Research Article
BibTex RIS Cite
Year 2023, Volume: 9 Issue: 5, 1245 - 1259, 17.10.2023
https://doi.org/10.18186/thermal.1374673

Abstract

References

  • REFERENCES
  • [1] McNeil DA, Burnside BM, Cuthbertson G. Dropwise condensation of steam on a small tube bundle at turbine condenser conditions. Exp Heat Transf 2000;13:89105. [CrossRef]
  • [2] Kurshakov AV, Ryzhenkov AV, Bodrov AA, Ryzhenkov OV, Patakin AA, Chernov EF. Heat transfer enhancement in steam-turbine condensers with the use of surface-active substances. Therm Eng 2014;61:785789. [CrossRef]
  • [3] Beér JM. High efficiency electric power generation: The environmental role. Prog Energy Combust Sci 2007;33:107134. [CrossRef]
  • [4] Lara JR, Noyes G, Holtzapple MT. An investigation of high operating temperatures in mechanical vapor-compression desalination. Desalination 2008;227:217232. [CrossRef]
  • [5] Peters TB, McCarthy M, Allison J, Dominguez-Espinosa FA, Jenicek D, Kariya HA, et al. Design of an integrated loop heat pipe air-cooled heat exchanger for high performance electronics. IEEE Trans Components Packag Manuf Technol 2012;2:16371648. [CrossRef]
  • [6] Kim MH, Bullard CW. Air-side performance of brazed aluminum heat exchangers under dehumidifying conditions. Int J Refrig 2002;25:924934. [CrossRef]
  • [7] Li B, Yao R. Urbanisation and its impact on building energy consumption and efficiency in China. Renew Energy 2009;34:19941998. [CrossRef]
  • [8] Pérez-Lombard L, Ortiz J, Pout C. A review on buildings energy consumption information. Energy Build 2008;40:394398. [CrossRef]
  • [9] Sett S, Sokalski P, Boyina K, Li L, Rabbi KF, Auby H, et al. Stable Dropwise Condensation of Ethanol and Hexane on Rationally Designed Ultrascalable Nanostructured Lubricant-Infused Surfaces. Nano Lett 2019;19:52875296. [CrossRef]
  • [10] Schmidt E, Schurig W, Sellschopp W. Versuche über die Kondensation von Wasserdampf in Film- und Tropfenform. Techn Mech Thermodyn 1930;1:5363. [Deutsch] [CrossRef]
  • [11] Le Fevre EJ, Rose JW. An experimental study of heat transfer by dropwise condensation. Int J Heat Mass Transf 1965;8:11171133. [CrossRef]
  • [12] Rose JW. On the mechanism of dropwise condensation. Int J Heat Mass Transf 1967;10:755762. [CrossRef]
  • [13] Stylianou SA, Rose JW. Drop-to-filmwise condensation transition: Heat transfer measurements for ethanediol. Int J Heat Mass Transf 1983;26:747760. [CrossRef]
  • [14] Burnside BM, Hadi HA. Digital computer simulation of dropwise condensation from equilibrium droplet to detectable size. Int J Heat Mass Transf 1999;42:31373146. [CrossRef]
  • [15] Rose JW. Dropwise condensation theory and experiment: A review. Proc Inst Mech Eng Part A J Power Energy. 2002;216:115128. [CrossRef]
  • [16] Vemuri S, Kim KJ. An experimental and theoretical study on the concept of dropwise condensation. Int J Heat Mass Transf 2006;49:649657. [CrossRef]
  • [17] Leach RN, Stevens F, Langford SC, Dickinson JT. Dropwise condensation: Experiments and simulations of nucleation and growth of water drops in a cooling system. Langmuir 2006;22:88648872. [CrossRef]
  • [18] Zhong L, Xuehu M, Sifang W, Mingzhe W, Xiaonan L. Effects of surface free energy and nanostructures on dropwise condensation. Chem Eng J 2010;156:546552. [CrossRef]
  • [19] Miljkovic N, Enright R, Wang EN. Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces. ACS Nano 2012;6:17761785. [CrossRef]
  • [20] Peng B, Ma X, Lan Z, Xu W, Wen R. Experimental investigation on steam condensation heat transfer enhancement with vertically patterned hydrophobic–hydrophilic hybrid surfaces. Int J Heat Mass Transf 2015;83:2738. [CrossRef]
  • [21] Chavan S, Cha H, Orejon D, Nawaz K, Singla N, Yeung YF, et al. Heat transfer through a condensate droplet on hydrophobic and nanostructured superhydrophobic surfaces. Langmuir 2016;32:77747787. [CrossRef]
  • [22] Macner AM, Daniel S, Steen PH. Simulating heat transfer during transient dropwise condensation on a low-thermal-conductivity substrate. Langmuir 2019;35:1156611578. [CrossRef]
  • [23] Enright R, Miljkovic N, Al-Obeidi A, Thompson CV, Wang EN. Condensation on superhydrophobic surfaces: the role of local energy barriers and structure length scale. Langmuir 2012;28:1442414432. [CrossRef]
  • [24] Enright R, Miljkovic N, Dou N, Nam Y, Wang EN. Condensation on superhydrophobic copper oxide nanostructures. Proceedings of the ASME 2012 Third International Conference on Micro/Nanoscale Heat and Mass Transfer 2013:135. [CrossRef]
  • [25] Ölçeroğlu E, Hsieh CY, Rahman MM, Lau KKS, McCarthy M. Full-field dynamic characterization of superhydrophobic condensation on biotemplated nanostructured surfaces. Langmuir 2014;30:75567566. [CrossRef]
  • [26] Li G, Alhosani MH, Yuan S, Liu H, Ghaferi AA, Zhang T. Microscopic droplet formation and energy transport analysis of condensation on scalable superhydrophobic nanostructured copper oxide surfaces. Langmuir 2014;30:1449814511. [CrossRef]
  • [27] Baba S, Sawada K, Tanaka K, Okamoto A. Dropwise condensation on a hierarchical nanopillar structured surface. Langmuir 2020;36:1003310042. [CrossRef]
  • [28] Cha H, Vahabi H, Wu A, Chavan S, Kim MK, Sett S, et al. Dropwise condensation on solid hydrophilic surfaces. Sci Adv 2020;6:eaax0746. [CrossRef]
  • [29] Song Z, Lu M, Chen X. Investigation of dropwise condensation heat transfer on laser-ablated superhydrophobic/hydrophilic hybrid copper surfaces. ACS Omega 2020;5:2358823595. [CrossRef]
  • [30] Wang R, Wu F, Xing D, Yu F, Gao X. Density maximization of one-step electrodeposited copper nanocones and dropwise condensation heat-transfer performance evaluation. ACS Appl Mater Interfaces 2020;12:2451224520. [CrossRef]
  • [31] Ludwicki JM, Robinson FL, Steen PH. Switchable wettability for condensation heat transfer. ACS Appl Mater Interfaces 2020;12:2211522119. [CrossRef]
  • [32] Orazzo A, Tanguy S. Direct numerical simulations of droplet condensation. Int J Heat Mass Trans 2019;129:432448. [CrossRef]
  • [33] Stevens KA, Crockett J, Maynes D, Iverson BD. Simulation of drop-size distribution during dropwise and jumping drop condensation on a vertical surface: ımplications for heat transfer modeling. Langmuir 2019;35:1285812875. [CrossRef]
  • [34] Birbarah P, Chavan S, Miljkovic N. Numerical simulation of jumping droplet condensation. Langmuir 2019;35:1030910321. [CrossRef]
  • [35] Adhikari S, Nabil M, Rattner AS. Condensation heat transfer in a sessile droplet at varying Biot number and contact angle. Int J Heat Mass Transf 2017;115:926931. [CrossRef]
  • [36] Kim S, Kim KJ. Dropwise condensation modeling suitable for superhydrophobic surfaces. J Heat Transf 2011;133:081502. [CrossRef]
  • [37] Miljkovic N, Enright R, Wang EN. Modeling and Optimization of Superhydrophobic Condensation. J Heat Transf 2013;135:111004. [CrossRef]
  • [38] Tanasawa I. Advances in Condensation Heat Transfer. In: Hartnett JP, Irvine TF, Cho YI (editors). Advances in Heat Transfer. Amsterdam: Elsevier.;1991. Vol. 21, p. 55139. [CrossRef]
  • [39] Glicksman LR, Hunt AW. Numerical simulation of dropwise condensation. Int J Heat Mass Transf 1972;15:22512269. [CrossRef]
  • [40] Graham C, Griffith P. Drop size distributions and heat transfer in dropwise condensation. Int J Heat Mass Transf 1973;16:337346. [CrossRef]
  • [41] Sadhal SS, Martin WW. Heat transfer through drop condensate using differential inequalities. Int J Heat Mass Transf 1977;20:14011407. [CrossRef]
  • [42] Yuvaraj R, Senthil Kumar D. Study of droplet dynamics and condensation heat transfer on superhydrophobic copper surface. Therm Sci 2021;25:653664. [CrossRef]
  • [43] Wolfram MathWorld. Archimedes' Hat-Box Theorem. Available at: https://mathworld.wolfram.com/ArchimedesHat-BoxTheorem.html Last Accessed Date: 26.09.2023.
  • [44] Rose JW, Glicksman LR. Dropwise condensation—The distribution of drop sizes. Int J Heat Mass Transf 1973;16:411425. [CrossRef]
  • [45] Tanaka H, Tsuruta T. A microscopic study of dropwise condensation. Int J Heat Mass Transf 1984;27:327335. [CrossRef]
  • [46] Xu Z, Zhang L, Wilke K, Wang EN. Multiscale dynamic growth and energy transport of droplets during condensation. Langmuir 2018;34:90859095. [CrossRef]

Heat transfer model for dropwise condensation on hydrophobic and superhydrophobic interfaces

Year 2023, Volume: 9 Issue: 5, 1245 - 1259, 17.10.2023
https://doi.org/10.18186/thermal.1374673

Abstract

Heat transfer models for condensation on hydrophobic and superhydrophobic interfaces are broadly available based on thermal resistance correlations. In the previous studies, very few models are presented based on the scaling factor or Nusselt number, and no model is available that directly correlates Biot number. This study develops a heat transfer model for dropwise condensation underneath a horizontal surface. The present model correlates with the Biot number to predict the heat transfer, temperature variation at the interfaces, solid-liquid, and liquid-vapor, and the growth rate of droplet condensate on the hydrophobic and superhydro-phobic interfaces by using Archimedes’ hat-box theorem. The present model is validated with analytical and experimental results against hydrophobic and superhydrophobic contact angles of similar working parameters made excellent agreements. The analytical model for dropwise condensation produces inaccurate results due to discrepancies and discontinuities due to mul-tiple correlations in the modeling. The present model is modified to obtain a continuous result using experimental data. The modified model is used for analyzing heat transfer by varying Biot numbers from 0.0001 to 1000 using Python 3.6.1 with an accuracy of 10-4. Simulation of the present model results in constant heat transfer at Bi = 4, irrespective of the contact angle. A negligible amount of coating resistance and interface resistance when Bi > 0.1, curvature effect when Bi > 0.04, droplet resistance when Bi < 0.02, the maximum liquid-vapor interface tem-perature at Bi ≈ 10, and maximum solid-liquid interface temperature at Bi ≈ 5, are presented.

References

  • REFERENCES
  • [1] McNeil DA, Burnside BM, Cuthbertson G. Dropwise condensation of steam on a small tube bundle at turbine condenser conditions. Exp Heat Transf 2000;13:89105. [CrossRef]
  • [2] Kurshakov AV, Ryzhenkov AV, Bodrov AA, Ryzhenkov OV, Patakin AA, Chernov EF. Heat transfer enhancement in steam-turbine condensers with the use of surface-active substances. Therm Eng 2014;61:785789. [CrossRef]
  • [3] Beér JM. High efficiency electric power generation: The environmental role. Prog Energy Combust Sci 2007;33:107134. [CrossRef]
  • [4] Lara JR, Noyes G, Holtzapple MT. An investigation of high operating temperatures in mechanical vapor-compression desalination. Desalination 2008;227:217232. [CrossRef]
  • [5] Peters TB, McCarthy M, Allison J, Dominguez-Espinosa FA, Jenicek D, Kariya HA, et al. Design of an integrated loop heat pipe air-cooled heat exchanger for high performance electronics. IEEE Trans Components Packag Manuf Technol 2012;2:16371648. [CrossRef]
  • [6] Kim MH, Bullard CW. Air-side performance of brazed aluminum heat exchangers under dehumidifying conditions. Int J Refrig 2002;25:924934. [CrossRef]
  • [7] Li B, Yao R. Urbanisation and its impact on building energy consumption and efficiency in China. Renew Energy 2009;34:19941998. [CrossRef]
  • [8] Pérez-Lombard L, Ortiz J, Pout C. A review on buildings energy consumption information. Energy Build 2008;40:394398. [CrossRef]
  • [9] Sett S, Sokalski P, Boyina K, Li L, Rabbi KF, Auby H, et al. Stable Dropwise Condensation of Ethanol and Hexane on Rationally Designed Ultrascalable Nanostructured Lubricant-Infused Surfaces. Nano Lett 2019;19:52875296. [CrossRef]
  • [10] Schmidt E, Schurig W, Sellschopp W. Versuche über die Kondensation von Wasserdampf in Film- und Tropfenform. Techn Mech Thermodyn 1930;1:5363. [Deutsch] [CrossRef]
  • [11] Le Fevre EJ, Rose JW. An experimental study of heat transfer by dropwise condensation. Int J Heat Mass Transf 1965;8:11171133. [CrossRef]
  • [12] Rose JW. On the mechanism of dropwise condensation. Int J Heat Mass Transf 1967;10:755762. [CrossRef]
  • [13] Stylianou SA, Rose JW. Drop-to-filmwise condensation transition: Heat transfer measurements for ethanediol. Int J Heat Mass Transf 1983;26:747760. [CrossRef]
  • [14] Burnside BM, Hadi HA. Digital computer simulation of dropwise condensation from equilibrium droplet to detectable size. Int J Heat Mass Transf 1999;42:31373146. [CrossRef]
  • [15] Rose JW. Dropwise condensation theory and experiment: A review. Proc Inst Mech Eng Part A J Power Energy. 2002;216:115128. [CrossRef]
  • [16] Vemuri S, Kim KJ. An experimental and theoretical study on the concept of dropwise condensation. Int J Heat Mass Transf 2006;49:649657. [CrossRef]
  • [17] Leach RN, Stevens F, Langford SC, Dickinson JT. Dropwise condensation: Experiments and simulations of nucleation and growth of water drops in a cooling system. Langmuir 2006;22:88648872. [CrossRef]
  • [18] Zhong L, Xuehu M, Sifang W, Mingzhe W, Xiaonan L. Effects of surface free energy and nanostructures on dropwise condensation. Chem Eng J 2010;156:546552. [CrossRef]
  • [19] Miljkovic N, Enright R, Wang EN. Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces. ACS Nano 2012;6:17761785. [CrossRef]
  • [20] Peng B, Ma X, Lan Z, Xu W, Wen R. Experimental investigation on steam condensation heat transfer enhancement with vertically patterned hydrophobic–hydrophilic hybrid surfaces. Int J Heat Mass Transf 2015;83:2738. [CrossRef]
  • [21] Chavan S, Cha H, Orejon D, Nawaz K, Singla N, Yeung YF, et al. Heat transfer through a condensate droplet on hydrophobic and nanostructured superhydrophobic surfaces. Langmuir 2016;32:77747787. [CrossRef]
  • [22] Macner AM, Daniel S, Steen PH. Simulating heat transfer during transient dropwise condensation on a low-thermal-conductivity substrate. Langmuir 2019;35:1156611578. [CrossRef]
  • [23] Enright R, Miljkovic N, Al-Obeidi A, Thompson CV, Wang EN. Condensation on superhydrophobic surfaces: the role of local energy barriers and structure length scale. Langmuir 2012;28:1442414432. [CrossRef]
  • [24] Enright R, Miljkovic N, Dou N, Nam Y, Wang EN. Condensation on superhydrophobic copper oxide nanostructures. Proceedings of the ASME 2012 Third International Conference on Micro/Nanoscale Heat and Mass Transfer 2013:135. [CrossRef]
  • [25] Ölçeroğlu E, Hsieh CY, Rahman MM, Lau KKS, McCarthy M. Full-field dynamic characterization of superhydrophobic condensation on biotemplated nanostructured surfaces. Langmuir 2014;30:75567566. [CrossRef]
  • [26] Li G, Alhosani MH, Yuan S, Liu H, Ghaferi AA, Zhang T. Microscopic droplet formation and energy transport analysis of condensation on scalable superhydrophobic nanostructured copper oxide surfaces. Langmuir 2014;30:1449814511. [CrossRef]
  • [27] Baba S, Sawada K, Tanaka K, Okamoto A. Dropwise condensation on a hierarchical nanopillar structured surface. Langmuir 2020;36:1003310042. [CrossRef]
  • [28] Cha H, Vahabi H, Wu A, Chavan S, Kim MK, Sett S, et al. Dropwise condensation on solid hydrophilic surfaces. Sci Adv 2020;6:eaax0746. [CrossRef]
  • [29] Song Z, Lu M, Chen X. Investigation of dropwise condensation heat transfer on laser-ablated superhydrophobic/hydrophilic hybrid copper surfaces. ACS Omega 2020;5:2358823595. [CrossRef]
  • [30] Wang R, Wu F, Xing D, Yu F, Gao X. Density maximization of one-step electrodeposited copper nanocones and dropwise condensation heat-transfer performance evaluation. ACS Appl Mater Interfaces 2020;12:2451224520. [CrossRef]
  • [31] Ludwicki JM, Robinson FL, Steen PH. Switchable wettability for condensation heat transfer. ACS Appl Mater Interfaces 2020;12:2211522119. [CrossRef]
  • [32] Orazzo A, Tanguy S. Direct numerical simulations of droplet condensation. Int J Heat Mass Trans 2019;129:432448. [CrossRef]
  • [33] Stevens KA, Crockett J, Maynes D, Iverson BD. Simulation of drop-size distribution during dropwise and jumping drop condensation on a vertical surface: ımplications for heat transfer modeling. Langmuir 2019;35:1285812875. [CrossRef]
  • [34] Birbarah P, Chavan S, Miljkovic N. Numerical simulation of jumping droplet condensation. Langmuir 2019;35:1030910321. [CrossRef]
  • [35] Adhikari S, Nabil M, Rattner AS. Condensation heat transfer in a sessile droplet at varying Biot number and contact angle. Int J Heat Mass Transf 2017;115:926931. [CrossRef]
  • [36] Kim S, Kim KJ. Dropwise condensation modeling suitable for superhydrophobic surfaces. J Heat Transf 2011;133:081502. [CrossRef]
  • [37] Miljkovic N, Enright R, Wang EN. Modeling and Optimization of Superhydrophobic Condensation. J Heat Transf 2013;135:111004. [CrossRef]
  • [38] Tanasawa I. Advances in Condensation Heat Transfer. In: Hartnett JP, Irvine TF, Cho YI (editors). Advances in Heat Transfer. Amsterdam: Elsevier.;1991. Vol. 21, p. 55139. [CrossRef]
  • [39] Glicksman LR, Hunt AW. Numerical simulation of dropwise condensation. Int J Heat Mass Transf 1972;15:22512269. [CrossRef]
  • [40] Graham C, Griffith P. Drop size distributions and heat transfer in dropwise condensation. Int J Heat Mass Transf 1973;16:337346. [CrossRef]
  • [41] Sadhal SS, Martin WW. Heat transfer through drop condensate using differential inequalities. Int J Heat Mass Transf 1977;20:14011407. [CrossRef]
  • [42] Yuvaraj R, Senthil Kumar D. Study of droplet dynamics and condensation heat transfer on superhydrophobic copper surface. Therm Sci 2021;25:653664. [CrossRef]
  • [43] Wolfram MathWorld. Archimedes' Hat-Box Theorem. Available at: https://mathworld.wolfram.com/ArchimedesHat-BoxTheorem.html Last Accessed Date: 26.09.2023.
  • [44] Rose JW, Glicksman LR. Dropwise condensation—The distribution of drop sizes. Int J Heat Mass Transf 1973;16:411425. [CrossRef]
  • [45] Tanaka H, Tsuruta T. A microscopic study of dropwise condensation. Int J Heat Mass Transf 1984;27:327335. [CrossRef]
  • [46] Xu Z, Zhang L, Wilke K, Wang EN. Multiscale dynamic growth and energy transport of droplets during condensation. Langmuir 2018;34:90859095. [CrossRef]
There are 47 citations in total.

Details

Primary Language English
Subjects Thermodynamics and Statistical Physics
Journal Section Articles
Authors

R. Yuvaraj This is me 0000-0002-5322-6084

D. Senthılkumar This is me 0000-0001-8533-9115

Publication Date October 17, 2023
Submission Date April 1, 2022
Published in Issue Year 2023 Volume: 9 Issue: 5

Cite

APA Yuvaraj, R., & Senthılkumar, D. (2023). Heat transfer model for dropwise condensation on hydrophobic and superhydrophobic interfaces. Journal of Thermal Engineering, 9(5), 1245-1259. https://doi.org/10.18186/thermal.1374673
AMA Yuvaraj R, Senthılkumar D. Heat transfer model for dropwise condensation on hydrophobic and superhydrophobic interfaces. Journal of Thermal Engineering. October 2023;9(5):1245-1259. doi:10.18186/thermal.1374673
Chicago Yuvaraj, R., and D. Senthılkumar. “Heat Transfer Model for Dropwise Condensation on Hydrophobic and Superhydrophobic Interfaces”. Journal of Thermal Engineering 9, no. 5 (October 2023): 1245-59. https://doi.org/10.18186/thermal.1374673.
EndNote Yuvaraj R, Senthılkumar D (October 1, 2023) Heat transfer model for dropwise condensation on hydrophobic and superhydrophobic interfaces. Journal of Thermal Engineering 9 5 1245–1259.
IEEE R. Yuvaraj and D. Senthılkumar, “Heat transfer model for dropwise condensation on hydrophobic and superhydrophobic interfaces”, Journal of Thermal Engineering, vol. 9, no. 5, pp. 1245–1259, 2023, doi: 10.18186/thermal.1374673.
ISNAD Yuvaraj, R. - Senthılkumar, D. “Heat Transfer Model for Dropwise Condensation on Hydrophobic and Superhydrophobic Interfaces”. Journal of Thermal Engineering 9/5 (October 2023), 1245-1259. https://doi.org/10.18186/thermal.1374673.
JAMA Yuvaraj R, Senthılkumar D. Heat transfer model for dropwise condensation on hydrophobic and superhydrophobic interfaces. Journal of Thermal Engineering. 2023;9:1245–1259.
MLA Yuvaraj, R. and D. Senthılkumar. “Heat Transfer Model for Dropwise Condensation on Hydrophobic and Superhydrophobic Interfaces”. Journal of Thermal Engineering, vol. 9, no. 5, 2023, pp. 1245-59, doi:10.18186/thermal.1374673.
Vancouver Yuvaraj R, Senthılkumar D. Heat transfer model for dropwise condensation on hydrophobic and superhydrophobic interfaces. Journal of Thermal Engineering. 2023;9(5):1245-59.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering