Research Article
BibTex RIS Cite
Year 2023, Volume: 9 Issue: 5, 1153 - 1162, 17.10.2023
https://doi.org/10.18186/thermal.1370726

Abstract

References

  • REFERENCES
  • [1] Wang Z, Wang Z, Xu G, Ren J, Wang H, Li J. Sustainability assessment of straw direct combustion power generation in China: from the environmental and economic perspectives of straw substitute to coal. J Clean Prod 2020;273:122890.
  • [2] Sharif HZ, Leman AM, Krizou AN, Al-Tarawneh MTA, Subbiah M, Al-Farsi M. Analysis of nearly zero energy residental building in muscat. J Ther Eng 2020;6:346358. [CrossRef]
  • [3] Kayabaşı R, Kaya M. Effect of module operating temperature on module efficiency in photovoltaic modules and recovery of photovoltaic module heat by thermoelectric effect. J Ther Eng 2023;9:191204. [CrossRef]
  • [4] Deokar V, Bindu R, Deokar T. Simulation modeling and experimental validation of solar photovoltaic pmbldc motor water pumping system. J Ther Eng 2021;7:1392–1405. [CrossRef]
  • [5] Arora R, Chıteka K, Sridhara SN. A method to predict fouling on multi-storey building mounted solar photovoltaic panels: A computational fluid dynamics approach. J Ther Eng 2021;7:700714. [CrossRef]
  • [6] Moselm S, Hamed A, Uğur A. Modeling of hybrid renewable energy system: the case study of Istanbul. Turkey. J Ther Eng 2016;6:990994. [CrossRef]
  • [7] Ceran B, Mielcarek A, Hassan Q, Teneta J, Jaszczur M. Aging effects on modelling and operation of a photovoltaic system with hydrogen storage. Appl Energy 2021;297:117161.
  • [8] Jaszczur M, Hassan Q, Palej P, Abdulateef J. Multi-Objective optimisation of a micro-grid hybrid power system for household application. Energy 2020;202:117738. [CrossRef]
  • [9] Hassan Q. Evaluation and optimization of off-grid and on-grid photovoltaic power system for typical household electrification. Renew Energy 2021;164:375390. [CrossRef]
  • [10] Skoplaki E, Palyvos J. Operating temperature of photovoltaic modules: A survey of pertinent correlations. Renew Energy 2009;34:2329. [CrossRef]
  • [11] Dubey S, Sarvaiya JN, Seshadri B. Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world–a review. Energy Proced 2013;33:311321. [CrossRef]
  • [12] Hassan Q. Optimisation of solar-hydrogen power system for household applications. Int J Hydrog Energy 2020;45:3311133127. [CrossRef]
  • [13] Pantic LS, Pavlović TM, Milosavljević DD, Radonjic IS, Radovi MK, Sazhko G. The assessment of different models to predict solar module temperature, output power and efficiency for Nis, Serbia. Energy 2016;109:3848. [CrossRef]
  • [14] Santiago I, Trillo-Montero D, Moreno-Garcia IM, Pallarés-López V, Luna-Rodríguez J. Modeling of photovoltaic cell temperature losses: A review and a practice case in South Spain. Renew Sustain Energy Rev 2018;90:7089. [CrossRef]
  • [15] Jaszczur M, Teneta J, Hassan Q, Majewska E, Hanus R. An experimental and numerical investigation of photovoltaic module temperature under varying environmental conditions. Heat Transf Eng 2021;42:354367. [CrossRef]
  • [16] Mohammed Alhumairi,Yasseen Almahdawi,Sami Nawi, Flame behaviour and flame location in large-eddy simulation of the turbulent premixed combustion. Energy 2021;232:121067. [CrossRef]
  • [17] Mohammed KH Abbas Alhumairi, Yahya S, Azzawi ID. Experimental and computational investigation of flame holders in combustion chambers at different thermal loads. J Ther Eng 2020;6:369378. [CrossRef]
  • [18] García MA, Balenzategui JL. Estimation of photovoltaic module yearly temperature and performance based on nominal operation cell temperature calculations. Renew Energy 2004;29:19972010. [CrossRef]
  • [19] Mattei M, Notton G, Cristofari C, Muselli M, Poggi P. Calculation of the polycrystalline PV module temperature using a simple method of energy balance. Renew Energy 2006;31:553567. [CrossRef]
  • [20] Ju X, Vossier A, Wang Z, Dollet A, Flamant G. An improved temperature estimation method for solar cells operating at high concentrations. Sol Energy 2013;93:8089. [CrossRef]
  • [21] Armstrong S, Hurley WGA. Thermal model for photovoltaic panels under varying atmospheric conditions. Appl Therm Eng 2010;30:14881495. [CrossRef]
  • [22] Siddiqui MU, Arif AF, Kelley L, Dubowsky S. Three-dimensional thermal modeling of a photovoltaic module under varying conditions. Sol Energy 2012;86:26202631. [CrossRef]
  • [23] Kaplani E, Kaplanis S. Thermal modelling and experimental assessment of the dependence of PV module temperature on wind velocity and direction, module orientation and inclination. Sol Energy 2014;107:443460. [CrossRef]
  • [24] Styszko K, Jaszczur M, Teneta J, Hassan Q, Burzyńska P, Marcinek E, et al. An analysis of the dust deposition on solar photovoltaic modules. Environ Sci Pollut Res 2019;26:83938401. [CrossRef]
  • [25] Jaszczur M, Hassan Q. An optimisation and sizing of photovoltaic system with supercapacitor for improving self-consumption. Appl Energy 2020;279:115776. [CrossRef]
  • [26] Jaszczur M, Hassan Q, Teneta J, Styszko K, Nawrot W, Hanus R. Study of dust deposition and temperature impact on solar photovoltaic module. MATEC Web Conf 2018;240:04005. [CrossRef]
  • [27] Jaszczur M, Hassan Q, Szubel M, Majewska E. Fluid flow and heat transfer analysis of a photovoltaic module under varying environmental conditions. Journal of Physics: Conference Series, Volume 1101, XXIII Fluid Mechanics Conference (KKMP 2018) 9–12 September 2018, Zawiercie, Poland (2018, October). IOP Publishing. [CrossRef]
  • [28] Jaszczur M, Hassan Q, Styszko K, Teneta J. Impact of dust and temperature on energy conversion process in photovoltaic module. Thermal Sci 2019;23(Suppl 4):11991210. [CrossRef]
  • [29] Ceran B, Hassan Q, Jaszczur M, Sroka K. An analysis of hybrid power generation systems for a residential load. 2017;14:01020. [CrossRef]
  • [30] Palej P, Qusay H, Kleszcz S, Hanus R, Jaszczur M. Analysis and optimization of hybrid renewable energy systems. Polityka Energ 2019;22:107–120. [CrossRef]
  • [31] Sharma P, Goyal P. Analysing the effects of solar insolation and temperature on PV cell characteristics. Mater Today Proceed 2021;45:55395543. [CrossRef]
  • [32] Shi Y, Sun Y, Liu J, Du X. Model and stability analysis of grid-connected PV system considering the variation of solar irradiance and cell temperature. Int J Electrical Power Energy Syst 2021;132:107155. [CrossRef]
  • [33] Ouédraogo A, Zouma B, Ouédraogo E, Guissou L, Bathiébo DJ. Individual efficiencies of a polycrystalline silicon PV cell versus temperature. Results Opt 2021;4:100101. [CrossRef]
  • [34] DAH Solar. LONGI PV modules. Available at: https://www.dahsolarpv.com/ Last Accessed Date: 15.09.2023.
  • [35] SOROTEC. Solar Inverter type REVO. Available at https://www.soropower.com/ Last Accessed Date: 15.09.2023.
  • [36] López-Cayuela MÁ, Herreras-Giralda M, Córdoba-Jabonero C, Lopatin A, Dubovi O, Guerrero-Rascado JL. Vertical assessment of the mineral dust optical and microphysical properties as retrieved from the synergy between polarized micro-pulse lidar and sun/sky photometer observations using GRASP code. Atmos Res 2021;264:105818. [CrossRef]
  • [37] Kobav MB, Dumortier D, Bizjak G. Defining the minimum density of a sky luminance grid based on scale model measurements without the sun. Build Environ 2020;169:106562. [CrossRef]
  • [38] Székely L, Kicsiny R, Hermanucz P, Géczi G. Explicit analytical solution of a differential equation model for solar heating systems. Sol Energy 2021;222:219229. [CrossRef]
  • [39] Nazarenko AI. Sun synchronous orbits. Predicting the local solar time of the ascending node. Acta Astronaut 2021;181:585593. [CrossRef]
  • [40] Kalapodis N, Kampas G, Ktenidou OJ. A review towards the design of extraterrestrial structures: From regolith to human outposts. Acta Astronaut 2020;175:540569. [CrossRef ] [41] Marzo A, Trigo-Gonzalez M, Alonso-Montesinos J, Martínez-Durbán M, López G, Ferrada P, et al. Daily global solar radiation estimation in desert areas using daily extreme temperatures and extraterrestrial radiation. Renew Energy 2017;113:303311. [CrossRef]
  • [42] Abdulateef AM, Jaszczur M, Hassan Q, Anish R, Niyas H, Sopian K, Abdulateef J. Enhancing the melting of phase change material using a fins–nanoparticle combination in a triplex tube heat exchanger. J Energy Storage 2021;35:102227. [CrossRef]
  • [43] Hassan Q, Jaszczur M, Mohamed M, Styszko K, Szramowiat K, Gołaś J. Off-grid photovoltaic systems as a solution for the ambient pollution avoidance and Iraq’s rural areas electrification. In E3S Web of Conferences (Vol. 10, p. 00093). EDP Sciences, 2016. [CrossRef]
  • [44] Barbero FJ, López G, Ballestrín J, Bosch JL, Alonso-Montesinos J, Carra ME, et al. Comparison and analysis of two measurement systems of horizontal atmospheric extinction of solar radiation. Atmos Environm 2021;261:118608. [CrossRef]
  • [45] Wang X, Miao H, Liu Y, Bao Q. Dependence of cloud radiation on cloud overlap, horizontal inhomogeneity, and vertical alignment in stratiform and convective regions. Atmos Res 2021;249:105358. [CrossRef]
  • [46] Pu S, Lin W. Correlations to estimate monthly total solar radiation on horizontal surfaces at Kunming, China. Energy conversion and management. 2000;41:367374. [CrossRef]
  • [47] Qu Y, Xu J, Sun Y, Liu D. A temporal distributed hybrid deep learning model for day-ahead distributed PV power forecasting. Appl Energy 2021;304:117704. [CrossRef]

Temperature effect in the energy degradation of photovoltaic power system

Year 2023, Volume: 9 Issue: 5, 1153 - 1162, 17.10.2023
https://doi.org/10.18186/thermal.1370726

Abstract

The modelling of output power for the photovoltaic system is essential for system design and local resource prediction. Accurate photovoltaic power modelling the foremost vital issue is systems efficiency analysis. The temperature plays the main role in the energy degradation of the photovoltaic systems, especially in the host sites. In this paper, experimental and theoreti-cal investigation into the photovoltaic module energy degradation due to temperature effects. This work objectives to investigate the photovoltaic power generated due to the ambient tem-perature effect. The presented results show that the ambient temperature has positive effects on the photovoltaic module energy production during the winter period and negative effects during the summer period. For the proposed photovoltaic system with a capacity of 2.97 kWp the expected theoretical annual energy production by about 554.01 kWh while the annual experiment production was l493.73 kWh. The novelty of the work is to estimate the energy losses due to the ambient temperature effect on the photovoltaic energy production.

References

  • REFERENCES
  • [1] Wang Z, Wang Z, Xu G, Ren J, Wang H, Li J. Sustainability assessment of straw direct combustion power generation in China: from the environmental and economic perspectives of straw substitute to coal. J Clean Prod 2020;273:122890.
  • [2] Sharif HZ, Leman AM, Krizou AN, Al-Tarawneh MTA, Subbiah M, Al-Farsi M. Analysis of nearly zero energy residental building in muscat. J Ther Eng 2020;6:346358. [CrossRef]
  • [3] Kayabaşı R, Kaya M. Effect of module operating temperature on module efficiency in photovoltaic modules and recovery of photovoltaic module heat by thermoelectric effect. J Ther Eng 2023;9:191204. [CrossRef]
  • [4] Deokar V, Bindu R, Deokar T. Simulation modeling and experimental validation of solar photovoltaic pmbldc motor water pumping system. J Ther Eng 2021;7:1392–1405. [CrossRef]
  • [5] Arora R, Chıteka K, Sridhara SN. A method to predict fouling on multi-storey building mounted solar photovoltaic panels: A computational fluid dynamics approach. J Ther Eng 2021;7:700714. [CrossRef]
  • [6] Moselm S, Hamed A, Uğur A. Modeling of hybrid renewable energy system: the case study of Istanbul. Turkey. J Ther Eng 2016;6:990994. [CrossRef]
  • [7] Ceran B, Mielcarek A, Hassan Q, Teneta J, Jaszczur M. Aging effects on modelling and operation of a photovoltaic system with hydrogen storage. Appl Energy 2021;297:117161.
  • [8] Jaszczur M, Hassan Q, Palej P, Abdulateef J. Multi-Objective optimisation of a micro-grid hybrid power system for household application. Energy 2020;202:117738. [CrossRef]
  • [9] Hassan Q. Evaluation and optimization of off-grid and on-grid photovoltaic power system for typical household electrification. Renew Energy 2021;164:375390. [CrossRef]
  • [10] Skoplaki E, Palyvos J. Operating temperature of photovoltaic modules: A survey of pertinent correlations. Renew Energy 2009;34:2329. [CrossRef]
  • [11] Dubey S, Sarvaiya JN, Seshadri B. Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world–a review. Energy Proced 2013;33:311321. [CrossRef]
  • [12] Hassan Q. Optimisation of solar-hydrogen power system for household applications. Int J Hydrog Energy 2020;45:3311133127. [CrossRef]
  • [13] Pantic LS, Pavlović TM, Milosavljević DD, Radonjic IS, Radovi MK, Sazhko G. The assessment of different models to predict solar module temperature, output power and efficiency for Nis, Serbia. Energy 2016;109:3848. [CrossRef]
  • [14] Santiago I, Trillo-Montero D, Moreno-Garcia IM, Pallarés-López V, Luna-Rodríguez J. Modeling of photovoltaic cell temperature losses: A review and a practice case in South Spain. Renew Sustain Energy Rev 2018;90:7089. [CrossRef]
  • [15] Jaszczur M, Teneta J, Hassan Q, Majewska E, Hanus R. An experimental and numerical investigation of photovoltaic module temperature under varying environmental conditions. Heat Transf Eng 2021;42:354367. [CrossRef]
  • [16] Mohammed Alhumairi,Yasseen Almahdawi,Sami Nawi, Flame behaviour and flame location in large-eddy simulation of the turbulent premixed combustion. Energy 2021;232:121067. [CrossRef]
  • [17] Mohammed KH Abbas Alhumairi, Yahya S, Azzawi ID. Experimental and computational investigation of flame holders in combustion chambers at different thermal loads. J Ther Eng 2020;6:369378. [CrossRef]
  • [18] García MA, Balenzategui JL. Estimation of photovoltaic module yearly temperature and performance based on nominal operation cell temperature calculations. Renew Energy 2004;29:19972010. [CrossRef]
  • [19] Mattei M, Notton G, Cristofari C, Muselli M, Poggi P. Calculation of the polycrystalline PV module temperature using a simple method of energy balance. Renew Energy 2006;31:553567. [CrossRef]
  • [20] Ju X, Vossier A, Wang Z, Dollet A, Flamant G. An improved temperature estimation method for solar cells operating at high concentrations. Sol Energy 2013;93:8089. [CrossRef]
  • [21] Armstrong S, Hurley WGA. Thermal model for photovoltaic panels under varying atmospheric conditions. Appl Therm Eng 2010;30:14881495. [CrossRef]
  • [22] Siddiqui MU, Arif AF, Kelley L, Dubowsky S. Three-dimensional thermal modeling of a photovoltaic module under varying conditions. Sol Energy 2012;86:26202631. [CrossRef]
  • [23] Kaplani E, Kaplanis S. Thermal modelling and experimental assessment of the dependence of PV module temperature on wind velocity and direction, module orientation and inclination. Sol Energy 2014;107:443460. [CrossRef]
  • [24] Styszko K, Jaszczur M, Teneta J, Hassan Q, Burzyńska P, Marcinek E, et al. An analysis of the dust deposition on solar photovoltaic modules. Environ Sci Pollut Res 2019;26:83938401. [CrossRef]
  • [25] Jaszczur M, Hassan Q. An optimisation and sizing of photovoltaic system with supercapacitor for improving self-consumption. Appl Energy 2020;279:115776. [CrossRef]
  • [26] Jaszczur M, Hassan Q, Teneta J, Styszko K, Nawrot W, Hanus R. Study of dust deposition and temperature impact on solar photovoltaic module. MATEC Web Conf 2018;240:04005. [CrossRef]
  • [27] Jaszczur M, Hassan Q, Szubel M, Majewska E. Fluid flow and heat transfer analysis of a photovoltaic module under varying environmental conditions. Journal of Physics: Conference Series, Volume 1101, XXIII Fluid Mechanics Conference (KKMP 2018) 9–12 September 2018, Zawiercie, Poland (2018, October). IOP Publishing. [CrossRef]
  • [28] Jaszczur M, Hassan Q, Styszko K, Teneta J. Impact of dust and temperature on energy conversion process in photovoltaic module. Thermal Sci 2019;23(Suppl 4):11991210. [CrossRef]
  • [29] Ceran B, Hassan Q, Jaszczur M, Sroka K. An analysis of hybrid power generation systems for a residential load. 2017;14:01020. [CrossRef]
  • [30] Palej P, Qusay H, Kleszcz S, Hanus R, Jaszczur M. Analysis and optimization of hybrid renewable energy systems. Polityka Energ 2019;22:107–120. [CrossRef]
  • [31] Sharma P, Goyal P. Analysing the effects of solar insolation and temperature on PV cell characteristics. Mater Today Proceed 2021;45:55395543. [CrossRef]
  • [32] Shi Y, Sun Y, Liu J, Du X. Model and stability analysis of grid-connected PV system considering the variation of solar irradiance and cell temperature. Int J Electrical Power Energy Syst 2021;132:107155. [CrossRef]
  • [33] Ouédraogo A, Zouma B, Ouédraogo E, Guissou L, Bathiébo DJ. Individual efficiencies of a polycrystalline silicon PV cell versus temperature. Results Opt 2021;4:100101. [CrossRef]
  • [34] DAH Solar. LONGI PV modules. Available at: https://www.dahsolarpv.com/ Last Accessed Date: 15.09.2023.
  • [35] SOROTEC. Solar Inverter type REVO. Available at https://www.soropower.com/ Last Accessed Date: 15.09.2023.
  • [36] López-Cayuela MÁ, Herreras-Giralda M, Córdoba-Jabonero C, Lopatin A, Dubovi O, Guerrero-Rascado JL. Vertical assessment of the mineral dust optical and microphysical properties as retrieved from the synergy between polarized micro-pulse lidar and sun/sky photometer observations using GRASP code. Atmos Res 2021;264:105818. [CrossRef]
  • [37] Kobav MB, Dumortier D, Bizjak G. Defining the minimum density of a sky luminance grid based on scale model measurements without the sun. Build Environ 2020;169:106562. [CrossRef]
  • [38] Székely L, Kicsiny R, Hermanucz P, Géczi G. Explicit analytical solution of a differential equation model for solar heating systems. Sol Energy 2021;222:219229. [CrossRef]
  • [39] Nazarenko AI. Sun synchronous orbits. Predicting the local solar time of the ascending node. Acta Astronaut 2021;181:585593. [CrossRef]
  • [40] Kalapodis N, Kampas G, Ktenidou OJ. A review towards the design of extraterrestrial structures: From regolith to human outposts. Acta Astronaut 2020;175:540569. [CrossRef ] [41] Marzo A, Trigo-Gonzalez M, Alonso-Montesinos J, Martínez-Durbán M, López G, Ferrada P, et al. Daily global solar radiation estimation in desert areas using daily extreme temperatures and extraterrestrial radiation. Renew Energy 2017;113:303311. [CrossRef]
  • [42] Abdulateef AM, Jaszczur M, Hassan Q, Anish R, Niyas H, Sopian K, Abdulateef J. Enhancing the melting of phase change material using a fins–nanoparticle combination in a triplex tube heat exchanger. J Energy Storage 2021;35:102227. [CrossRef]
  • [43] Hassan Q, Jaszczur M, Mohamed M, Styszko K, Szramowiat K, Gołaś J. Off-grid photovoltaic systems as a solution for the ambient pollution avoidance and Iraq’s rural areas electrification. In E3S Web of Conferences (Vol. 10, p. 00093). EDP Sciences, 2016. [CrossRef]
  • [44] Barbero FJ, López G, Ballestrín J, Bosch JL, Alonso-Montesinos J, Carra ME, et al. Comparison and analysis of two measurement systems of horizontal atmospheric extinction of solar radiation. Atmos Environm 2021;261:118608. [CrossRef]
  • [45] Wang X, Miao H, Liu Y, Bao Q. Dependence of cloud radiation on cloud overlap, horizontal inhomogeneity, and vertical alignment in stratiform and convective regions. Atmos Res 2021;249:105358. [CrossRef]
  • [46] Pu S, Lin W. Correlations to estimate monthly total solar radiation on horizontal surfaces at Kunming, China. Energy conversion and management. 2000;41:367374. [CrossRef]
  • [47] Qu Y, Xu J, Sun Y, Liu D. A temporal distributed hybrid deep learning model for day-ahead distributed PV power forecasting. Appl Energy 2021;304:117704. [CrossRef]
There are 47 citations in total.

Details

Primary Language English
Subjects Thermodynamics and Statistical Physics
Journal Section Articles
Authors

Yasseen Aj Almahdawı This is me 0000-0002-5839-7536

Mohammed Kh Abbas This is me 0000-0003-1671-3403

Ahmed Al-samarı This is me 0000-0003-0242-1864

Nazar Aldabash This is me 0000-0003-2565-9410

Saadoon Abdul Hafedh This is me 0000-0003-1638-2552

Publication Date October 17, 2023
Submission Date August 13, 2021
Published in Issue Year 2023 Volume: 9 Issue: 5

Cite

APA Aj Almahdawı, Y., Kh Abbas, M., Al-samarı, A., Aldabash, N., et al. (2023). Temperature effect in the energy degradation of photovoltaic power system. Journal of Thermal Engineering, 9(5), 1153-1162. https://doi.org/10.18186/thermal.1370726
AMA Aj Almahdawı Y, Kh Abbas M, Al-samarı A, Aldabash N, Hafedh SA. Temperature effect in the energy degradation of photovoltaic power system. Journal of Thermal Engineering. October 2023;9(5):1153-1162. doi:10.18186/thermal.1370726
Chicago Aj Almahdawı, Yasseen, Mohammed Kh Abbas, Ahmed Al-samarı, Nazar Aldabash, and Saadoon Abdul Hafedh. “Temperature Effect in the Energy Degradation of Photovoltaic Power System”. Journal of Thermal Engineering 9, no. 5 (October 2023): 1153-62. https://doi.org/10.18186/thermal.1370726.
EndNote Aj Almahdawı Y, Kh Abbas M, Al-samarı A, Aldabash N, Hafedh SA (October 1, 2023) Temperature effect in the energy degradation of photovoltaic power system. Journal of Thermal Engineering 9 5 1153–1162.
IEEE Y. Aj Almahdawı, M. Kh Abbas, A. Al-samarı, N. Aldabash, and S. A. Hafedh, “Temperature effect in the energy degradation of photovoltaic power system”, Journal of Thermal Engineering, vol. 9, no. 5, pp. 1153–1162, 2023, doi: 10.18186/thermal.1370726.
ISNAD Aj Almahdawı, Yasseen et al. “Temperature Effect in the Energy Degradation of Photovoltaic Power System”. Journal of Thermal Engineering 9/5 (October 2023), 1153-1162. https://doi.org/10.18186/thermal.1370726.
JAMA Aj Almahdawı Y, Kh Abbas M, Al-samarı A, Aldabash N, Hafedh SA. Temperature effect in the energy degradation of photovoltaic power system. Journal of Thermal Engineering. 2023;9:1153–1162.
MLA Aj Almahdawı, Yasseen et al. “Temperature Effect in the Energy Degradation of Photovoltaic Power System”. Journal of Thermal Engineering, vol. 9, no. 5, 2023, pp. 1153-62, doi:10.18186/thermal.1370726.
Vancouver Aj Almahdawı Y, Kh Abbas M, Al-samarı A, Aldabash N, Hafedh SA. Temperature effect in the energy degradation of photovoltaic power system. Journal of Thermal Engineering. 2023;9(5):1153-62.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering