Review
BibTex RIS Cite
Year 2023, Volume: 9 Issue: 5, 1356 - 1371, 17.10.2023
https://doi.org/10.18186/thermal.1377246

Abstract

References

  • REFERENCES
  • [1] Yettou F. Receiver temperature maps of parabolic collector used for solar food cooking application in Algeria. J Therm Eng 2018;4:16561667. [CrossRef]
  • [2] Sachdev T, Gaba VK, Tiwari AK. Comparative thermal analysis of applications using novel solar air heater with u-shaped longitudinal fins: suitable for coastal regions. J Therm Eng 2021;7:11741183. [CrossRef]
  • [3] Heydari A, Forati M, Khatami SM. Thermal performance investigation of a hybrid solar air heater applied in a solar dryer using thermodynamic modelling. J Therm Eng 2021;7:715730. [CrossRef]
  • [4] Bharadwaj G, Sharma K, Mausam K. Factors Influencing the Performance of Solar Air Heater (SAH) Having Artificial Coarseness: A Review. J Therm Eng 2021;7:15561576. [CrossRef]
  • [5] De Winter F. Solar Collectors, Energy Storage, and Materials. Massachusetts: The MIT Press; 1991.
  • [6] Wei XD, Lu ZW, Wang ZF, Yu WX, Zhang HX, Yao ZH. A new method for the design of the heliostat field layout for solar tower power plant. Renew Energy 2010;35:1970–1975. [CrossRef]
  • [7] Medrano M, Gil A, Martorell I, Potou X, Cabeza LF. State of the art on high-temperature thermal energy storage for power generation. Part 2—Case studies. Renew Sustain Energy Rev 2010;14:56–72. [CrossRef]
  • [8] Battleson KW. Solar power tower design guide: solar thermal central receiver power systems. Sandia National Labs, Report SAND81-8005; 1981. [CrossRef]
  • [9] Global Energy Network Institute. Parabolic dish collector, 2012.
  • [10] Song EJ. Sterling engine attached to parabolic dish collector, 2012.
  • [11] Tavakolpour AR, Zomorodian A, Golneshan AA. Simulation, construction and testing of a two-cylinder solar Stirling engine powered by a flat-plate solar collector without regenerator. Renew Energy 2008;33:77–87. [CrossRef]
  • [12] Zhang Y, Lin B, Chen J. Optimum performance characteristics of an irreversible solar-driven Brayton heat engine at the maximum overall efficiency. Renew Energy 2007;32:856–867. [CrossRef]
  • [13] USA Department of Energy. Energy Citations Database, 2012.
  • [14] Bakos GC. Design and construction of a two-axis Sun tracking system for parabolic trough collector (PTC) efficiency improvement. Renew Energy 2006;31:2411–2421. [CrossRef]
  • [15] Abdallah S. The effect of using sun tracking systems on the voltage–current characteristics and power generation of flat plate photovoltaics. Energy Convers Manag 2004;45:1671–1679. [CrossRef]
  • [16] Kacira M, Simsek M, Babur Y, Demirkol S. Determining optimum tilt angles and orientations of photovoltaic panels in Sanliurfa, Turkey. Renew Energy 2004;29:1265–1275. [CrossRef]
  • [17] Khoukhi M, Maruyama S. Theoretical approach of a flat plate solar collector with clear and low-iron glass covers taking into account the spectral absorption and emission within glass covers layer. Renew Energy 2005;30:1177–1194. [CrossRef]
  • [18] Parsons RA. ASHRAE Handbook: heating, ventilating, and air-conditioning applications. In: Chapter 30. Atlanta: ASHRAE; 1995.
  • [19] Hellstrom B, Adsten M, Nostell P, Karlsson B, Wackelgard E. The impact of optical and thermal properties on the performance of flat plate solar collectors. Renew Energy 2003;28:331–344. [CrossRef]
  • [20] Tripanagnostopolous Y, Souliotis M, Nousia T. Solar collectors with colored absorbers. Sol Energy 2000;68:343–356. [CrossRef]
  • [21] Wazwaz J, Salmi H, Hallak R. Solar thermal performance of a nickel-pigmented aluminium oxide selective absorber. Renew Energy 2002;27:277–292. [CrossRef]
  • [22] Orel ZC, Gunde MK, Hutchins MG. Spectrally selective solar absorbers in different non-black colours. In: Proc. of WREC VII (CD–ROM), Cologne, Germany; 2002.
  • [23] Konttinen P, Lund PD, Kilpi RJ. Mechanically manufactured selective solar absorber surfaces. Sol Energy Mat Sol C 2003;79:273–283. [CrossRef]
  • [24] Francia G. A new collector of solar radiant energy. In: Proceedings of the United Nations conference on new sources of energy, paper No. F6. Rome, Italy; 1961. p. 572.
  • [25] Slaman M, Griessen R. Solar collector overheating protection. Sol Energy 2009;83:982–987. [CrossRef]
  • [26] Kumar KR, Reddy KS. Thermal analysis of solar parabolic trough with porous disc receiver. Appl Energy 2009;86:1804–1812. [CrossRef]
  • [27] Lambert AA, Cuevasa S, del Río JA. Enhanced heat transfer using oscillatory flows in solar collectors Sol Energy 2006;80:1296–1302. [CrossRef]
  • [28] Ho C.D, Yeh H.M, Wang RC. Heat-transfer enhancements in double-pass flat plate solar air heaters with recycle. Energy 2005;30:2796–2817. [CrossRef]
  • [29] Wang RZ, Zhai XQ. Development of solar thermal technologies in China. Energy. 2012;35:4407–4416. [CrossRef]
  • [30] Bergene T, Lovvik OM. Model calculations on a flat-plate solar heat collector with integrated solar cells. Sol Energy 1995;55:453–462. [CrossRef]
  • [31] Kalogirou SA. Use of TRNSYS for modelling and simulation of a hybrid PV-thermal solar system for Cyprus. Renew Energy 2001;23:247–260. [CrossRef]
  • [32] Prakash J. Transient analysis of a photovoltaic thermal solar collector for cogeneration of electricity and hot air water. Energy Convers Manag 1994;35:967–972. [CrossRef]
  • [33] Agarwal RK, Garg HP. Study of a photovoltaic thermal system thermosyphonic solar water heater combined with solar cells. Energy Convers Manag 1994;35:605–620. [CrossRef]
  • [34] Fujisawa T, Tani T. Optimum design for residential photovoltaic–thermal binary utilization system by minimizing auxiliary energy. Elect Eng Jpn 2001;137:28–35. [CrossRef]
  • [35] New generation of Hybrid Solar PV/T collectors, prepared by LESO-PB/EPFL. Enecolo AG and Ernst Schweizer AG for the Swiss Federal Office of Energy; 2000. 1–55.
  • [36] Platz R, Fischer D, Zufferey MA, Anna Selvan JA, Haller A, Shah A. Hybrid collectors using thin-film technology. In: Proceedings of the 26th photovoltaics specialists’ conference (IEEE). Anaheim, CA, USA; 1997. p.1293–1296.
  • [37] Tonui JK, Tripanagnostopoulos Y. Improved PV/T solar collectors with heat extraction by forced or natural air circulation. Renew Energy 2007;32:623–637. [CrossRef]
  • [38] Hegazy AA. Comparative study of the performances of four photovoltaic/thermal solar air collectors. Energy Convers Manage. 2000;41:861–881. [CrossRef]
  • [39] Coventry J. Simulation of a concentrating PV/thermal collector using TRNSYS. In: Proceedings of the ANZSES solar energy conference, Newcastle, UK; 2002.
  • [40] Zondag HA, De Vries DW, Van Helden WGJ, Van Zolingen RJC, Van Steenhoven AA. The thermal and electrical yield of a PV-thermal collector. Sol Energy. 2002;72:113–128. [CrossRef]
  • [41] Joshi AS, Tiwari A. Energy and exergy efficiencies of a hybrid photovoltaic-thermal (PV/T) air collector. Renew Energy 2007;32:2223–2241. [CrossRef]
  • [42] Tina GM, Rosa-Clot M, Rosa-Clot P, Scandura PF. Optical and thermal behavior of submerged photovoltaic solar panel: SP2. Energy 2012;39:17–26. [CrossRef]
  • [43] Palmer KF, Williams D. Optical properties of water in the near infrared. J Opt Soc Am. 1974;64:1107–1110. [CrossRef]
  • [44] Robles-Ocampo B, Ruíz-Vasquez E, Canseco-Sánchezb H, Cornejo-Mezac RC, Trápaga-Martínezd G, et al. Photovoltaic/thermal solar hybrid system with bifacial PV module and transparent plane collector. Sol Energy Mat Sol C. 2007;91:1966–1971. [CrossRef]
  • [45] Nelson J. The physics of solar cells. London: Imperial College Press; 2003. [CrossRef]
  • [46] Ben Slam R, Bouabdallah M, Mora JC. Air solar collector with baffles aerodynamics, heat transfer and efficiency. RERIC Int Energy J 2018;18:117.
  • [47] Chabane F, Moummi N, Brima A, Benramache S. Thermal efficiency analysis of a single flow solar air heater with different mass flow rates in a smooth plate. Frontiers in Heat and Mass Transf 2013;4:013006. [CrossRef]
  • [48] Bhagoria JL, Saini JS, Solanki SC. Heat transfer coefficient and friction factor correlations for rectangular solar air heater duct having transverse wedge shaped rib roughness on the absorber plate. Renew Energy 2002;25:341369. [CrossRef]
  • [49] Ozgen F, Esen M, Esen H. Experimental investigation of thermal performance of a double-flow solar air heater having aluminum cans. Renew Energy 2009;34:23912398. [CrossRef]
  • [50] Peng D, Zhang X, Dong H, Lv K. Performance study of a novel solar collector. Appl Therm Eng 2010;30:25942601. [CrossRef]
  • [51] Obaid ZA, Al‐damook A, Khalil WH. The thermal and economic characteristics of solar air collectors with different delta turbulators arrangement. Heat Transfer-Asian Res 2019;48:20822104. [CrossRef]
  • [52] Farhan AA, Obaid ZA, Hussien SQ. Analysis of exergetic performance for a solar air heater with metal foam fins. Heat Transf 2020;49:31903204. [CrossRef]
  • [53] Khalil WH, Obaid ZA, Dawood HK. Exergy analysis of single‐flow solar air collectors with different configurations of absorber plates. Heat Transfer—Asian Res 2019;48:36003616. [CrossRef]
  • [54] Al-Damook M, Obaid ZA, Al Qubeissi M, Dixon-Hardy D, Cottom J, Heggs PJ. CFD modeling and performance evaluation of multipass solar air heaters. Numer Heat Transf Part A: Appl 2019;76:438464. [CrossRef]
  • [55] Gaur G. An Experimental investigation of a novel design of double pass solar air heater. International J Chem Technol Res 2017;5:10361040.
  • [56] Gupta B, Waiker JK, Manikpuri GP, Bhalavi BS. Experimental analysis of single and double pass smooth plate solar air collector with and without porous media. Am J Eng Res 2013;2:144149.
  • [57] Yousef BAA. Prediction study on single and double flow solar air heater. Suranaree J Sci Technol 2005;12:123136.
  • [58] Moummi N, Youcef-Ali S, Moummi A, Desmons JY. Energy analysis of solar air collector with rows of fins. Renew Energy 2004;29:20532064. [CrossRef]
  • [59] Ozturk HH, Demirel Y. Exergy-based performance analysis of packed bed solar air heaters. Int J Energy Res 2004;28:423432. [CrossRef]
  • [60] Prasad SB, Saini JS, Singh KM. Investigation of heat transfer and friction characteristics of packed bed solar air heater using wire mesh as packing material. Sol Energy 2009;83:773783. [CrossRef]
  • [61] Sopian K, Alghoul MA, Alfegi EM, Sulaiman MY, Musa EA. Evaluation of thermal efficiency of double pass-solar collector with porous nonporous media. Renew Energy 2009;34:640645. [CrossRef]
  • [62] Petri RJ, Ong ET, Olszewski M. High temperature composite thermal storage systems. 19th Intersociety Energy Conversion Engineering Conference. 1984.
  • [63] Tamme R, Taut U, Streuber C, Kalfa H. Energy storage development for solar thermal processes. Sol Energy Mater 1991;24:386–396. [CrossRef]
  • [64] Ali SK, Azzawi IDJ, Khadom AA. Experimental validation and numerical investigation for optimization and evaluation of heat transfer enhancement in double coil heat exchanger. Therm Sci Eng Progress 2021;22:100862. [CrossRef]
  • [65] Al-damook A, Azzawi IDJ. Multi-objective numerical optimum design of natural convection in different configurations of concentric horizontal annular pipes using different nanofluids. Heat Mass Trans 2021;57:1543–1557. [CrossRef]
  • [66] Faraj AF, Azzawi IDJ, Yahya SG. Pitch variations study on helically coiled pipe in turbulent flow region using CFD. Int J Heat Technol 2020;38:775784. [CrossRef]
  • [67] Gokon N, Nakano D, Inuta S, Kodama T. High-temperature carbonate/MgO composite materials as thermal storage media for double-walled solar reformer tubes. Solar Energy. 2008;82:1145–1153. [CrossRef]
  • [68] Zhang P, Song L, Lu H, Wang J, Hu Y. The influence of expanded graphite on thermal properties for paraffin/high density polyethylene/chlorinated paraffin/antimony trioxide as a flame retardant phase change material. Energy Convers Manag 2010;51:2733–2737. [CrossRef]
  • [69] Anwer FF, Faraj A, Itimad DJA, Samir Gh. Yahya, Amer Al-Damook. Computational fluid dynamics investigation of pitch variations on helically coiled pipe in laminar flow region. J Heat Transf 2020;142. [CrossRef]
  • [70] Lopez J, Caceres G, Palomo Del Barrio E, Jomaa W. Confined melting in deformable porous media: a first attempt to explain the graphite/salt composites behaviour. Int J Heat Mass Transf 2010;53:1195–1207. [CrossRef]
  • [71] Adinberg R, Zvegilsky D, Epstein M. Heat transfer efficient thermal energy storage for steam generation. Energy Convers Manag 2010;51:9–15. [CrossRef]
  • [72] Steinmann W-D, Tamme R. Latent heat storage for solar steam systems. J Sol Energy Eng 2008;130:011004–5. [CrossRef]
  • [73] Steinmann W-D, Laing D, Tamme R. Development of PCM storage for process heat and power generation. J Sol Energy Eng 2009;131:041004–9. [CrossRef]
  • [74] Wang J, Ouyang Y, Chen G. Experimental study on charging processes of a cylindrical heat storage capsule employing multiple-phase-change materials. International J Energy Res 2001;25:439–447. [CrossRef]
  • [75] Adinberg R, Yogev A, Kaftori D. High temperature thermal energy storage an experimental study. J Phys IV France. 1999;9:PR3. [CrossRef]
  • [76] Taylor R, Davenport R, Talbot J, Herz R, Genders D, Symons P, Brown L. Solar High Temperature Water-Splitting Cycle with Quantum Boost (No. DOE-SAIC-17002). Science Applications International Corp. 2014;1100. [CrossRef]
  • [77] Shabgard H, Bergman TL, Sharifi N, Faghri A. High temperature latent heat thermal energy storage using heat pipes. Int J Heat Mass Transf 2010;53:2979–2988. [CrossRef]
  • [78] Jegadheeswaran S, Pohekar SD. Performance enhancement in latent heat thermal storage system: a review. Renewable and Sustain Energy Rev 2009;13:2225–2244. [CrossRef]
  • [79] Farid MM, Kanzawa A. Thermal performance of a heat storage module using PCM’s with different melting temperatures: mathematical modelling. J Sol Energy Eng 1989;111:152–157. [CrossRef]
  • [80] Michels H, Pitz-Paal R. Cascaded latent heat storage for parabolic trough solar power plants. Sol Energy. 2007;81:829–837. [CrossRef]
  • [81] Khalil WH, Azzawi IDJ, Al-Damook A. The optimisation of MHD free convection inside porous trapezoidal cavity with the wavy bottom wall using response surface method. Int Commun Heat Mass Transf 2022;134:106035. [CrossRef]
  • [82] Farid MM, Kim Y, Kansawa A. Thermal performance of a heat storage module using PCM’s with different melting temperature: experimental. J Sol Energy Eng 1990;112:125–131. [CrossRef]
  • [83] Adine HA, El Qarnia H. Numerical analysis of the thermal behaviour of a shell-and-tube heat storage unit using phase change materials. Appl Math Model 2009;33:2132–2144. [CrossRef]
  • [84] Adebiyi GA, Hodge BK, Steele WG, Jalalzadeh-Azar A, Nsofor EC. Computer simulation of a high-temperature thermal energy storage system employing multiple families of phase-change storage materials. J Energy Res Tech 1996;118:102–111. [CrossRef]
  • [85] Pincemin S, Olives R, Py X, Christ M. Highly conductive composites made of phase change materials and graphite for thermal storage. Sol Energy Mater Sol Cells 2008;92:603–613. [CrossRef]
  • [86] Amer Al-damook, Itimad DJ Azzawi. Optimal hydro-thermal characteristics of a porous annular elliptic pipe using response surface method. Int Commun Heat Mass Transf 2021;128:105632. [CrossRef]
  • [87] Aceves-Saborio S, Nakamura H, Reistad GM. Optimum efficiencies and phase change temperatures in latent heat storage systems. J Energy Res 1994;116:79–86. [CrossRef]
  • [88] Kuznik F, Opel O, Osterland T, Ruck WK. Thermal energy storage for space heating and domestic hot water in individual residential buildings. In: Advances in Thermal Energy Storage Systems. 2021 Jan 1 (pp. 567-594). Woodhead Publishing. [CrossRef]
  • [89] Domanski R, Fellah G. Exergy analysis for the evaluation of a thermal storage system employing PCMS with different melting temperatures. Appl Therm Eng 1996;16:907–919. [CrossRef]
  • [90] Sarbu I, Sebarchievici C. A comprehensive review of thermal energy storage. Sustainability. 2018;10:191. [CrossRef]
  • [91] Bai F, Wang Y, Wang Z, Sun Y, Beath A. Economic evaluation of shell-and-tube latent heat thermal energy storage for concentrating solar power applications. Energy Proced 2015;69:737747. [CrossRef]
  • [92] Kuznik F, Johannes K, David D. Integrating phase change materials (PCMs) in thermal energy storage systems for buildings. In: Advances in thermal energy storage systems. Woodhead Publishing, 2015: 325353. [CrossRef]
  • [93] Garg HP, Mullick SC, Bhargava AK. Solar thermal energy storage. D. Reidel Publishing Co; 1985. [CrossRef]
  • [94] Pillai KK, Brinkwarth BJ. The storage of low grade thermal energy using phase change materials. Appl Energy 1976;2:205–216. [CrossRef]
  • [95] Amer Al-damook, Itimad DJ Azzawi. The thermohydraulic characteristics and optimization study of radial porous heat sinks using multi-objective computational method. J Heat Transf 2021;143. [CrossRef]
  • [96] Abhat A. Low temperature latent heat thermal energy storage: heat storage materials. Sol Energy 1981;30:313–332. [CrossRef]
  • [97] Azzawi ID, Hasan AF, Yahya SG. Computational optimum design of natural convection in a concentric and eccentric annular cylinder using nanofluids. Proc Inst Mech Eng A J Power Energy 2023;237:517526. [CrossRef]
  • [98] Hale DV, Hoover MJ, O’Neill MJ. Phase change materials hand book. Alabaa: Marshal Space Flight Center; 1971.
  • [99] Obaid ZAH, Azzawi IDJ, Azeez K. The experimental study of energy features for solar air heaters with different turbulator configurations. Heat Transf 2022;115. [CrossRef]
  • [100] Lane GA, Glew DN. Heat of fusion system for solar energy storage. In: Proceedings of the workshop on solar energy storage subsystems for the heating and cooling of buildings. Virginia: Charlothensville; 1975. p. 43–55.
  • [101] Itimad DJ Azzawi, Amer Al-damook. Multi-objective optimum design of porous triangular chamber using RSM. Int Commun Heat Mass Transf 2022;130:105774. [CrossRef]

Heat transfer enhancement and applications of thermal energy storage techniques on solar air collectors: A review

Year 2023, Volume: 9 Issue: 5, 1356 - 1371, 17.10.2023
https://doi.org/10.18186/thermal.1377246

Abstract

Solar air collectors have been used in a variety of industrial applications, prompting a study and summary of various studies on the topic. Solar collectors’ exceptional energy conversion and storage outputs have piqued curiosity in the field of energy research. The current review study focuses on solar thermal application advancements and provides an overview of thermal energy storage devices and solar collectors. This paper presents and discusses a variety of solar collectors, both concentrating and non-concentrating. The energy storage media utilized in these plants, phase change material with melting temperatures exceeding 300°C, was exam-ined. The goal of this study is to provide the necessary information for advanced investiga-tions in the development of cost-effective high-temperature thermal storage systems. Finally, a summary of the presentation, as well as potential solar power plants are reviewed.

References

  • REFERENCES
  • [1] Yettou F. Receiver temperature maps of parabolic collector used for solar food cooking application in Algeria. J Therm Eng 2018;4:16561667. [CrossRef]
  • [2] Sachdev T, Gaba VK, Tiwari AK. Comparative thermal analysis of applications using novel solar air heater with u-shaped longitudinal fins: suitable for coastal regions. J Therm Eng 2021;7:11741183. [CrossRef]
  • [3] Heydari A, Forati M, Khatami SM. Thermal performance investigation of a hybrid solar air heater applied in a solar dryer using thermodynamic modelling. J Therm Eng 2021;7:715730. [CrossRef]
  • [4] Bharadwaj G, Sharma K, Mausam K. Factors Influencing the Performance of Solar Air Heater (SAH) Having Artificial Coarseness: A Review. J Therm Eng 2021;7:15561576. [CrossRef]
  • [5] De Winter F. Solar Collectors, Energy Storage, and Materials. Massachusetts: The MIT Press; 1991.
  • [6] Wei XD, Lu ZW, Wang ZF, Yu WX, Zhang HX, Yao ZH. A new method for the design of the heliostat field layout for solar tower power plant. Renew Energy 2010;35:1970–1975. [CrossRef]
  • [7] Medrano M, Gil A, Martorell I, Potou X, Cabeza LF. State of the art on high-temperature thermal energy storage for power generation. Part 2—Case studies. Renew Sustain Energy Rev 2010;14:56–72. [CrossRef]
  • [8] Battleson KW. Solar power tower design guide: solar thermal central receiver power systems. Sandia National Labs, Report SAND81-8005; 1981. [CrossRef]
  • [9] Global Energy Network Institute. Parabolic dish collector, 2012.
  • [10] Song EJ. Sterling engine attached to parabolic dish collector, 2012.
  • [11] Tavakolpour AR, Zomorodian A, Golneshan AA. Simulation, construction and testing of a two-cylinder solar Stirling engine powered by a flat-plate solar collector without regenerator. Renew Energy 2008;33:77–87. [CrossRef]
  • [12] Zhang Y, Lin B, Chen J. Optimum performance characteristics of an irreversible solar-driven Brayton heat engine at the maximum overall efficiency. Renew Energy 2007;32:856–867. [CrossRef]
  • [13] USA Department of Energy. Energy Citations Database, 2012.
  • [14] Bakos GC. Design and construction of a two-axis Sun tracking system for parabolic trough collector (PTC) efficiency improvement. Renew Energy 2006;31:2411–2421. [CrossRef]
  • [15] Abdallah S. The effect of using sun tracking systems on the voltage–current characteristics and power generation of flat plate photovoltaics. Energy Convers Manag 2004;45:1671–1679. [CrossRef]
  • [16] Kacira M, Simsek M, Babur Y, Demirkol S. Determining optimum tilt angles and orientations of photovoltaic panels in Sanliurfa, Turkey. Renew Energy 2004;29:1265–1275. [CrossRef]
  • [17] Khoukhi M, Maruyama S. Theoretical approach of a flat plate solar collector with clear and low-iron glass covers taking into account the spectral absorption and emission within glass covers layer. Renew Energy 2005;30:1177–1194. [CrossRef]
  • [18] Parsons RA. ASHRAE Handbook: heating, ventilating, and air-conditioning applications. In: Chapter 30. Atlanta: ASHRAE; 1995.
  • [19] Hellstrom B, Adsten M, Nostell P, Karlsson B, Wackelgard E. The impact of optical and thermal properties on the performance of flat plate solar collectors. Renew Energy 2003;28:331–344. [CrossRef]
  • [20] Tripanagnostopolous Y, Souliotis M, Nousia T. Solar collectors with colored absorbers. Sol Energy 2000;68:343–356. [CrossRef]
  • [21] Wazwaz J, Salmi H, Hallak R. Solar thermal performance of a nickel-pigmented aluminium oxide selective absorber. Renew Energy 2002;27:277–292. [CrossRef]
  • [22] Orel ZC, Gunde MK, Hutchins MG. Spectrally selective solar absorbers in different non-black colours. In: Proc. of WREC VII (CD–ROM), Cologne, Germany; 2002.
  • [23] Konttinen P, Lund PD, Kilpi RJ. Mechanically manufactured selective solar absorber surfaces. Sol Energy Mat Sol C 2003;79:273–283. [CrossRef]
  • [24] Francia G. A new collector of solar radiant energy. In: Proceedings of the United Nations conference on new sources of energy, paper No. F6. Rome, Italy; 1961. p. 572.
  • [25] Slaman M, Griessen R. Solar collector overheating protection. Sol Energy 2009;83:982–987. [CrossRef]
  • [26] Kumar KR, Reddy KS. Thermal analysis of solar parabolic trough with porous disc receiver. Appl Energy 2009;86:1804–1812. [CrossRef]
  • [27] Lambert AA, Cuevasa S, del Río JA. Enhanced heat transfer using oscillatory flows in solar collectors Sol Energy 2006;80:1296–1302. [CrossRef]
  • [28] Ho C.D, Yeh H.M, Wang RC. Heat-transfer enhancements in double-pass flat plate solar air heaters with recycle. Energy 2005;30:2796–2817. [CrossRef]
  • [29] Wang RZ, Zhai XQ. Development of solar thermal technologies in China. Energy. 2012;35:4407–4416. [CrossRef]
  • [30] Bergene T, Lovvik OM. Model calculations on a flat-plate solar heat collector with integrated solar cells. Sol Energy 1995;55:453–462. [CrossRef]
  • [31] Kalogirou SA. Use of TRNSYS for modelling and simulation of a hybrid PV-thermal solar system for Cyprus. Renew Energy 2001;23:247–260. [CrossRef]
  • [32] Prakash J. Transient analysis of a photovoltaic thermal solar collector for cogeneration of electricity and hot air water. Energy Convers Manag 1994;35:967–972. [CrossRef]
  • [33] Agarwal RK, Garg HP. Study of a photovoltaic thermal system thermosyphonic solar water heater combined with solar cells. Energy Convers Manag 1994;35:605–620. [CrossRef]
  • [34] Fujisawa T, Tani T. Optimum design for residential photovoltaic–thermal binary utilization system by minimizing auxiliary energy. Elect Eng Jpn 2001;137:28–35. [CrossRef]
  • [35] New generation of Hybrid Solar PV/T collectors, prepared by LESO-PB/EPFL. Enecolo AG and Ernst Schweizer AG for the Swiss Federal Office of Energy; 2000. 1–55.
  • [36] Platz R, Fischer D, Zufferey MA, Anna Selvan JA, Haller A, Shah A. Hybrid collectors using thin-film technology. In: Proceedings of the 26th photovoltaics specialists’ conference (IEEE). Anaheim, CA, USA; 1997. p.1293–1296.
  • [37] Tonui JK, Tripanagnostopoulos Y. Improved PV/T solar collectors with heat extraction by forced or natural air circulation. Renew Energy 2007;32:623–637. [CrossRef]
  • [38] Hegazy AA. Comparative study of the performances of four photovoltaic/thermal solar air collectors. Energy Convers Manage. 2000;41:861–881. [CrossRef]
  • [39] Coventry J. Simulation of a concentrating PV/thermal collector using TRNSYS. In: Proceedings of the ANZSES solar energy conference, Newcastle, UK; 2002.
  • [40] Zondag HA, De Vries DW, Van Helden WGJ, Van Zolingen RJC, Van Steenhoven AA. The thermal and electrical yield of a PV-thermal collector. Sol Energy. 2002;72:113–128. [CrossRef]
  • [41] Joshi AS, Tiwari A. Energy and exergy efficiencies of a hybrid photovoltaic-thermal (PV/T) air collector. Renew Energy 2007;32:2223–2241. [CrossRef]
  • [42] Tina GM, Rosa-Clot M, Rosa-Clot P, Scandura PF. Optical and thermal behavior of submerged photovoltaic solar panel: SP2. Energy 2012;39:17–26. [CrossRef]
  • [43] Palmer KF, Williams D. Optical properties of water in the near infrared. J Opt Soc Am. 1974;64:1107–1110. [CrossRef]
  • [44] Robles-Ocampo B, Ruíz-Vasquez E, Canseco-Sánchezb H, Cornejo-Mezac RC, Trápaga-Martínezd G, et al. Photovoltaic/thermal solar hybrid system with bifacial PV module and transparent plane collector. Sol Energy Mat Sol C. 2007;91:1966–1971. [CrossRef]
  • [45] Nelson J. The physics of solar cells. London: Imperial College Press; 2003. [CrossRef]
  • [46] Ben Slam R, Bouabdallah M, Mora JC. Air solar collector with baffles aerodynamics, heat transfer and efficiency. RERIC Int Energy J 2018;18:117.
  • [47] Chabane F, Moummi N, Brima A, Benramache S. Thermal efficiency analysis of a single flow solar air heater with different mass flow rates in a smooth plate. Frontiers in Heat and Mass Transf 2013;4:013006. [CrossRef]
  • [48] Bhagoria JL, Saini JS, Solanki SC. Heat transfer coefficient and friction factor correlations for rectangular solar air heater duct having transverse wedge shaped rib roughness on the absorber plate. Renew Energy 2002;25:341369. [CrossRef]
  • [49] Ozgen F, Esen M, Esen H. Experimental investigation of thermal performance of a double-flow solar air heater having aluminum cans. Renew Energy 2009;34:23912398. [CrossRef]
  • [50] Peng D, Zhang X, Dong H, Lv K. Performance study of a novel solar collector. Appl Therm Eng 2010;30:25942601. [CrossRef]
  • [51] Obaid ZA, Al‐damook A, Khalil WH. The thermal and economic characteristics of solar air collectors with different delta turbulators arrangement. Heat Transfer-Asian Res 2019;48:20822104. [CrossRef]
  • [52] Farhan AA, Obaid ZA, Hussien SQ. Analysis of exergetic performance for a solar air heater with metal foam fins. Heat Transf 2020;49:31903204. [CrossRef]
  • [53] Khalil WH, Obaid ZA, Dawood HK. Exergy analysis of single‐flow solar air collectors with different configurations of absorber plates. Heat Transfer—Asian Res 2019;48:36003616. [CrossRef]
  • [54] Al-Damook M, Obaid ZA, Al Qubeissi M, Dixon-Hardy D, Cottom J, Heggs PJ. CFD modeling and performance evaluation of multipass solar air heaters. Numer Heat Transf Part A: Appl 2019;76:438464. [CrossRef]
  • [55] Gaur G. An Experimental investigation of a novel design of double pass solar air heater. International J Chem Technol Res 2017;5:10361040.
  • [56] Gupta B, Waiker JK, Manikpuri GP, Bhalavi BS. Experimental analysis of single and double pass smooth plate solar air collector with and without porous media. Am J Eng Res 2013;2:144149.
  • [57] Yousef BAA. Prediction study on single and double flow solar air heater. Suranaree J Sci Technol 2005;12:123136.
  • [58] Moummi N, Youcef-Ali S, Moummi A, Desmons JY. Energy analysis of solar air collector with rows of fins. Renew Energy 2004;29:20532064. [CrossRef]
  • [59] Ozturk HH, Demirel Y. Exergy-based performance analysis of packed bed solar air heaters. Int J Energy Res 2004;28:423432. [CrossRef]
  • [60] Prasad SB, Saini JS, Singh KM. Investigation of heat transfer and friction characteristics of packed bed solar air heater using wire mesh as packing material. Sol Energy 2009;83:773783. [CrossRef]
  • [61] Sopian K, Alghoul MA, Alfegi EM, Sulaiman MY, Musa EA. Evaluation of thermal efficiency of double pass-solar collector with porous nonporous media. Renew Energy 2009;34:640645. [CrossRef]
  • [62] Petri RJ, Ong ET, Olszewski M. High temperature composite thermal storage systems. 19th Intersociety Energy Conversion Engineering Conference. 1984.
  • [63] Tamme R, Taut U, Streuber C, Kalfa H. Energy storage development for solar thermal processes. Sol Energy Mater 1991;24:386–396. [CrossRef]
  • [64] Ali SK, Azzawi IDJ, Khadom AA. Experimental validation and numerical investigation for optimization and evaluation of heat transfer enhancement in double coil heat exchanger. Therm Sci Eng Progress 2021;22:100862. [CrossRef]
  • [65] Al-damook A, Azzawi IDJ. Multi-objective numerical optimum design of natural convection in different configurations of concentric horizontal annular pipes using different nanofluids. Heat Mass Trans 2021;57:1543–1557. [CrossRef]
  • [66] Faraj AF, Azzawi IDJ, Yahya SG. Pitch variations study on helically coiled pipe in turbulent flow region using CFD. Int J Heat Technol 2020;38:775784. [CrossRef]
  • [67] Gokon N, Nakano D, Inuta S, Kodama T. High-temperature carbonate/MgO composite materials as thermal storage media for double-walled solar reformer tubes. Solar Energy. 2008;82:1145–1153. [CrossRef]
  • [68] Zhang P, Song L, Lu H, Wang J, Hu Y. The influence of expanded graphite on thermal properties for paraffin/high density polyethylene/chlorinated paraffin/antimony trioxide as a flame retardant phase change material. Energy Convers Manag 2010;51:2733–2737. [CrossRef]
  • [69] Anwer FF, Faraj A, Itimad DJA, Samir Gh. Yahya, Amer Al-Damook. Computational fluid dynamics investigation of pitch variations on helically coiled pipe in laminar flow region. J Heat Transf 2020;142. [CrossRef]
  • [70] Lopez J, Caceres G, Palomo Del Barrio E, Jomaa W. Confined melting in deformable porous media: a first attempt to explain the graphite/salt composites behaviour. Int J Heat Mass Transf 2010;53:1195–1207. [CrossRef]
  • [71] Adinberg R, Zvegilsky D, Epstein M. Heat transfer efficient thermal energy storage for steam generation. Energy Convers Manag 2010;51:9–15. [CrossRef]
  • [72] Steinmann W-D, Tamme R. Latent heat storage for solar steam systems. J Sol Energy Eng 2008;130:011004–5. [CrossRef]
  • [73] Steinmann W-D, Laing D, Tamme R. Development of PCM storage for process heat and power generation. J Sol Energy Eng 2009;131:041004–9. [CrossRef]
  • [74] Wang J, Ouyang Y, Chen G. Experimental study on charging processes of a cylindrical heat storage capsule employing multiple-phase-change materials. International J Energy Res 2001;25:439–447. [CrossRef]
  • [75] Adinberg R, Yogev A, Kaftori D. High temperature thermal energy storage an experimental study. J Phys IV France. 1999;9:PR3. [CrossRef]
  • [76] Taylor R, Davenport R, Talbot J, Herz R, Genders D, Symons P, Brown L. Solar High Temperature Water-Splitting Cycle with Quantum Boost (No. DOE-SAIC-17002). Science Applications International Corp. 2014;1100. [CrossRef]
  • [77] Shabgard H, Bergman TL, Sharifi N, Faghri A. High temperature latent heat thermal energy storage using heat pipes. Int J Heat Mass Transf 2010;53:2979–2988. [CrossRef]
  • [78] Jegadheeswaran S, Pohekar SD. Performance enhancement in latent heat thermal storage system: a review. Renewable and Sustain Energy Rev 2009;13:2225–2244. [CrossRef]
  • [79] Farid MM, Kanzawa A. Thermal performance of a heat storage module using PCM’s with different melting temperatures: mathematical modelling. J Sol Energy Eng 1989;111:152–157. [CrossRef]
  • [80] Michels H, Pitz-Paal R. Cascaded latent heat storage for parabolic trough solar power plants. Sol Energy. 2007;81:829–837. [CrossRef]
  • [81] Khalil WH, Azzawi IDJ, Al-Damook A. The optimisation of MHD free convection inside porous trapezoidal cavity with the wavy bottom wall using response surface method. Int Commun Heat Mass Transf 2022;134:106035. [CrossRef]
  • [82] Farid MM, Kim Y, Kansawa A. Thermal performance of a heat storage module using PCM’s with different melting temperature: experimental. J Sol Energy Eng 1990;112:125–131. [CrossRef]
  • [83] Adine HA, El Qarnia H. Numerical analysis of the thermal behaviour of a shell-and-tube heat storage unit using phase change materials. Appl Math Model 2009;33:2132–2144. [CrossRef]
  • [84] Adebiyi GA, Hodge BK, Steele WG, Jalalzadeh-Azar A, Nsofor EC. Computer simulation of a high-temperature thermal energy storage system employing multiple families of phase-change storage materials. J Energy Res Tech 1996;118:102–111. [CrossRef]
  • [85] Pincemin S, Olives R, Py X, Christ M. Highly conductive composites made of phase change materials and graphite for thermal storage. Sol Energy Mater Sol Cells 2008;92:603–613. [CrossRef]
  • [86] Amer Al-damook, Itimad DJ Azzawi. Optimal hydro-thermal characteristics of a porous annular elliptic pipe using response surface method. Int Commun Heat Mass Transf 2021;128:105632. [CrossRef]
  • [87] Aceves-Saborio S, Nakamura H, Reistad GM. Optimum efficiencies and phase change temperatures in latent heat storage systems. J Energy Res 1994;116:79–86. [CrossRef]
  • [88] Kuznik F, Opel O, Osterland T, Ruck WK. Thermal energy storage for space heating and domestic hot water in individual residential buildings. In: Advances in Thermal Energy Storage Systems. 2021 Jan 1 (pp. 567-594). Woodhead Publishing. [CrossRef]
  • [89] Domanski R, Fellah G. Exergy analysis for the evaluation of a thermal storage system employing PCMS with different melting temperatures. Appl Therm Eng 1996;16:907–919. [CrossRef]
  • [90] Sarbu I, Sebarchievici C. A comprehensive review of thermal energy storage. Sustainability. 2018;10:191. [CrossRef]
  • [91] Bai F, Wang Y, Wang Z, Sun Y, Beath A. Economic evaluation of shell-and-tube latent heat thermal energy storage for concentrating solar power applications. Energy Proced 2015;69:737747. [CrossRef]
  • [92] Kuznik F, Johannes K, David D. Integrating phase change materials (PCMs) in thermal energy storage systems for buildings. In: Advances in thermal energy storage systems. Woodhead Publishing, 2015: 325353. [CrossRef]
  • [93] Garg HP, Mullick SC, Bhargava AK. Solar thermal energy storage. D. Reidel Publishing Co; 1985. [CrossRef]
  • [94] Pillai KK, Brinkwarth BJ. The storage of low grade thermal energy using phase change materials. Appl Energy 1976;2:205–216. [CrossRef]
  • [95] Amer Al-damook, Itimad DJ Azzawi. The thermohydraulic characteristics and optimization study of radial porous heat sinks using multi-objective computational method. J Heat Transf 2021;143. [CrossRef]
  • [96] Abhat A. Low temperature latent heat thermal energy storage: heat storage materials. Sol Energy 1981;30:313–332. [CrossRef]
  • [97] Azzawi ID, Hasan AF, Yahya SG. Computational optimum design of natural convection in a concentric and eccentric annular cylinder using nanofluids. Proc Inst Mech Eng A J Power Energy 2023;237:517526. [CrossRef]
  • [98] Hale DV, Hoover MJ, O’Neill MJ. Phase change materials hand book. Alabaa: Marshal Space Flight Center; 1971.
  • [99] Obaid ZAH, Azzawi IDJ, Azeez K. The experimental study of energy features for solar air heaters with different turbulator configurations. Heat Transf 2022;115. [CrossRef]
  • [100] Lane GA, Glew DN. Heat of fusion system for solar energy storage. In: Proceedings of the workshop on solar energy storage subsystems for the heating and cooling of buildings. Virginia: Charlothensville; 1975. p. 43–55.
  • [101] Itimad DJ Azzawi, Amer Al-damook. Multi-objective optimum design of porous triangular chamber using RSM. Int Commun Heat Mass Transf 2022;130:105774. [CrossRef]
There are 102 citations in total.

Details

Primary Language English
Subjects Thermodynamics and Statistical Physics
Journal Section Reviews
Authors

Kafel Azeez This is me 0000-0001-9227-0427

Riyadh Ibraheem Ahmed This is me 0000-0003-0782-7548

Zain Alabdeen Obaıd This is me 0000-0002-6674-5035

Itimad Dj Azzawı This is me 0000-0002-9795-7903

Publication Date October 17, 2023
Submission Date March 11, 2022
Published in Issue Year 2023 Volume: 9 Issue: 5

Cite

APA Azeez, K., Ahmed, R. I., Obaıd, Z. A., Dj Azzawı, I. (2023). Heat transfer enhancement and applications of thermal energy storage techniques on solar air collectors: A review. Journal of Thermal Engineering, 9(5), 1356-1371. https://doi.org/10.18186/thermal.1377246
AMA Azeez K, Ahmed RI, Obaıd ZA, Dj Azzawı I. Heat transfer enhancement and applications of thermal energy storage techniques on solar air collectors: A review. Journal of Thermal Engineering. October 2023;9(5):1356-1371. doi:10.18186/thermal.1377246
Chicago Azeez, Kafel, Riyadh Ibraheem Ahmed, Zain Alabdeen Obaıd, and Itimad Dj Azzawı. “Heat Transfer Enhancement and Applications of Thermal Energy Storage Techniques on Solar Air Collectors: A Review”. Journal of Thermal Engineering 9, no. 5 (October 2023): 1356-71. https://doi.org/10.18186/thermal.1377246.
EndNote Azeez K, Ahmed RI, Obaıd ZA, Dj Azzawı I (October 1, 2023) Heat transfer enhancement and applications of thermal energy storage techniques on solar air collectors: A review. Journal of Thermal Engineering 9 5 1356–1371.
IEEE K. Azeez, R. I. Ahmed, Z. A. Obaıd, and I. Dj Azzawı, “Heat transfer enhancement and applications of thermal energy storage techniques on solar air collectors: A review”, Journal of Thermal Engineering, vol. 9, no. 5, pp. 1356–1371, 2023, doi: 10.18186/thermal.1377246.
ISNAD Azeez, Kafel et al. “Heat Transfer Enhancement and Applications of Thermal Energy Storage Techniques on Solar Air Collectors: A Review”. Journal of Thermal Engineering 9/5 (October 2023), 1356-1371. https://doi.org/10.18186/thermal.1377246.
JAMA Azeez K, Ahmed RI, Obaıd ZA, Dj Azzawı I. Heat transfer enhancement and applications of thermal energy storage techniques on solar air collectors: A review. Journal of Thermal Engineering. 2023;9:1356–1371.
MLA Azeez, Kafel et al. “Heat Transfer Enhancement and Applications of Thermal Energy Storage Techniques on Solar Air Collectors: A Review”. Journal of Thermal Engineering, vol. 9, no. 5, 2023, pp. 1356-71, doi:10.18186/thermal.1377246.
Vancouver Azeez K, Ahmed RI, Obaıd ZA, Dj Azzawı I. Heat transfer enhancement and applications of thermal energy storage techniques on solar air collectors: A review. Journal of Thermal Engineering. 2023;9(5):1356-71.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering