the provinces of Tunceli, Hakkâri, and Kars. International Journal of Pure and Applied Sciences 2017;3:50–7. doi:10.29132/ijpas.328883.
  • [15] Dombaycı ÖA, Gölcü M, Pancar Y. Optimization of insulation thickness for external walls using different energy-sources. Applied Energy 2006;83:921–8. doi:10.1016/j.apenergy.2005.10.006.
  • [16] Aydın N, Bıyıkoğlu A. Determination of optimum insulation thickness by life cycle cost analysis for residential buildings in Turkey. Science and Technology for the Built Environment 2020;27:1–19. doi:10.1080/23744731.2020.1776066.
  • [17] Çomaklı K, Yüksel B. Environmental impact of thermal insulation thickness in buildings. Applied Thermal Engineering 2004;24:933–40. doi:10.1016/j.applthermaleng.2003.10.020.
  • [18] Dombaycı ÖA. The environmental impact of optimum insulation thickness for external walls of buildings. Building and Environment 2007;42:3855–9. doi:10.1016/j.buildenv.2006.10.054.
  • [19] Lv W, Sun Z, Su Z. Life cycle energy consumption and greenhouse gas emissions of iron pelletizing process in China, a case study. Journal of Cleaner Production 2019;233:1314–21. doi:10.1016/j.jclepro.2019.06.180.
  • [20] Canbolat AS, Bademlioğlu AH, Kaynaklı Ö. Determination of proper insulation thickness for building walls regarding economic consideration. International Research Journal of Advanced Engineering and Science 2018;3:173–6. doi:https://doi.org/10.5281/zenodo.2539297.
  • [21] TS825 Thermal insulation requirements for buildings. Turkish Standarts Institution 2008. http://www1.mmo.org.tr/resimler/dosya_ekler/cf3e258fbdf3eb7_ek.pdf (accessed July 8, 2020).
  • [22] Şencan Şahin A, Kovacı T, Dikmen E. Determination and economic analysis of the optimum insulation thickness of building walls, considering annual CO2 emission. Pamukkale University Journal of Engineering Sciences 2021;27:60–9. doi:10.5505/pajes.2020.03083.
  • [23] Özel G, Açıkkalp E, Görgün B, Yamık H, Caner N. Optimum insulation thickness determination using the environmental and life cycle cost analyses based entransy approach. Sustainable Energy Technologies and Assessments 2015;11:87–91. doi:10.1016/j.seta.2015.06.004.
  • [24] Bademlioğlu AH, Canbolat AS, Kaynaklı Ö. Calculation of optimum insulation thickness using the heating degree-days method for the different cost approaches. International Research Journal of Advanced Engineering and Science 2018;3:189–92. doi:https://doi.org/10.5281/zenodo.2539317.
  • [25] Yıldız A, Gürlek G, Erkek M, Özbalta N. Economical and environmental analyses of thermal insulation thickness in buildings. Journal of Thermal Science and Technology 2008;28:25–34.
  • [26] Akyüz MK. The effect of optimum insulation thickness on energy saving and global warming potential. Türk Doğa ve Fen Dergisi 2020;9:18–23. doi:10.46810/tdfd.816464.
  • [27] Sisman N, Kahya E, Aras N, Aras H. Determination of optimum insulation thicknesses of the external walls and roof (ceiling) for Turkey’s different degree-day regions. Energy Policy 2007;35:5151–5. doi:10.1016/j.enpol.2007.04.037.
  • [28] Uçar A, Balo F. Effect of fuel type on the optimum thickness of selected insulation materials for the four different climatic regions of Turkey. Applied Energy 2009;86:730–6. doi:10.1016/j.apenergy.2008.09.015.
  • [29] Uçar A. Thermoeconomic analysis method for optimization of insulation thickness for the four different climatic regions of Turkey. Energy 2010;35:1854–64. doi:10.1016/j.energy.2009.12.022.
  • [30] Çay Y, Gürel AE. Determination of optimum insulation thickness, energy savings, and environmental impact for different climatic regions of Turkey. Environmental Progress and Sustainable Energy 2012;32:365–72. doi:10.1002/ep.11621.
  • [31] Bektas Ekici B, Aytac Gulten A, Aksoy UT. A study on the optimum insulation thicknesses of various types of external walls with respect to different materials, fuels and climate zones in Turkey. Applied Energy 2012;92:211–7. doi:10.1016/j.apenergy.2011.10.008.
  • [32] Dombaycı ÖA, Öztürk HKK, Atalay Ö, Güven Acar Ş, Yılmaz Ulu E, Özturk HK, et al. The impact of optimum insulation thickness of external walls to energy saving and emissions of CO2 and SO2 for Turkey different climate regions. Energy and Power Engineering 2016;8:327–48. doi:10.4236/epe.2016.811030.
  • [33] Güven Ş. Calculation of optimum insulation thickness of external walls in residential buildings by using exergetic life cycle cost assessment method: Case study for Turkey. Environmental Progress and Sustainable Energy 2019;38. doi:10.1002/ep.13232.
  • [34] Kallioğlu MA, Ercan U, Avcı AS, Fidan C, Karakaya H. Empirical modeling between degree days and optimum insulation thickness for external wall. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2020;42:1314–34. doi:10.1080/15567036.2019.1651797.
  • [35] Akyüz MK. Determining economic and environmental impact of insulation by thermoeconomic and life cycle assessment analysis for different climate regions of Turkey. Energy Sources, Part A: Recovery, Utilization and Environmental Effects 2021;43:829–51. doi:10.1080/15567036.2020.1813223.
  • [36] Kürekçi NA. Optimum insulation thickness for cold storage walls: Case study for Turkey. Journal of Thermal Engineering 2020;6:873–87. doi:10.18186/thermal.802124.
  • [37] Akan AE, Ünal F, Koçyiğit F. Investigation of energy saving potential in buildings using novel developed lightweight concrete. International Journal of Thermophysics 2021;42:4. doi:10.1007/s10765-020-02761-1.
  • [38] Ustaoglu A, Kurtoglu K, Gencel O, Kocyigit F. Impact of a low thermal conductive lightweight concrete in building: Energy and fuel performance evaluation for different climate region. Journal of Environmental Management 2020;268:110732. doi:10.1016/j.jenvman.2020.110732.
  • [39] Altun M, Meral Akgül Ç, Akçamete A. Effect of envelope insulation on building heating energy requirement, cost and carbon footprint from a life-cycle perspective. Journal of the Faculty of Engineering and Architecture of Gazi University 2020;35:147–64. doi:10.17341/gazimmfd.445751.
  • [40] Bolattürk A. Optimum insulation thicknesses for building walls with respect to cooling and heating degree-hours in the warmest zone of Turkey. Building and Environment 2008;43:1055–64. doi:10.1016/j.buildenv.2007.02.014.
  • [41] Dombaycı ÖA, Atalay Ö, Güven Acar Ş, Yılmaz Ulu E, Öztürk HK. Thermoeconomic method for determination of optimum insulation thickness of external walls for the houses: Case study for Turkey. Sustainable Energy Technologies and Assessments 2017;22:1–8. doi:10.1016/j.seta.2017.05.005.
  • [42] Akan AE. Determination and modeling of optimum insulation thickness for thermal insulation of buildings in all city centers of Turkey. International Journal of Thermophysics 2021;42:1–34. doi:10.1007/s10765-021-02799-9.
  • [43] Atmaca U. TS 825 binalarda ısı yalıtım kuralları standardındaki güncellemeler. Tesisat Mühendisliği 2016;154:21–35.
  • [44] Horizontal perforated brick (catalog). Yüksel Tuğla-Kiremit 2020. https://www.yukseltuglakiremit.com/katalog/tugla/index.html (accessed July 14, 2020).
  • [45] ASHRAE. Handbook of Fundamentals, American Society of Heating, Refrigerating and Air-Conditioning Engineers. Atlanta, USA: 2017.
  • [46] Currencies-exchange rates. Central Bank of the Turkish Republic 2020. https://evds2.tcmb.gov.tr/index.php?/evds/serieMarket/#collapse_2 (accessed July 14, 2020).
  • [47] Costs of thermal insulation materials. OSKA 2020. https://www.oskabulut.com/kutuphane (accessed July 15, 2020).
  • [48] Aktemur C. Determination of optimum insulation thicknesses, energy savings and environmental impacts with respect to heating and cooling degree-days for different climate regions of Turkey. International Journal of Energy Applications and Technologies 2018;5:29–43. doi:10.31593/ijeat.335663.
  • [49] Heating degree-days. Turkish State Meteorological Service 2020. https://www.mgm.gov.tr/veridegerlendirme/gun-derece.aspx (accessed July 8, 2020).
  • [50] Cost of natural gas. İstanbul Gaz ve Doğalgaz Dağıtım AŞ (IGDAŞ) 2020. https://www.igdas.istanbul/yakit-fiyatlari-karsilastirmasi/ (accessed July 8, 2020).
  • [51] Life-cycle cost analysis. Insapedia 2021. https://insapedia.com/yasam-dongusu-maliyet-ydm-analizi/ (accessed March 12, 2021).
  • [52] Interest and inflation rates. Central Bank of the Turkish Republic 2020. https://www.tcmb.gov.tr/wps/wcm/connect/EN/TCMB+EN/Main+Menu/Statistics (accessed July 14, 2020).
  • [53] Kurnuç Seyhan A, Kara YA. Energy and environmental evaluation of a PCM wall covered with novel triple glass. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 2018;7:306–15. doi:https://doi.org/10.28948/ngumuh.381084.
Year 2021, Volume: 7 Issue: 5, 1239 - 1256, 01.07.2021
https://doi.org/10.18186/thermal.978057

Abstract

References

  • [1] Data and statistics. International Energy Agency 2018. https://www.iea.org/data-and-statistics/data-tables (accessed February 25, 2021).
  • [2] Dombaycı ÖA. The prediction of heating energy consumption in a model house by using artificial neural networks in Denizli–Turkey. Advances in Engineering Software 2010;41:141–7. doi:10.1016/j.advengsoft.2009.09.012.
  • [3] Bojić ML, Yik FWH, Sat PSK. Influence of thermal insulation position in building envelope on the space cooling of high-rise residential buildings in Hong Kong. Energy and Buildings 2001;33:569–81. doi:10.1016/S0378-7788(00)00125-0.
  • [4] Energy efficiency law. Official Gazette 2007. http://www.lawsturkey.com/laws (accessed July 27, 2020).
  • [5] Enhancing Turkey’s policy framework for energy efficiency of buildings, and recommendations for the way forward based on international experiences. SHURA Energy Transition Center, Buildings Performance Institute Europe 2009. https://www.shura.org.tr/wp-content/uploads/2019/06/Buildings-Energy-Efficiency-Policy-Working-Paper.pdf (accessed July 27, 2020).
  • [6] Akinshilo AT, Agboola OO, Ilegbusi AO. Thermal comfort and energy utilization analysis of a personalised conditioned space. Engineering Research Express 2020;2:025021. doi:10.1088/2631-8695/ab8ba6.
  • [7] Aktemur C, Atikol U. Optimum insulation thickness for the exterior walls of buildings in Turkey based on different materials, energy sources and climate regions. International Journal of Engineering Technologies 2017;3:72–82. doi:10.19072/ijet.307239.
  • [8] Ozel M. Thermal performance and optimum insulation thickness of building walls with different structure materials. Applied Thermal Engineering 2011;31:3854–63. doi:10.1016/j.applthermaleng.2011.07.033.
  • [9] Çomaklı K, Yüksel B. Optimum insulation thickness of external walls for energy saving. Applied Thermal Engineering 2003;23:473–9. doi:10.1016/S1359-4311(02)00209-0.
  • [10] Uçar A, Dumrul MU. Determination of optimum insulation thickness and energy saving analysis according to heating and cooling loads for exterior walls of a house in Malatya. European Journal of Science and Technology 2019;16:740–9. doi:10.31590/ejosat.586176.
  • [11] Kürekçi NA, Bardakçı AT, Çubuk H, Emanet Ö. Türkiye’nin tüm illeri için optimum yalıtım kalınlığının belirlenmesi. Tesisat Mühendisliği 2012;131:5–21.
  • [12] Kürekçi NA. Determination of optimum insulation thickness for building walls by using heating and cooling degree-day values of all Turkey’s provincial centers. Energy and Buildings 2016;118:197–213. doi:10.1016/j.enbuild.2016.03.004.
  • [13] Bolattürk A. Determination of optimum insulation thickness for building walls with respect to various fuels and climate zones in Turkey. Applied Thermal Engineering 2006;26:1301–9. doi:10.1016/j.applthermaleng.2005.10.019.
  • [14] Işık E, Tuğan V. The calculation of the optimum wall thickness for heat isolation in the provinces of Tunceli, Hakkâri, and Kars. International Journal of Pure and Applied Sciences 2017;3:50–7. doi:10.29132/ijpas.328883.
  • [15] Dombaycı ÖA, Gölcü M, Pancar Y. Optimization of insulation thickness for external walls using different energy-sources. Applied Energy 2006;83:921–8. doi:10.1016/j.apenergy.2005.10.006.
  • [16] Aydın N, Bıyıkoğlu A. Determination of optimum insulation thickness by life cycle cost analysis for residential buildings in Turkey. Science and Technology for the Built Environment 2020;27:1–19. doi:10.1080/23744731.2020.1776066.
  • [17] Çomaklı K, Yüksel B. Environmental impact of thermal insulation thickness in buildings. Applied Thermal Engineering 2004;24:933–40. doi:10.1016/j.applthermaleng.2003.10.020.
  • [18] Dombaycı ÖA. The environmental impact of optimum insulation thickness for external walls of buildings. Building and Environment 2007;42:3855–9. doi:10.1016/j.buildenv.2006.10.054.
  • [19] Lv W, Sun Z, Su Z. Life cycle energy consumption and greenhouse gas emissions of iron pelletizing process in China, a case study. Journal of Cleaner Production 2019;233:1314–21. doi:10.1016/j.jclepro.2019.06.180.
  • [20] Canbolat AS, Bademlioğlu AH, Kaynaklı Ö. Determination of proper insulation thickness for building walls regarding economic consideration. International Research Journal of Advanced Engineering and Science 2018;3:173–6. doi:https://doi.org/10.5281/zenodo.2539297.
  • [21] TS825 Thermal insulation requirements for buildings. Turkish Standarts Institution 2008. http://www1.mmo.org.tr/resimler/dosya_ekler/cf3e258fbdf3eb7_ek.pdf (accessed July 8, 2020).
  • [22] Şencan Şahin A, Kovacı T, Dikmen E. Determination and economic analysis of the optimum insulation thickness of building walls, considering annual CO2 emission. Pamukkale University Journal of Engineering Sciences 2021;27:60–9. doi:10.5505/pajes.2020.03083.
  • [23] Özel G, Açıkkalp E, Görgün B, Yamık H, Caner N. Optimum insulation thickness determination using the environmental and life cycle cost analyses based entransy approach. Sustainable Energy Technologies and Assessments 2015;11:87–91. doi:10.1016/j.seta.2015.06.004.
  • [24] Bademlioğlu AH, Canbolat AS, Kaynaklı Ö. Calculation of optimum insulation thickness using the heating degree-days method for the different cost approaches. International Research Journal of Advanced Engineering and Science 2018;3:189–92. doi:https://doi.org/10.5281/zenodo.2539317.
  • [25] Yıldız A, Gürlek G, Erkek M, Özbalta N. Economical and environmental analyses of thermal insulation thickness in buildings. Journal of Thermal Science and Technology 2008;28:25–34.
  • [26] Akyüz MK. The effect of optimum insulation thickness on energy saving and global warming potential. Türk Doğa ve Fen Dergisi 2020;9:18–23. doi:10.46810/tdfd.816464.
  • [27] Sisman N, Kahya E, Aras N, Aras H. Determination of optimum insulation thicknesses of the external walls and roof (ceiling) for Turkey’s different degree-day regions. Energy Policy 2007;35:5151–5. doi:10.1016/j.enpol.2007.04.037.
  • [28] Uçar A, Balo F. Effect of fuel type on the optimum thickness of selected insulation materials for the four different climatic regions of Turkey. Applied Energy 2009;86:730–6. doi:10.1016/j.apenergy.2008.09.015.
  • [29] Uçar A. Thermoeconomic analysis method for optimization of insulation thickness for the four different climatic regions of Turkey. Energy 2010;35:1854–64. doi:10.1016/j.energy.2009.12.022.
  • [30] Çay Y, Gürel AE. Determination of optimum insulation thickness, energy savings, and environmental impact for different climatic regions of Turkey. Environmental Progress and Sustainable Energy 2012;32:365–72. doi:10.1002/ep.11621.
  • [31] Bektas Ekici B, Aytac Gulten A, Aksoy UT. A study on the optimum insulation thicknesses of various types of external walls with respect to different materials, fuels and climate zones in Turkey. Applied Energy 2012;92:211–7. doi:10.1016/j.apenergy.2011.10.008.
  • [32] Dombaycı ÖA, Öztürk HKK, Atalay Ö, Güven Acar Ş, Yılmaz Ulu E, Özturk HK, et al. The impact of optimum insulation thickness of external walls to energy saving and emissions of CO2 and SO2 for Turkey different climate regions. Energy and Power Engineering 2016;8:327–48. doi:10.4236/epe.2016.811030.
  • [33] Güven Ş. Calculation of optimum insulation thickness of external walls in residential buildings by using exergetic life cycle cost assessment method: Case study for Turkey. Environmental Progress and Sustainable Energy 2019;38. doi:10.1002/ep.13232.
  • [34] Kallioğlu MA, Ercan U, Avcı AS, Fidan C, Karakaya H. Empirical modeling between degree days and optimum insulation thickness for external wall. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2020;42:1314–34. doi:10.1080/15567036.2019.1651797.
  • [35] Akyüz MK. Determining economic and environmental impact of insulation by thermoeconomic and life cycle assessment analysis for different climate regions of Turkey. Energy Sources, Part A: Recovery, Utilization and Environmental Effects 2021;43:829–51. doi:10.1080/15567036.2020.1813223.
  • [36] Kürekçi NA. Optimum insulation thickness for cold storage walls: Case study for Turkey. Journal of Thermal Engineering 2020;6:873–87. doi:10.18186/thermal.802124.
  • [37] Akan AE, Ünal F, Koçyiğit F. Investigation of energy saving potential in buildings using novel developed lightweight concrete. International Journal of Thermophysics 2021;42:4. doi:10.1007/s10765-020-02761-1.
  • [38] Ustaoglu A, Kurtoglu K, Gencel O, Kocyigit F. Impact of a low thermal conductive lightweight concrete in building: Energy and fuel performance evaluation for different climate region. Journal of Environmental Management 2020;268:110732. doi:10.1016/j.jenvman.2020.110732.
  • [39] Altun M, Meral Akgül Ç, Akçamete A. Effect of envelope insulation on building heating energy requirement, cost and carbon footprint from a life-cycle perspective. Journal of the Faculty of Engineering and Architecture of Gazi University 2020;35:147–64. doi:10.17341/gazimmfd.445751.
  • [40] Bolattürk A. Optimum insulation thicknesses for building walls with respect to cooling and heating degree-hours in the warmest zone of Turkey. Building and Environment 2008;43:1055–64. doi:10.1016/j.buildenv.2007.02.014.
  • [41] Dombaycı ÖA, Atalay Ö, Güven Acar Ş, Yılmaz Ulu E, Öztürk HK. Thermoeconomic method for determination of optimum insulation thickness of external walls for the houses: Case study for Turkey. Sustainable Energy Technologies and Assessments 2017;22:1–8. doi:10.1016/j.seta.2017.05.005.
  • [42] Akan AE. Determination and modeling of optimum insulation thickness for thermal insulation of buildings in all city centers of Turkey. International Journal of Thermophysics 2021;42:1–34. doi:10.1007/s10765-021-02799-9.
  • [43] Atmaca U. TS 825 binalarda ısı yalıtım kuralları standardındaki güncellemeler. Tesisat Mühendisliği 2016;154:21–35.
  • [44] Horizontal perforated brick (catalog). Yüksel Tuğla-Kiremit 2020. https://www.yukseltuglakiremit.com/katalog/tugla/index.html (accessed July 14, 2020).
  • [45] ASHRAE. Handbook of Fundamentals, American Society of Heating, Refrigerating and Air-Conditioning Engineers. Atlanta, USA: 2017.
  • [46] Currencies-exchange rates. Central Bank of the Turkish Republic 2020. https://evds2.tcmb.gov.tr/index.php?/evds/serieMarket/#collapse_2 (accessed July 14, 2020).
  • [47] Costs of thermal insulation materials. OSKA 2020. https://www.oskabulut.com/kutuphane (accessed July 15, 2020).
  • [48] Aktemur C. Determination of optimum insulation thicknesses, energy savings and environmental impacts with respect to heating and cooling degree-days for different climate regions of Turkey. International Journal of Energy Applications and Technologies 2018;5:29–43. doi:10.31593/ijeat.335663.
  • [49] Heating degree-days. Turkish State Meteorological Service 2020. https://www.mgm.gov.tr/veridegerlendirme/gun-derece.aspx (accessed July 8, 2020).
  • [50] Cost of natural gas. İstanbul Gaz ve Doğalgaz Dağıtım AŞ (IGDAŞ) 2020. https://www.igdas.istanbul/yakit-fiyatlari-karsilastirmasi/ (accessed July 8, 2020).
  • [51] Life-cycle cost analysis. Insapedia 2021. https://insapedia.com/yasam-dongusu-maliyet-ydm-analizi/ (accessed March 12, 2021).
  • [52] Interest and inflation rates. Central Bank of the Turkish Republic 2020. https://www.tcmb.gov.tr/wps/wcm/connect/EN/TCMB+EN/Main+Menu/Statistics (accessed July 14, 2020).
  • [53] Kurnuç Seyhan A, Kara YA. Energy and environmental evaluation of a PCM wall covered with novel triple glass. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 2018;7:306–15. doi:https://doi.org/10.28948/ngumuh.381084.
There are 53 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Cenker Aktemur This is me 0000-0001-9045-832X

Feyza Bılgın This is me 0000-0002-1805-984X

Sezer Tunçkol This is me 0000-0002-8759-9022

Publication Date July 1, 2021
Submission Date January 10, 2021
Published in Issue Year 2021 Volume: 7 Issue: 5

Cite

APA Aktemur, C., Bılgın, F., & Tunçkol, S. (2021). Optimisation on the thermal insulation layer thickness in buildings with environmental analysis: an updated comprehensive study for Turkey’s all provinces. Journal of Thermal Engineering, 7(5), 1239-1256. https://doi.org/10.18186/thermal.978057
AMA Aktemur C, Bılgın F, Tunçkol S. Optimisation on the thermal insulation layer thickness in buildings with environmental analysis: an updated comprehensive study for Turkey’s all provinces. Journal of Thermal Engineering. July 2021;7(5):1239-1256. doi:10.18186/thermal.978057
Chicago Aktemur, Cenker, Feyza Bılgın, and Sezer Tunçkol. “Optimisation on the Thermal Insulation Layer Thickness in Buildings With Environmental Analysis: An Updated Comprehensive Study for Turkey’s All Provinces”. Journal of Thermal Engineering 7, no. 5 (July 2021): 1239-56. https://doi.org/10.18186/thermal.978057.
EndNote Aktemur C, Bılgın F, Tunçkol S (July 1, 2021) Optimisation on the thermal insulation layer thickness in buildings with environmental analysis: an updated comprehensive study for Turkey’s all provinces. Journal of Thermal Engineering 7 5 1239–1256.
IEEE C. Aktemur, F. Bılgın, and S. Tunçkol, “Optimisation on the thermal insulation layer thickness in buildings with environmental analysis: an updated comprehensive study for Turkey’s all provinces”, Journal of Thermal Engineering, vol. 7, no. 5, pp. 1239–1256, 2021, doi: 10.18186/thermal.978057.
ISNAD Aktemur, Cenker et al. “Optimisation on the Thermal Insulation Layer Thickness in Buildings With Environmental Analysis: An Updated Comprehensive Study for Turkey’s All Provinces”. Journal of Thermal Engineering 7/5 (July 2021), 1239-1256. https://doi.org/10.18186/thermal.978057.
JAMA Aktemur C, Bılgın F, Tunçkol S. Optimisation on the thermal insulation layer thickness in buildings with environmental analysis: an updated comprehensive study for Turkey’s all provinces. Journal of Thermal Engineering. 2021;7:1239–1256.
MLA Aktemur, Cenker et al. “Optimisation on the Thermal Insulation Layer Thickness in Buildings With Environmental Analysis: An Updated Comprehensive Study for Turkey’s All Provinces”. Journal of Thermal Engineering, vol. 7, no. 5, 2021, pp. 1239-56, doi:10.18186/thermal.978057.
Vancouver Aktemur C, Bılgın F, Tunçkol S. Optimisation on the thermal insulation layer thickness in buildings with environmental analysis: an updated comprehensive study for Turkey’s all provinces. Journal of Thermal Engineering. 2021;7(5):1239-56.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering