Review
BibTex RIS Cite
Year 2023, Volume: 9 Issue: 5, 1339 - 1355, 17.10.2023
https://doi.org/10.18186/thermal.1377230

Abstract

References

  • REFERENCES
  • [1] Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. ASME Eng Fluids Eng Div 1995;231:99–105. [CrossRef]
  • [2] Senthil Kumar R, Vaidyanathan S, Sivaraman B. Effect of copper nanofluid in aqueous solution of long chain alcohols in the performance of heat pipes. Heat Mass Transf 2015;51:181–193. [CrossRef]
  • [3] Guo Z. A review on heat transfer enhancement with nanofluids. J Enhanc Heat Transf 2020;27:1–70. [CrossRef]
  • [4] Choi SUS. Nanofluid technology: current status and future research. Energy 1998;26:126. [CrossRef]
  • [5] Bumataria RK, Chavda NK, Panchal H. Current research aspects in mono and hybrid nanofluid based heat pipe technologies. Heliyon 2019;5:e01627. [CrossRef]
  • [6] Wang X, Luo L, Xiang J, Zheng S, Shittu S, Wang Z, et al. A comprehensive review on the application of nanofluid in heat pipe based on the machine learning: Theory, application and prediction. Renew Sustain Energy Rev 2021;150:111434. [CrossRef]
  • [7] Kilic M, Abdulvahitoğlu A. Numerical investigation of heat transfer at a rectangular channel with combined effect of nanofluids and swirling jets in a vehicle radiator. Therm Sci 2018;2018:3627– 3637. [CrossRef]
  • [8] Abdulvahitoglu A. Using analytic hierarchy process for evaluating different types of nanofluids for engine cooling systems. Therm Sci 2018;2018:3199–3208. [CrossRef]
  • [9] Nine MJ, Chung H, Tanshen MR, Osman NABA, Jeong H. Is metal nanofluid reliable as heat carrier? J Hazard Mater 2014;273:183–191. [CrossRef]
  • [10] Abo El-Nasr A, El-Haggar SM. Effective thermal conductivity of heat pipes. Heat Mass Transf 1996;32:97–101. [CrossRef]
  • [11] Hassan MI, Alzarooni IA, Shatilla Y. The effect of water-based nanofluid incorporating Al2O3 nanoparticles on heat pipe performance. Energy Proced 2015;75:3201–3206. [CrossRef]
  • [12] Kumaresan G, Venkatachalapathy S, Godson L, Wongwises S. Comparative study on heat transfer characteristics of sintered and mesh wick heat pipes using CuO nano fluids. Int Commun Heat Mass Transf 2014;57:208215. [CrossRef]
  • [13] Do KH, Kim SJ, Garimella SV. A mathematical model for analyzing the thermal characteristics of a flat micro heat pipe with a grooved wick. Int J Heat Mass Transf 2008;51:4637–4650. [CrossRef]
  • [14] Goshayeshi HR, Goodarzi M, Dahari M. Effect of magnetic field on the heat transfer rate of kerosene/Fe2O3 nanofluid in a copper oscillating heat pipe. Exp Therm Fluid Sci 2015;68:663–668. [CrossRef]
  • [15] Zhang XM, Xu JL, Zhou ZQ. Experimental study of a pulsating heat pipe using FC-72, ethanol, and water as working fluids. Exp Heat Transf 2004;17:47–67. [CrossRef]
  • [16] Yang XF, Liu ZH. Flow boiling heat transfer in the evaporator of a loop thermosyphon operating with CuO based aqueous nanofluid. Int J Heat Mass Transf 2012;55:7375–7384. [CrossRef]
  • [17] Zuo ZJ, Faghri A. A network thermodynamic analysis of the heat pipe. Int J Heat Mass Transf 1998;41:1473–1484. [CrossRef]
  • [18] Shafiey Dehaj M, Zamani Mohiabadi M. Experimental study of water-based CuO nanofluid flow in heat pipe solar collector. J Therm Anal Calorim 2019;137:2061–2072. [CrossRef]
  • [19] Shafiey Dehaj M, Ahmadi M, Zamani Mohiabadi M. Assessment of a heat pipe solar collector with nanofluids. Environ Sci Pollut Res 2021;28:5316–5331. [CrossRef]
  • [20] Hosseini SMS, Shafiey Dehaj M. Assessment of TiO2 water-based nanofluids with two distinct morphologies in a U type evacuated tube solar collector. Appl Therm Eng 2021;182:116086. [CrossRef]
  • [21] Mozumder AK, Akon AF, Chowdhury MSH, Banik SC. Performance of heat pipe for different working fluids and fill Ratios. J Mech Eng 2010;41:96–102. [CrossRef]
  • [22] Liu Z, Li Y, Bao R. Thermal performance of inclined grooved heat pipes using nano fluids. Int J Therm Sci 2010;49:16801687. [CrossRef]
  • [23] Moradgholi M, Mostafa Nowee S, Farzaneh A. Experimental study of using Al2O3/methanol nanofluid in a two phase closed thermosyphon (TPCT) array as a novel photovoltaic/thermal system. Sol Energy 2018;164:243–250. [CrossRef]
  • [24] Das S, Giri A, Samanta S, Kanagaraj S. Role of graphene nanofluids on heat transfer enhancement in thermosyphon. J Sci Adv Mater Devices 2019;4:163–169. [CrossRef]
  • [25] Sardarabadi H, Zeinali Heris S, Ahmadpour A, Passandideh-Fard M. Experimental investigation of a novel type of two-phase closed thermosyphon filled with functionalized carbon nanotubes/water nanofluids for electronic cooling application. Energy Convers Manag 2019;188:321–332. [CrossRef]
  • [26] Sarafraz MM, Pourmehran O, Yang B, Arjomandi M. Assessment of the thermal performance of a thermosyphon heat pipe using zirconia-acetone nanofluids. Renew Energy 2019;136:884– 895. [CrossRef]
  • [27] Kiseev V, Sazhin O. Heat transfer enhancement in a loop thermosyphon using nanoparticles/water nanofluid. Int J Heat Mass Transf 2019;132:557–564. [CrossRef]
  • [28] Cacua K, Buitrago-Sierra R, Pabón E, Gallego A, Zapata C, Herrera B. Nanofluids stability effect on a thermosyphon thermal performance. Int J Therm Sci 2020;153:106347. [CrossRef]
  • [29] Kaya M. An experimental investigation on thermal efficiency of two-phase closed thermosyphon (TPCT) filled with CuO/water nanofluid. Eng Sci Technol Int J 2020;23:812–820. [CrossRef]
  • [30] Anand RS, Jawahar CP, Solomon AB, Koshy JS, Jacob JC, Tharakan MM. Heat transfer properties of HFE and R134a based Al2O3 nano refrigerant in thermosyphon for enhancing the heat transfer. Mater Today Proc 2020;27:268–274. [CrossRef]
  • [31] Choi D, Lee KY. Experimental study on confinement effect of two-phase closed thermosyphon and heat transfer enhancement using cellulose nanofluid. Appl Therm Eng 2021;183:116247. [CrossRef]
  • [32] Shuoman LA, Abdelaziz M, Abdel-Samad S. Thermal performances and characteristics of thermosyphon heat pipe using alumina nanofluids. Heat Mass Transf 2021;57:1275–1287.
  • [CrossRef]
  • [33] Xing M, Yu J, Wang R. Performance of a vertical closed pulsating heat pipe with hydroxylated MWNTs nanofluid. Int J Heat Mass Transf 2017;112:81–88. [CrossRef]
  • [34] Nazari MA, Ghasempour R, Ahmadi MH, Heydarian G, Shafii MB. Experimental investigation of graphene oxide nanofluid on heat transfer enhancement of pulsating heat pipe. Int Commun Heat Mass Transf 2018;91:90–94. [CrossRef]
  • [35] Kazemi-Beydokhti A, Meyghani N, Samadi M, Hajiabadi SH. Surface modification of carbon nanotube: Effects on pulsating heat pipe heat transfer. Chem Eng Res Des 2019;152:30–37. [CrossRef]
  • [36] Akbari A, Saidi MH. Experimental investigation of nanofluid stability on thermal performance and flow regimes in pulsating heat pipe. J Therm Anal Calorim 2019;135:1835–1847. [CrossRef]
  • [37] Chen M, Li J. Nanofluid-based pulsating heat pipe for thermal management of lithium-ion batteries for electric vehicles. J Energy Storage 2020;32:101715. [CrossRef]
  • [38] Zhou Y, Yang H, Liu L, Zhang M, Wang Y, Zhang Y, et al. Enhancement of start-up and thermal performance in pulsating heat pipe with GO/water nanofluid. Powder Technol 2021;384:414–422. [CrossRef]
  • [39] Zhang D, He Z, Guan J, Tang S, Shen C. Heat transfer and flow visualization of pulsating heat pipe with silica nanofluid: An experimental study. Int J Heat Mass Transf 2022;183:122100. [CrossRef]
  • [40] Zhou Y, Cui X, Weng J, Shi S, Han H, Chen C. Experimental investigation of the heat transfer performance of an oscillating heat pipe with graphene nanofluids. Powder Technol 2018;332:371– 380. [CrossRef]
  • [41] Meena P, Sangmart A. Heat transfer of a heat pipe on fins using silver nanofluid. J Phys Conf Ser 2018;1144:012121. [CrossRef]
  • [42] Jin H, Lin G, Zeiny A, Bai L, Cai J, Wen D. Experimental study of transparent oscillating heat pipes filled with solar absorptive nanofluids. Int J Heat Mass Transf 2019;139:789–801. [CrossRef]
  • [43] Monroe JG, Kumari S, Fairley JD, Walters KB, Berg MJ, Thompson SM. On the energy harvesting and heat transfer ability of a ferro-nanofluid oscillating heat pipe. Int J Heat Mass Transf 2019;132:162–171. [CrossRef]
  • [44] Davari H, Goshayeshi HR, Öztop HF, Chaer I. Experimental investigation of oscillating heat pipe efficiency for a novel condenser by using Fe3O4 nanofluid. J Therm Anal Calorim 2020;140:2605–2614. [CrossRef]
  • [45] Zhou Z, Lv Y, Qu J, Sun Q, Grachev D. Performance evaluation of hybrid oscillating heat pipe with carbon nanotube nanofluids for electric vehicle battery cooling. Appl Therm Eng 2021;196:117300. [CrossRef]
  • [46] Aly WIA, Elbalshouny MA, Abd El-Hameed HM, Fatouh M. Thermal performance evaluation of a helically-micro-grooved heat pipe working with water and aqueous Al2O3 nanofluid at different inclination angle and filling ratio. Appl Therm Eng 2017;110:1294–1304. [CrossRef]
  • [47] Zhou R, Fu S, Li H, Yuan D, Tang B, Zhou G. Experimental study on thermal performance of copper nanofluids in a miniature heat pipe fabricated by wire electrical discharge machining. Appl Therm Eng 2019;160:113989. [CrossRef]
  • [48] Veerasamy A, Balakrishnan K, Surya Teja Y, Abbas Z. Efficiency improvement of heat pipe by using graphene nanofluids with different concentrations. Therm Sci 2020;24:447–452. [CrossRef]
  • [49] Bhullar BS, Gangacharyulu D, Das SK. Temporal deterioration in thermal performance of screen mesh wick straight heat pipe using surfactant free aqueous nanofluids. Heat Mass Transf 2017;53:241–251. [CrossRef]
  • [50] Bhullar BS, Gangacharyulu D, Das SK. Augmented thermal performance of straight heat pipe employing annular screen mesh wick and surfactant free stable aqueous nanofluids. Heat Transf Eng 2017;38:217–226. [CrossRef]
  • [51] Channapattana SV, Raut SB, Pawar AA, Campli S, Sarnobat SS, Dey T. Heat transfer performance analysis of screen mesh wick heat pipe using CuO nano fluid. Eur J Sustain Dev Res 2018;3:110. [CrossRef]
  • [52] Gupta NK, Tiwari AK, Ghosh SK. Experimental study of thermal performance of nanofluid-filled and nanoparticles-coated mesh wick heat pipes. J Heat Transfer 2018;140:102403. [CrossRef]
  • [53] Gupta NK, Tiwari AK, Verma SK, Rathore PKS, Ghosh SK. A comparative study of thermal performance of a heat pipe using water and nanofluid, and a nanoparticle-coated wick heat pipe using water. Heat Transf Res 2019;50:1767–1779. [CrossRef]
  • [54] Sharuk B, Reddy PL, Reddy ES. Thermal performance enhancement of cylindrical heat pipe using Tio2 nanofluid. Int J Mech Prod Eng Res Dev 2019;9:433–444.
  • [55] Anand EV, Andhare A. Performance analysis of inclined heat pipe using alumina nanofluid. Indian J Sci Technol 2019;12:1–8. [CrossRef]
  • [56] Gupta NK, Verma SK, Rathore PKS, Sharma A. Effects of CuO/water nanofluid application on thermal performance of mesh wick heat pipe. Heat Transf Res 2020;51:837–850. [CrossRef]
  • [57] Nizam AR, Gupta NK, Alam P. Experimental Investigation of Thermal Performance of Mesh Wick Heat Pipe Using Nanofluid. IOP Conf Ser Mater Sci Eng 2020;998:012034. [CrossRef]
  • [58] Jyothi Sankar PR, Venkatachalapathy S, Asirvatham LG. Thermal performance enhancement studies using graphite nanofluid for heat transfer applications. Heat Transf 2020;49:3013–
  • 3029. [CrossRef]
  • [59] Alagappan N, Karunakaran N, Rathnasabapathy CS. Performance of two phase copper thermosyphon operated with cerium IV oxide and iron II, III oxide nano fluid using box-behnken design. Mater Today Proc 2019,24:2094–2107. [CrossRef]
  • [60] Sarafraz MM, Tlili I, Tian Z, Bakouri M, Safaei MR. Smart optimization of a thermosyphon heat pipe for an evacuated tube solar collector using response surface methodology (RSM). Phys A Stat Mech Its Appl 2019;534:122146. [CrossRef]
  • [61] Wang WW, Cai Y, Wang L, Liu CW, Zhao FY, Sheremet MA, et al. A two-phase closed thermosyphon operated with nanofluids for solar energy collectors: Thermodynamic modeling and entropy generation analysis. Sol Energy 2020;211:192–209. [CrossRef]
  • [62] Xu H, Zhang P, Yan L, Xu D, Ma W, Wang L. Thermal characteristic and analysis of microchannel structure flat plate pulsating heat pipe with silver nanofluid. IEEE Access 2019;7:51724–51734. [CrossRef]
  • [63] Malekan M, Khosravi A, Goshayeshi HR, Assad MEH, Garcia Pabon JJ. Thermal resistance modeling of oscillating heat pipes for nanofluids by artificial intelligence approach. J Heat Transfer 2019;141:072402. [CrossRef]
  • [64] Gupta NK, Barua A, Mishra S, Singh SK, Tiwari AK, Ghosh SK. Numerical study of CeO2 /H2O nanofluid application on thermal performance of heat pipe. Mater Today Proc 2019;18:1006–1016. [CrossRef]
  • [65] Maddah H, Ghazvini M, Ahmadi MH. Predicting the efficiency of CuO/water nanofluid in heat pipe heat exchanger using neural network. Int Commun Heat Mass Transf 2019;104:33–40. [CrossRef]
  • [66] Poplaski LM, Benn SP, Faghri A. Thermal performance of heat pipes using nanofluids. Int J Heat Mass Transf 2017;107:358–371. [CrossRef]
  • [67] Herrera B, Chejne F, Mantelli MBH, Mejía J, Cacua K, Gallego A. Population balance for capillary limit modeling in a screen mesh wick heat pipe working with nanofluids. Int J Therm Sci 2019;138:134. [CrossRef]
  • [68] Gupta NK. Thermal performance optimization of heat pipe using Taguchi method. Lect Notes Mech Eng 2021:499–508.
  • [69] Herrera B, Chejne F, Mantelli MBH, Mejía J, Cacua K. Modelling of a screen mesh wick heat pipe using Al2O3 nanofluids. IOP Conf Ser Mater Sci Eng 2021;1139:012006. [CrossRef]
  • [70] Reddy P, Reddy B, Govindarajulu K. Thermal performance prediction of heat pipe with TiO2 nanofluids using RSM. Therm Sci 2022;26:641–651. [CrossRef]
  • [71] Xu Q, Liu L, Feng J, Qiao L, Yu C, Shi W, et al. A comparative investigation on the effect of different nanofluids on the thermal performance of two-phase closed thermosyphon. Int J Heat Mass Transf 2020;149:119189. [CrossRef]
  • [72] Çiftçi E. Distilled water-based AlN + ZnO binary hybrid nanofluid utilization in a heat pipe and investigation of its effects on performance. Int J Thermophys 2021;42:1–21. [CrossRef]
  • [73] Zufar M, Gunnasegaran P, Kumar HM, Ng KC. Numerical and experimental investigations of hybrid nanofluids on pulsating heat pipe performance. Int J Heat Mass Transf 2020;146:118887. [CrossRef]
  • [74] Zufar M, Gunnasegaran P, Ng KC, Mehta HB. Evaluation of the thermal performance of hybrid nanofluids in pulsating heat pipe. CFD Lett 2019;11:13–24.
  • [75] Pandya NS, Desai AN, Kumar Tiwari A, Said Z. Influence of the geometrical parameters and particle concentration levels of hybrid nanofluid on the thermal performance of axial grooved heat pipe. Therm Sci Eng Prog 2021;21:100762. [CrossRef]
  • [76] Veeramachaneni S, Pisipaty SK, Vedula DR, Solomon AB, Harsha VS. Effect of copper–graphene hybrid nanoplatelets in a miniature loop heat pipe. J Therm Anal Calorim 2021;147:59855999. [CrossRef]
  • [77] Ramachandran RN, Ganesan K, Asirvatham LG. The role of hybrid nanofluids in improving the thermal characteristics of screen mesh cylindrical heat pipes. Therm Sci 2016;20:2027–2035. [CrossRef]
  • [78] Bumataria RK, Chavda NK, Nalbandh AH. Performance evaluation of the cylindrical shaped heat pipe utilizing water-based CuO and ZnO hybrid nanofluids. Energy Sources Part A Recover Util Environ Eff 2020. doi: 10.1080/15567036.2020.1832628. [Epub ahead of print]. [CrossRef]
  • [79] Vidhya R, Balakrishnan T, Kumar BS. Investigation on thermophysical properties and heat transfer performance of heat pipe charged with binary mixture based ZnO-MgO hybrid nanofluids. Mater Today Proc 2020;37:3423–3433. [CrossRef]
  • [80] Martin K, Sözen A, Çiftçi E, Ali HM. An experimental investigation on aqueous Fe–CuO hybrid nanofluid usage in a plain heat pipe. Int J Thermophys 2020;41:1–21. [CrossRef]

An exploratory review on heat transfer mechanisms in nanofluid based heat pipes

Year 2023, Volume: 9 Issue: 5, 1339 - 1355, 17.10.2023
https://doi.org/10.18186/thermal.1377230

Abstract

The current study reviews the research on nanosuspension-enhanced heat pipe technologies. The reviewed studies are categorized based on the nanosuspension type incorporated in the heat pipe i.e., mono & hybrid. The study attempts to identify the heat transport modes in heat pipes and explore their dominance among each other. The dominance of the identified mech-anisms was found to be a strong function of the heat pipe type investigated and get signifi-cantly influenced by the operating conditions. The current review paper will aid in properly understanding the thermal mechanisms prevalent in heat pipes filled with nanosuspensions and to further optimizing their thermal response.

References

  • REFERENCES
  • [1] Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. ASME Eng Fluids Eng Div 1995;231:99–105. [CrossRef]
  • [2] Senthil Kumar R, Vaidyanathan S, Sivaraman B. Effect of copper nanofluid in aqueous solution of long chain alcohols in the performance of heat pipes. Heat Mass Transf 2015;51:181–193. [CrossRef]
  • [3] Guo Z. A review on heat transfer enhancement with nanofluids. J Enhanc Heat Transf 2020;27:1–70. [CrossRef]
  • [4] Choi SUS. Nanofluid technology: current status and future research. Energy 1998;26:126. [CrossRef]
  • [5] Bumataria RK, Chavda NK, Panchal H. Current research aspects in mono and hybrid nanofluid based heat pipe technologies. Heliyon 2019;5:e01627. [CrossRef]
  • [6] Wang X, Luo L, Xiang J, Zheng S, Shittu S, Wang Z, et al. A comprehensive review on the application of nanofluid in heat pipe based on the machine learning: Theory, application and prediction. Renew Sustain Energy Rev 2021;150:111434. [CrossRef]
  • [7] Kilic M, Abdulvahitoğlu A. Numerical investigation of heat transfer at a rectangular channel with combined effect of nanofluids and swirling jets in a vehicle radiator. Therm Sci 2018;2018:3627– 3637. [CrossRef]
  • [8] Abdulvahitoglu A. Using analytic hierarchy process for evaluating different types of nanofluids for engine cooling systems. Therm Sci 2018;2018:3199–3208. [CrossRef]
  • [9] Nine MJ, Chung H, Tanshen MR, Osman NABA, Jeong H. Is metal nanofluid reliable as heat carrier? J Hazard Mater 2014;273:183–191. [CrossRef]
  • [10] Abo El-Nasr A, El-Haggar SM. Effective thermal conductivity of heat pipes. Heat Mass Transf 1996;32:97–101. [CrossRef]
  • [11] Hassan MI, Alzarooni IA, Shatilla Y. The effect of water-based nanofluid incorporating Al2O3 nanoparticles on heat pipe performance. Energy Proced 2015;75:3201–3206. [CrossRef]
  • [12] Kumaresan G, Venkatachalapathy S, Godson L, Wongwises S. Comparative study on heat transfer characteristics of sintered and mesh wick heat pipes using CuO nano fluids. Int Commun Heat Mass Transf 2014;57:208215. [CrossRef]
  • [13] Do KH, Kim SJ, Garimella SV. A mathematical model for analyzing the thermal characteristics of a flat micro heat pipe with a grooved wick. Int J Heat Mass Transf 2008;51:4637–4650. [CrossRef]
  • [14] Goshayeshi HR, Goodarzi M, Dahari M. Effect of magnetic field on the heat transfer rate of kerosene/Fe2O3 nanofluid in a copper oscillating heat pipe. Exp Therm Fluid Sci 2015;68:663–668. [CrossRef]
  • [15] Zhang XM, Xu JL, Zhou ZQ. Experimental study of a pulsating heat pipe using FC-72, ethanol, and water as working fluids. Exp Heat Transf 2004;17:47–67. [CrossRef]
  • [16] Yang XF, Liu ZH. Flow boiling heat transfer in the evaporator of a loop thermosyphon operating with CuO based aqueous nanofluid. Int J Heat Mass Transf 2012;55:7375–7384. [CrossRef]
  • [17] Zuo ZJ, Faghri A. A network thermodynamic analysis of the heat pipe. Int J Heat Mass Transf 1998;41:1473–1484. [CrossRef]
  • [18] Shafiey Dehaj M, Zamani Mohiabadi M. Experimental study of water-based CuO nanofluid flow in heat pipe solar collector. J Therm Anal Calorim 2019;137:2061–2072. [CrossRef]
  • [19] Shafiey Dehaj M, Ahmadi M, Zamani Mohiabadi M. Assessment of a heat pipe solar collector with nanofluids. Environ Sci Pollut Res 2021;28:5316–5331. [CrossRef]
  • [20] Hosseini SMS, Shafiey Dehaj M. Assessment of TiO2 water-based nanofluids with two distinct morphologies in a U type evacuated tube solar collector. Appl Therm Eng 2021;182:116086. [CrossRef]
  • [21] Mozumder AK, Akon AF, Chowdhury MSH, Banik SC. Performance of heat pipe for different working fluids and fill Ratios. J Mech Eng 2010;41:96–102. [CrossRef]
  • [22] Liu Z, Li Y, Bao R. Thermal performance of inclined grooved heat pipes using nano fluids. Int J Therm Sci 2010;49:16801687. [CrossRef]
  • [23] Moradgholi M, Mostafa Nowee S, Farzaneh A. Experimental study of using Al2O3/methanol nanofluid in a two phase closed thermosyphon (TPCT) array as a novel photovoltaic/thermal system. Sol Energy 2018;164:243–250. [CrossRef]
  • [24] Das S, Giri A, Samanta S, Kanagaraj S. Role of graphene nanofluids on heat transfer enhancement in thermosyphon. J Sci Adv Mater Devices 2019;4:163–169. [CrossRef]
  • [25] Sardarabadi H, Zeinali Heris S, Ahmadpour A, Passandideh-Fard M. Experimental investigation of a novel type of two-phase closed thermosyphon filled with functionalized carbon nanotubes/water nanofluids for electronic cooling application. Energy Convers Manag 2019;188:321–332. [CrossRef]
  • [26] Sarafraz MM, Pourmehran O, Yang B, Arjomandi M. Assessment of the thermal performance of a thermosyphon heat pipe using zirconia-acetone nanofluids. Renew Energy 2019;136:884– 895. [CrossRef]
  • [27] Kiseev V, Sazhin O. Heat transfer enhancement in a loop thermosyphon using nanoparticles/water nanofluid. Int J Heat Mass Transf 2019;132:557–564. [CrossRef]
  • [28] Cacua K, Buitrago-Sierra R, Pabón E, Gallego A, Zapata C, Herrera B. Nanofluids stability effect on a thermosyphon thermal performance. Int J Therm Sci 2020;153:106347. [CrossRef]
  • [29] Kaya M. An experimental investigation on thermal efficiency of two-phase closed thermosyphon (TPCT) filled with CuO/water nanofluid. Eng Sci Technol Int J 2020;23:812–820. [CrossRef]
  • [30] Anand RS, Jawahar CP, Solomon AB, Koshy JS, Jacob JC, Tharakan MM. Heat transfer properties of HFE and R134a based Al2O3 nano refrigerant in thermosyphon for enhancing the heat transfer. Mater Today Proc 2020;27:268–274. [CrossRef]
  • [31] Choi D, Lee KY. Experimental study on confinement effect of two-phase closed thermosyphon and heat transfer enhancement using cellulose nanofluid. Appl Therm Eng 2021;183:116247. [CrossRef]
  • [32] Shuoman LA, Abdelaziz M, Abdel-Samad S. Thermal performances and characteristics of thermosyphon heat pipe using alumina nanofluids. Heat Mass Transf 2021;57:1275–1287.
  • [CrossRef]
  • [33] Xing M, Yu J, Wang R. Performance of a vertical closed pulsating heat pipe with hydroxylated MWNTs nanofluid. Int J Heat Mass Transf 2017;112:81–88. [CrossRef]
  • [34] Nazari MA, Ghasempour R, Ahmadi MH, Heydarian G, Shafii MB. Experimental investigation of graphene oxide nanofluid on heat transfer enhancement of pulsating heat pipe. Int Commun Heat Mass Transf 2018;91:90–94. [CrossRef]
  • [35] Kazemi-Beydokhti A, Meyghani N, Samadi M, Hajiabadi SH. Surface modification of carbon nanotube: Effects on pulsating heat pipe heat transfer. Chem Eng Res Des 2019;152:30–37. [CrossRef]
  • [36] Akbari A, Saidi MH. Experimental investigation of nanofluid stability on thermal performance and flow regimes in pulsating heat pipe. J Therm Anal Calorim 2019;135:1835–1847. [CrossRef]
  • [37] Chen M, Li J. Nanofluid-based pulsating heat pipe for thermal management of lithium-ion batteries for electric vehicles. J Energy Storage 2020;32:101715. [CrossRef]
  • [38] Zhou Y, Yang H, Liu L, Zhang M, Wang Y, Zhang Y, et al. Enhancement of start-up and thermal performance in pulsating heat pipe with GO/water nanofluid. Powder Technol 2021;384:414–422. [CrossRef]
  • [39] Zhang D, He Z, Guan J, Tang S, Shen C. Heat transfer and flow visualization of pulsating heat pipe with silica nanofluid: An experimental study. Int J Heat Mass Transf 2022;183:122100. [CrossRef]
  • [40] Zhou Y, Cui X, Weng J, Shi S, Han H, Chen C. Experimental investigation of the heat transfer performance of an oscillating heat pipe with graphene nanofluids. Powder Technol 2018;332:371– 380. [CrossRef]
  • [41] Meena P, Sangmart A. Heat transfer of a heat pipe on fins using silver nanofluid. J Phys Conf Ser 2018;1144:012121. [CrossRef]
  • [42] Jin H, Lin G, Zeiny A, Bai L, Cai J, Wen D. Experimental study of transparent oscillating heat pipes filled with solar absorptive nanofluids. Int J Heat Mass Transf 2019;139:789–801. [CrossRef]
  • [43] Monroe JG, Kumari S, Fairley JD, Walters KB, Berg MJ, Thompson SM. On the energy harvesting and heat transfer ability of a ferro-nanofluid oscillating heat pipe. Int J Heat Mass Transf 2019;132:162–171. [CrossRef]
  • [44] Davari H, Goshayeshi HR, Öztop HF, Chaer I. Experimental investigation of oscillating heat pipe efficiency for a novel condenser by using Fe3O4 nanofluid. J Therm Anal Calorim 2020;140:2605–2614. [CrossRef]
  • [45] Zhou Z, Lv Y, Qu J, Sun Q, Grachev D. Performance evaluation of hybrid oscillating heat pipe with carbon nanotube nanofluids for electric vehicle battery cooling. Appl Therm Eng 2021;196:117300. [CrossRef]
  • [46] Aly WIA, Elbalshouny MA, Abd El-Hameed HM, Fatouh M. Thermal performance evaluation of a helically-micro-grooved heat pipe working with water and aqueous Al2O3 nanofluid at different inclination angle and filling ratio. Appl Therm Eng 2017;110:1294–1304. [CrossRef]
  • [47] Zhou R, Fu S, Li H, Yuan D, Tang B, Zhou G. Experimental study on thermal performance of copper nanofluids in a miniature heat pipe fabricated by wire electrical discharge machining. Appl Therm Eng 2019;160:113989. [CrossRef]
  • [48] Veerasamy A, Balakrishnan K, Surya Teja Y, Abbas Z. Efficiency improvement of heat pipe by using graphene nanofluids with different concentrations. Therm Sci 2020;24:447–452. [CrossRef]
  • [49] Bhullar BS, Gangacharyulu D, Das SK. Temporal deterioration in thermal performance of screen mesh wick straight heat pipe using surfactant free aqueous nanofluids. Heat Mass Transf 2017;53:241–251. [CrossRef]
  • [50] Bhullar BS, Gangacharyulu D, Das SK. Augmented thermal performance of straight heat pipe employing annular screen mesh wick and surfactant free stable aqueous nanofluids. Heat Transf Eng 2017;38:217–226. [CrossRef]
  • [51] Channapattana SV, Raut SB, Pawar AA, Campli S, Sarnobat SS, Dey T. Heat transfer performance analysis of screen mesh wick heat pipe using CuO nano fluid. Eur J Sustain Dev Res 2018;3:110. [CrossRef]
  • [52] Gupta NK, Tiwari AK, Ghosh SK. Experimental study of thermal performance of nanofluid-filled and nanoparticles-coated mesh wick heat pipes. J Heat Transfer 2018;140:102403. [CrossRef]
  • [53] Gupta NK, Tiwari AK, Verma SK, Rathore PKS, Ghosh SK. A comparative study of thermal performance of a heat pipe using water and nanofluid, and a nanoparticle-coated wick heat pipe using water. Heat Transf Res 2019;50:1767–1779. [CrossRef]
  • [54] Sharuk B, Reddy PL, Reddy ES. Thermal performance enhancement of cylindrical heat pipe using Tio2 nanofluid. Int J Mech Prod Eng Res Dev 2019;9:433–444.
  • [55] Anand EV, Andhare A. Performance analysis of inclined heat pipe using alumina nanofluid. Indian J Sci Technol 2019;12:1–8. [CrossRef]
  • [56] Gupta NK, Verma SK, Rathore PKS, Sharma A. Effects of CuO/water nanofluid application on thermal performance of mesh wick heat pipe. Heat Transf Res 2020;51:837–850. [CrossRef]
  • [57] Nizam AR, Gupta NK, Alam P. Experimental Investigation of Thermal Performance of Mesh Wick Heat Pipe Using Nanofluid. IOP Conf Ser Mater Sci Eng 2020;998:012034. [CrossRef]
  • [58] Jyothi Sankar PR, Venkatachalapathy S, Asirvatham LG. Thermal performance enhancement studies using graphite nanofluid for heat transfer applications. Heat Transf 2020;49:3013–
  • 3029. [CrossRef]
  • [59] Alagappan N, Karunakaran N, Rathnasabapathy CS. Performance of two phase copper thermosyphon operated with cerium IV oxide and iron II, III oxide nano fluid using box-behnken design. Mater Today Proc 2019,24:2094–2107. [CrossRef]
  • [60] Sarafraz MM, Tlili I, Tian Z, Bakouri M, Safaei MR. Smart optimization of a thermosyphon heat pipe for an evacuated tube solar collector using response surface methodology (RSM). Phys A Stat Mech Its Appl 2019;534:122146. [CrossRef]
  • [61] Wang WW, Cai Y, Wang L, Liu CW, Zhao FY, Sheremet MA, et al. A two-phase closed thermosyphon operated with nanofluids for solar energy collectors: Thermodynamic modeling and entropy generation analysis. Sol Energy 2020;211:192–209. [CrossRef]
  • [62] Xu H, Zhang P, Yan L, Xu D, Ma W, Wang L. Thermal characteristic and analysis of microchannel structure flat plate pulsating heat pipe with silver nanofluid. IEEE Access 2019;7:51724–51734. [CrossRef]
  • [63] Malekan M, Khosravi A, Goshayeshi HR, Assad MEH, Garcia Pabon JJ. Thermal resistance modeling of oscillating heat pipes for nanofluids by artificial intelligence approach. J Heat Transfer 2019;141:072402. [CrossRef]
  • [64] Gupta NK, Barua A, Mishra S, Singh SK, Tiwari AK, Ghosh SK. Numerical study of CeO2 /H2O nanofluid application on thermal performance of heat pipe. Mater Today Proc 2019;18:1006–1016. [CrossRef]
  • [65] Maddah H, Ghazvini M, Ahmadi MH. Predicting the efficiency of CuO/water nanofluid in heat pipe heat exchanger using neural network. Int Commun Heat Mass Transf 2019;104:33–40. [CrossRef]
  • [66] Poplaski LM, Benn SP, Faghri A. Thermal performance of heat pipes using nanofluids. Int J Heat Mass Transf 2017;107:358–371. [CrossRef]
  • [67] Herrera B, Chejne F, Mantelli MBH, Mejía J, Cacua K, Gallego A. Population balance for capillary limit modeling in a screen mesh wick heat pipe working with nanofluids. Int J Therm Sci 2019;138:134. [CrossRef]
  • [68] Gupta NK. Thermal performance optimization of heat pipe using Taguchi method. Lect Notes Mech Eng 2021:499–508.
  • [69] Herrera B, Chejne F, Mantelli MBH, Mejía J, Cacua K. Modelling of a screen mesh wick heat pipe using Al2O3 nanofluids. IOP Conf Ser Mater Sci Eng 2021;1139:012006. [CrossRef]
  • [70] Reddy P, Reddy B, Govindarajulu K. Thermal performance prediction of heat pipe with TiO2 nanofluids using RSM. Therm Sci 2022;26:641–651. [CrossRef]
  • [71] Xu Q, Liu L, Feng J, Qiao L, Yu C, Shi W, et al. A comparative investigation on the effect of different nanofluids on the thermal performance of two-phase closed thermosyphon. Int J Heat Mass Transf 2020;149:119189. [CrossRef]
  • [72] Çiftçi E. Distilled water-based AlN + ZnO binary hybrid nanofluid utilization in a heat pipe and investigation of its effects on performance. Int J Thermophys 2021;42:1–21. [CrossRef]
  • [73] Zufar M, Gunnasegaran P, Kumar HM, Ng KC. Numerical and experimental investigations of hybrid nanofluids on pulsating heat pipe performance. Int J Heat Mass Transf 2020;146:118887. [CrossRef]
  • [74] Zufar M, Gunnasegaran P, Ng KC, Mehta HB. Evaluation of the thermal performance of hybrid nanofluids in pulsating heat pipe. CFD Lett 2019;11:13–24.
  • [75] Pandya NS, Desai AN, Kumar Tiwari A, Said Z. Influence of the geometrical parameters and particle concentration levels of hybrid nanofluid on the thermal performance of axial grooved heat pipe. Therm Sci Eng Prog 2021;21:100762. [CrossRef]
  • [76] Veeramachaneni S, Pisipaty SK, Vedula DR, Solomon AB, Harsha VS. Effect of copper–graphene hybrid nanoplatelets in a miniature loop heat pipe. J Therm Anal Calorim 2021;147:59855999. [CrossRef]
  • [77] Ramachandran RN, Ganesan K, Asirvatham LG. The role of hybrid nanofluids in improving the thermal characteristics of screen mesh cylindrical heat pipes. Therm Sci 2016;20:2027–2035. [CrossRef]
  • [78] Bumataria RK, Chavda NK, Nalbandh AH. Performance evaluation of the cylindrical shaped heat pipe utilizing water-based CuO and ZnO hybrid nanofluids. Energy Sources Part A Recover Util Environ Eff 2020. doi: 10.1080/15567036.2020.1832628. [Epub ahead of print]. [CrossRef]
  • [79] Vidhya R, Balakrishnan T, Kumar BS. Investigation on thermophysical properties and heat transfer performance of heat pipe charged with binary mixture based ZnO-MgO hybrid nanofluids. Mater Today Proc 2020;37:3423–3433. [CrossRef]
  • [80] Martin K, Sözen A, Çiftçi E, Ali HM. An experimental investigation on aqueous Fe–CuO hybrid nanofluid usage in a plain heat pipe. Int J Thermophys 2020;41:1–21. [CrossRef]
There are 83 citations in total.

Details

Primary Language English
Subjects Thermodynamics and Statistical Physics
Journal Section Reviews
Authors

Udayvir Sıngh This is me 0000-0001-8041-7452

Harshit Pandey This is me 0009-0000-2805-4420

Naveen Kumar Gupta This is me 0000-0003-0085-6661

Publication Date October 17, 2023
Submission Date November 26, 2021
Published in Issue Year 2023 Volume: 9 Issue: 5

Cite

APA Sıngh, U., Pandey, H., & Gupta, N. K. (2023). An exploratory review on heat transfer mechanisms in nanofluid based heat pipes. Journal of Thermal Engineering, 9(5), 1339-1355. https://doi.org/10.18186/thermal.1377230
AMA Sıngh U, Pandey H, Gupta NK. An exploratory review on heat transfer mechanisms in nanofluid based heat pipes. Journal of Thermal Engineering. October 2023;9(5):1339-1355. doi:10.18186/thermal.1377230
Chicago Sıngh, Udayvir, Harshit Pandey, and Naveen Kumar Gupta. “An Exploratory Review on Heat Transfer Mechanisms in Nanofluid Based Heat Pipes”. Journal of Thermal Engineering 9, no. 5 (October 2023): 1339-55. https://doi.org/10.18186/thermal.1377230.
EndNote Sıngh U, Pandey H, Gupta NK (October 1, 2023) An exploratory review on heat transfer mechanisms in nanofluid based heat pipes. Journal of Thermal Engineering 9 5 1339–1355.
IEEE U. Sıngh, H. Pandey, and N. K. Gupta, “An exploratory review on heat transfer mechanisms in nanofluid based heat pipes”, Journal of Thermal Engineering, vol. 9, no. 5, pp. 1339–1355, 2023, doi: 10.18186/thermal.1377230.
ISNAD Sıngh, Udayvir et al. “An Exploratory Review on Heat Transfer Mechanisms in Nanofluid Based Heat Pipes”. Journal of Thermal Engineering 9/5 (October 2023), 1339-1355. https://doi.org/10.18186/thermal.1377230.
JAMA Sıngh U, Pandey H, Gupta NK. An exploratory review on heat transfer mechanisms in nanofluid based heat pipes. Journal of Thermal Engineering. 2023;9:1339–1355.
MLA Sıngh, Udayvir et al. “An Exploratory Review on Heat Transfer Mechanisms in Nanofluid Based Heat Pipes”. Journal of Thermal Engineering, vol. 9, no. 5, 2023, pp. 1339-55, doi:10.18186/thermal.1377230.
Vancouver Sıngh U, Pandey H, Gupta NK. An exploratory review on heat transfer mechanisms in nanofluid based heat pipes. Journal of Thermal Engineering. 2023;9(5):1339-55.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering