Short Report
BibTex RIS Cite
Year 2023, Volume: 9 Issue: 5, 1372 - 1385, 17.10.2023
https://doi.org/10.18186/thermal.1377253

Abstract

References

  • REFERENCES
  • [1] Fabis PM, Shum D, Windischmann H. Thermal modeling of diamond-based power electronics packaging. In: Annual IEEE Semiconductor Thermal Measurement and Management Symposium 1999. IEEE; 1999. p. 98104.
  • [2] Lee S, Early M, Pellilo M. Thermal interface material performance in microelectronics packaging applications. Microelectron J 1997;28:xiii–xx. [CrossRef]
  • [3] Ma CF, Tian YQ. Experimental investigation on two-phase two-component jet impingement heat transfer from simulated microelectronic heat sources. Int Commun Heat Mass Transf 1990;17:399–408. [CrossRef]
  • [4] Yu P, Zhu K, Sun T, Yuan N, Ding J. Heat transfer rate and uniformity of mist flow jet impingement for glass tempering. Int J Heat Mass Transf 2017;115:368–378. [CrossRef]
  • [5] Sarkar A, Singh RP. Air impingement technology for food processing: visualization studies. LWT - Food Sci Technol 2004;37:873–879. [CrossRef]
  • [6] Takrouri K, Luxat J, Hamed M. Measurement and analysis of the re-wetting front velocity during quench cooling of hot horizontal tubes. Nucl Eng Design 2017;311:184–198. [CrossRef]
  • [7] Jondhale KV, Wells MA, Militzer M, Prodanovic V. Heat transfer during multiple jet impingement on the top surface of hot rolled steel strip. Steel Res Int 2008;79:938–946. [CrossRef]
  • [8] Greaves JD Jr. Numerical analysis of the outside vapor deposition process (Master Thesis). Ohio: Ohio University, Mechanical Engineering; 1990.
  • [9] Ferng YM, Liu CH. Numerically investigating fire suppression mechanisms for the water mist with various droplet sizes through FDS code. Nucl Eng Design 2011;241:3142–3148. [CrossRef]
  • [10] Ali ARA, Janajreh I. Numerical Simulation of Turbine Blade Cooling via Jet Impingement. Energy Proced 2015;75:3220–3229. [CrossRef]
  • [11] Boungiorno J, Hu LW, Kim SJ, Hannink R, Truong B, Forrest E. Nanofluids for enhanced economics and safety of nuclear reactors: An evaluation of the potential features, ıssues, and research gaps. Nuclear Technol 2017;162:80–91. [CrossRef]
  • [12] Ndao S, Peles Y, Jensen MK. Experimental investigation of flow boiling heat transfer of jet impingement on smooth and micro structured surfaces. Int J Heat Mass Transf 2012;55:5093–5101. [CrossRef]
  • [13] Ndao S, Peles Y, Jensen MK. Effects of pin fin shape and configuration on the single-phase heat transfer characteristics of jet impingement on micro pin fins. Int J Heat Mass Transf 2014;70:856–863. [CrossRef]
  • [14] Zhao J, Huang S, Gong L, Huang Z. Numerical study and optimizing on micro square pin-fin heat sink for electronic cooling. Applied Thermal Engineering. 2016;93:1347–1359. [CrossRef]
  • [15] Chiu HC, Hsieh RH, Wang K, Jang JH, Yu CR. The heat transfer characteristics of liquid cooling heat sink with micro pin fins. Int Commun Heat Mass Transf 2017;86:174–180. [CrossRef]
  • [16] Prajapati YK. Influence of fin height on heat transfer and fluid flow characteristics of rectangular microchannel heat sink. Int J Heat Mass Transf 2019;137:1041–1052. [CrossRef]
  • [17] Ali HM, Arshad W. Effect of channel angle of pin-fin heat sink on heat transfer performance using water based graphene nanoplatelets nanofluids. Int J Heat Mass Transf 2017;106:465–472. [CrossRef]
  • [18] Wong KC, Indran S. Impingement heat transfer of a plate fin heat sink with fillet profile. Int J Heat Mass Transf 2013;65:1–9. [CrossRef]
  • [19] Mesalhy OM, El-Sayed MM. Thermal performance of plate fin heat sink cooled by air slot impinging jet with different cross-sectional area. Heat Mass Transf 2015;51:889–899. [CrossRef]
  • [20] Kim TH, Do KH, Kim SJ. Closed-form correlations of pressure drop and thermal resistance for a plate fin heat sink with uniform air jet impingement. Energy Convers Manag 2017;136:340–349. [CrossRef]
  • [21] Lee DH, Chung YS, Ligrani PM. Jet ımpingement cooling of chips equipped with multiple cylindrical pedestal Fins. J Electron Packag 2007;129:221–8. [CrossRef]
  • [22] Han JC, Glicksman LR, Rohsenow WM. An investigation of heat transfer and friction for rib-roughened surfaces. Int J Heat Mass Transf 1978;21:1143–1156. [CrossRef]
  • [23] Park JS, Han JC, Huang Y, Ou S, Boyle RJ. Heat transfer performance comparisons of five different rectangular channels with parallel angled ribs. Int J Heat Mass Transf 1992;35:2891–2903. [CrossRef]
  • [24] Kondo Y, Matsushima H, Ohashi S. Optimization of heat sink geometries for impingement air-cooling of LSI packages; LSI package no funryu reikyaku ni okeru heat sink keijo no saitekika. Nippon Kikai Gakkai Ronbunshu B Hen (Transactions of the Japan Society of Mechanical Engineers Part B) 1997;63. [CrossRef]
  • [25] Li HY, Chao SM, Tsai GL. Thermal performance measurement of heat sinks with confined impinging jet by infrared thermography. Int J Heat Mass Transf 2005;48:5386–5394. [CrossRef]
  • [26] Kim DK, Kim SJ, Bae JK. Comparison of thermal performances of plate-fin and pin-fin heat sinks subject to an impinging flow. Int J Heat Mass Transf 2009;52:3510–3517. [CrossRef]
  • [27] Koşar A, Peles Y. TCPT-2006-096.R2: Micro scale pin fin heat sinks - Parametric performance evaluation study. IEEE Trans Compon Packag Technol 2007;30:855–865. [CrossRef]
  • [28] Naphon P, Wongwises S. Investigation on the jet liquid impingement heat transfer for the central processing unit of personal computers. Int Commun Heat Mass Transf 2010;37:822–826. [CrossRef]Mohammed AA, Razuqi SA. Performance of rectangular pin-fin heat sink subject to an impinging air flow. J Therm Eng 2021;7:666–676. [CrossRef]
  • [29] Mohammed AA, Razuqi SA. Performance of rectangular pın-fın heat sınk subject to an ımpıngıng aır flow. J Therm Eng 2021;7:666–676.
  • [30] Doğan B, Ozturk MM, Erbay LB. Numerical investigation of heat transfer and pressure drop characteristics in an offset strip fin heat exchanger. J Therm Eng 2021;7:1417–1431. [CrossRef]
  • [31] Kilic M, Calisir T, Baskaya S. experımental and numerıcal ınvestıgatıon of vortex promoter effects on heat transfer from heated electronıc components ın a rectangular channel wıth an ımpıngıng jet. Heat Transf Res 2017;48:435–463. [CrossRef]
  • [32] Hui-qing L, Zhi-guo T, Jia-xin H, Chao J, Qing-qing L. Experimental study of thermal performance of a new jetting radiator with cone heat sink. J Hefei Univ Technol 2015:1612–1616. [CrossRef]
  • [33] Sun B, Zhang Y, Yang D, Li H. Experimental study on heat transfer characteristics of hybrid nanofluid impinging jets. Appl Therm Eng 2019;151:556–566. [CrossRef]
  • [34] Liu ZH, Qiu YH. Boiling heat transfer characteristics of nanofluids jet impingement on a plate surface. Heat Mass Transf 2007;43:699–706. [CrossRef]
  • [35] Gaikwad VP, Mohite SS. Performance analysis of microchannel heat sink with flow disrupting pins. J Therm Eng 2022;8:402–425. [CrossRef]
  • [36] Krishnayatra G, Tokas S, Kumar R, Zunaid M. Parametric study of natural convection showing effects of geometry, number and orientation of fins on a finned tube system: A numerical approach. J Therm Eng 2022;8:268–285. [CrossRef]
  • [37] Rana S, Dura HB, Bhattrai S, Shrestha R. Impact of baffle on forced convection heat transfer of CuO/water nanofluid in a micro-scale backward facing step channel. J Therm Eng 2022;8:310– 322. [CrossRef]
  • [38] Kilic M, Ali HM. Numerical investigation of combined effect of nanofluids and multiple impinging jets on heat transfer. Therm Sci 2018;23:3165–3173. [CrossRef]
  • [39] Kilic M, Calisir T, Baskaya S. Experimental and numerical study of heat transfer from a heated flat plate in a rectangular channel with an impinging air jet. J Brazil Soc Mech Sci Eng 2017;39:329–344. [CrossRef]
  • [40] Celik N. Effects of the surface roughness on heat transfer of perpendicularly impinging co-axial jet. Heat Mass Transf 2011;47:1209–1217. [CrossRef]
  • [41] Khan MZU, Akbar B, Sajjad R, Rajput UA, Mastoi S, Uddin E, et al. Investigation of heat transfer in dimple-protrusion micro-channel heat sinks using copper oxide nano-additives. Case Stud Therm Eng 2021;28:101374. [CrossRef]
  • [42] Buzzard WC, Ren Z, Ligrani PM, Nakamata C, Ueguchi S. Influences of target surface small-scale rectangle roughness on impingement jet array heat transfer. Int J Heat Mass Transf 2017;110:805–816. [CrossRef]
  • [43] Singh P, Zhang M, Ahmed S, Ramakrishnan KR, Ekkad S. Effect of micro-roughness shapes on jet impingement heat transfer and fin-effectiveness. Int J Heat Mass Transf 2019;132:80–95. [CrossRef]
  • [44] Nagesha K, Srinivasan K, Sundararajan T. Enhancement of jet impingement heat transfer using surface roughness elements at different heat inputs. Exp Therm Fluid Sci 2020;112:109995. [CrossRef]
  • [45] Zhao K, Lin W, Li X, Ren J. Effect of micro rib on aerothermal dynamic in channel flow. Int J Heat Mass Transf 2021;178:121573. [CrossRef]
  • [46] Caliskan S, Kilic M, Başkaya S, Üniversitesi Y. Numerical investigation of heat transfer using impinging jets on triangular and square ribbed roughened walls Using nano fluids for heat management of bio-systems View project Bond strength of reinforcement in splices in beams View project. 2017.
  • [47] Çalışır T, Çalışkan S, Kılıç M, Başkaya Ş. Numerical investigation of flow field on ribbed surfaces using impinging jets. J Fac Eng Architect Gazi Univ 2017;32:127–138. [Turkish] [CrossRef]
  • [48] Tang Z, Liu Q, Li H, Min X. Numerical simulation of heat transfer characteristics of jet impingement with a novel single cone heat sink. Appl Therm Eng 2017;127:906–914. [CrossRef]
  • [49] Froissart M, Ziółkowski P, Dudda W, Badur J. Heat exchange enhancement of jet impingement cooling with the novel humped-cone heat sink. Case Stud Therm Eng 2021;28:101445. [CrossRef]
  • [50] Kim SM, Afzal A, Kim KY. Optimization of a staggered jet-convex dimple array cooling system. Int J Therm Sci 2016;99:161–169. [CrossRef]
  • [51] Jing Q, Zhang D, Xie Y. Numerical investigations of impingement cooling performance on flat and non-flat targets with dimple/protrusion and triangular rib. Int J Heat Mass Transf 2018;126:169–190. [CrossRef]
  • [52] Singh J, Singh R, Bhushan B. Thermo hydraulic performance of solar air duct having triangular protrusions as roughness geometry. J Therm Eng 2015;1:607–620. [CrossRef]
  • [53] Yildirim C, Tümen Özdil NF. Theoretical investigation of a solar air heater roughened by ribs and grooves. J Therm Eng 2017;4:1702–1712. [CrossRef]
  • [54] Tepe AÜ, Uysal Ü, Yetişken Y, Arslan K. Jet impingement cooling on a rib-roughened surface using extended jet holes. Appl Therm Eng 2020;178:115601. [CrossRef]
  • [55] Xie Y, Li P, Lan J, Zhang D. Flow and heat transfer characteristics of single jet impinging on dimpled surface. J Heat Transf 2013;135. [CrossRef]
  • [56] Choi EY, Choi YD, Lee WS, Chung JT, Kwak JS. Heat transfer augmentation using a rib–dimple compound cooling technique. Appl Therm Eng 2013;51:435–441. [CrossRef]
  • [57] Pachpute S, Premachandran B. Turbulent multi-jet impingement cooling of a heated circular cylinder. Int J Therm Sci 2020;148:106167. [CrossRef]
  • [58] Nazari A, Saedodin S. Critical heat flux enhancement of pool boiling using a porous nanostructured coating. Exp Heat Transf 2017;30:316327. [CrossRef]
  • [59] Gupta SK, Misra RD. Experimental study of pool boiling heat transfer on copper surfaces with Cu-Al2O3 nanocomposite coatings. Int Commun Heat Mass Transf 2018;97:47–55. [CrossRef]
  • [60] Gupta SK, Misra RD. Effect of two-step electrodeposited Cu–TiO 2 nanocomposite coating on pool boiling heat transfer performance. J Therm Anal Calorim 2019;136:1781–1793. [CrossRef]
  • [61] Das S, Saha B, Bhaumik S. Experimental study of nucleate pool boiling heat transfer of water by surface functionalization with crystalline TiO2 nanostructure. Appl Therm Eng 2017;113:1345–1357. [CrossRef]
  • [62] Das S, Saha B, Bhaumik S. Experimental study of nucleate pool boiling heat transfer of water by surface functionalization with SiO2 nanostructure. Exp Therm Fluid Sci 2017;81:454–465. [CrossRef]
  • [63] Feng B, Weaver K, Peterson GP. Enhancement of critical heat flux in pool boiling using atomic layer deposition of alumina. Appl Phys Lett 2012;100:053120. [CrossRef]
  • [64] Ha M, Graham S. Pool boiling characteristics and critical heat flux mechanisms of microporous surfaces and enhancement through structural modification. Appl Phys Lett 2017;111:091601. [CrossRef]
  • [65] Ray M, Deb S, Bhaumik S. Experimental ınvestigation of nucleate pool boiling heat transfer of R134a on TiO2 coated TF surface. Mater Today Proc 2017;4:10002–10009. [CrossRef]
  • [66] Hendricks TJ, Krishnan S, Choi C, Chang CH, Paul B. Enhancement of pool-boiling heat transfer using nanostructured surfaces on aluminum and copper. Int J Heat Mass Transf 2010;53:3357–3365. [CrossRef]
  • [67] Wang XJ, Liu ZH, Li YY. Experimental study of heat transfer characteristics of high-velocity small slot jet impingement boiling on nanoscale modification surfaces. Int J Heat Mass Transf 2016;103:1042–1052. [CrossRef]
  • [68] Hu H, Xu C, Zhao Y, Shaeffer R, Ziegler KJ, Chung JN. Modification and enhancement of cryogenic quenching heat transfer by a nanoporous surface. Int J Heat Mass Transf 2015;80:636– 643. [CrossRef]
  • [69] Liu MY, Wang H, Wang Y. Enhancing flow boiling and antifouling with nanometer titanium dioxide coating surfaces. AIChE J 2007;53:1075–1085. [CrossRef]
  • [70] Joseph A, Mohan S, Sujith Kumar CS, Mathew A, Thomas S, Vishnu BR, et al. An experimental investigation on pool boiling heat transfer enhancement using sol-gel derived nano-CuO porous coating. Exp Therm Fluid Sci 2019;103:37–50. [CrossRef]
  • [71] Zhao Z, Peles Y, Jensen MK. Water jet impingement boiling from structured-porous surfaces. Int J Heat Mass Transf 2013;63:445–453. [CrossRef]
  • [72] Joshi SN, Dede EM. Two-phase jet impingement cooling for high heat flux wide band-gap devices using multi-scale porous surfaces. Appl Therm Eng 2017;110:10–17. [CrossRef]
  • [73] Negeed ESR, Albeirutty M, Al-Sharif SF, Hidaka S, Takata Y. Dynamic Behavior of a Small Water Droplet Impact onto a Heated Hydrophilic Surface. J Heat Transfer 2016;138. [CrossRef]
  • [74] Forrest E, Williamson E, Buongiorno J, Hu LW, Rubner M, Cohen R. Augmentation of nucleate boiling heat transfer and critical heat flux using nanoparticle thin-film coatings. Int J Heat Mass Transf 2010;53:58–67. [CrossRef]
  • [75] Mohammadi N, Fadda D, Choi CK, Lee J, You SM. Effects of surface wettability on pool boiling of water using super-polished silicon surfaces. Int J Heat Mass Transf 2018;127:1128–1137. [CrossRef]
  • [76] Maynes D, Johnson M, Webb BW. Free-surface liquid jet impingement on rib patterned superhydrophobic surfaces. Physics of Fluids 2011;23:052104. [CrossRef]
  • [77] Akdag U, Cetin O, Demiral D, Ozkul I. Experimental investigation of convective heat transfer on a flat plate subjected to a transversely synthetic jet. Int Commun Heat Mass Transf 2013;49:96– 103. [CrossRef]

Surface modification techniques for cooling by impinging jets-a review

Year 2023, Volume: 9 Issue: 5, 1372 - 1385, 17.10.2023
https://doi.org/10.18186/thermal.1377253

Abstract

The following paper is a review of the recent published literature on these three techniques for heat transfer augmentation. With global trend of the miniaturization of today’s systems and the rapid development due to innovative equipment on a rise, the associated heat generation rates are increasing. As a result, the need to develop techniques to achieve faster and efficient cooling are also increasing., Heat transfer by impinging jets poses a good and economical solution to this problem since, among all the processes used for heat removal, heat transfer by impinging jets have the highest rates associated with them. Although, the heat generation rates have increased over period of time, jet impingement is in the industrial use for quite a long time and is still relevant for the field. This is because overtime the impingement heat transfer effectiveness has been improved by various innovations. Innovations such as surface modifi-cations, use of flow control techniques etc. The modifications reported had seen actual use of them in industries, thus bringing more interest of the researchers towards them. The need to achieve higher heat transfer rates and efficient working of the systems is still seeing numerous interactions pertaining to surface modifications integrated with jet impingement reported on them. Primarily, the use of various types of extended surfaces such as pin fins, plate fins, ribs etc., inducing the roughness elements on the surface by employing dimples, protrusions etc., applying specific surface coatings found a plethora of research work reported on them. For any work, it is necessary to study these modifications and their interactions in details. This paper thus presents the above stated three surface modifications in detail.

References

  • REFERENCES
  • [1] Fabis PM, Shum D, Windischmann H. Thermal modeling of diamond-based power electronics packaging. In: Annual IEEE Semiconductor Thermal Measurement and Management Symposium 1999. IEEE; 1999. p. 98104.
  • [2] Lee S, Early M, Pellilo M. Thermal interface material performance in microelectronics packaging applications. Microelectron J 1997;28:xiii–xx. [CrossRef]
  • [3] Ma CF, Tian YQ. Experimental investigation on two-phase two-component jet impingement heat transfer from simulated microelectronic heat sources. Int Commun Heat Mass Transf 1990;17:399–408. [CrossRef]
  • [4] Yu P, Zhu K, Sun T, Yuan N, Ding J. Heat transfer rate and uniformity of mist flow jet impingement for glass tempering. Int J Heat Mass Transf 2017;115:368–378. [CrossRef]
  • [5] Sarkar A, Singh RP. Air impingement technology for food processing: visualization studies. LWT - Food Sci Technol 2004;37:873–879. [CrossRef]
  • [6] Takrouri K, Luxat J, Hamed M. Measurement and analysis of the re-wetting front velocity during quench cooling of hot horizontal tubes. Nucl Eng Design 2017;311:184–198. [CrossRef]
  • [7] Jondhale KV, Wells MA, Militzer M, Prodanovic V. Heat transfer during multiple jet impingement on the top surface of hot rolled steel strip. Steel Res Int 2008;79:938–946. [CrossRef]
  • [8] Greaves JD Jr. Numerical analysis of the outside vapor deposition process (Master Thesis). Ohio: Ohio University, Mechanical Engineering; 1990.
  • [9] Ferng YM, Liu CH. Numerically investigating fire suppression mechanisms for the water mist with various droplet sizes through FDS code. Nucl Eng Design 2011;241:3142–3148. [CrossRef]
  • [10] Ali ARA, Janajreh I. Numerical Simulation of Turbine Blade Cooling via Jet Impingement. Energy Proced 2015;75:3220–3229. [CrossRef]
  • [11] Boungiorno J, Hu LW, Kim SJ, Hannink R, Truong B, Forrest E. Nanofluids for enhanced economics and safety of nuclear reactors: An evaluation of the potential features, ıssues, and research gaps. Nuclear Technol 2017;162:80–91. [CrossRef]
  • [12] Ndao S, Peles Y, Jensen MK. Experimental investigation of flow boiling heat transfer of jet impingement on smooth and micro structured surfaces. Int J Heat Mass Transf 2012;55:5093–5101. [CrossRef]
  • [13] Ndao S, Peles Y, Jensen MK. Effects of pin fin shape and configuration on the single-phase heat transfer characteristics of jet impingement on micro pin fins. Int J Heat Mass Transf 2014;70:856–863. [CrossRef]
  • [14] Zhao J, Huang S, Gong L, Huang Z. Numerical study and optimizing on micro square pin-fin heat sink for electronic cooling. Applied Thermal Engineering. 2016;93:1347–1359. [CrossRef]
  • [15] Chiu HC, Hsieh RH, Wang K, Jang JH, Yu CR. The heat transfer characteristics of liquid cooling heat sink with micro pin fins. Int Commun Heat Mass Transf 2017;86:174–180. [CrossRef]
  • [16] Prajapati YK. Influence of fin height on heat transfer and fluid flow characteristics of rectangular microchannel heat sink. Int J Heat Mass Transf 2019;137:1041–1052. [CrossRef]
  • [17] Ali HM, Arshad W. Effect of channel angle of pin-fin heat sink on heat transfer performance using water based graphene nanoplatelets nanofluids. Int J Heat Mass Transf 2017;106:465–472. [CrossRef]
  • [18] Wong KC, Indran S. Impingement heat transfer of a plate fin heat sink with fillet profile. Int J Heat Mass Transf 2013;65:1–9. [CrossRef]
  • [19] Mesalhy OM, El-Sayed MM. Thermal performance of plate fin heat sink cooled by air slot impinging jet with different cross-sectional area. Heat Mass Transf 2015;51:889–899. [CrossRef]
  • [20] Kim TH, Do KH, Kim SJ. Closed-form correlations of pressure drop and thermal resistance for a plate fin heat sink with uniform air jet impingement. Energy Convers Manag 2017;136:340–349. [CrossRef]
  • [21] Lee DH, Chung YS, Ligrani PM. Jet ımpingement cooling of chips equipped with multiple cylindrical pedestal Fins. J Electron Packag 2007;129:221–8. [CrossRef]
  • [22] Han JC, Glicksman LR, Rohsenow WM. An investigation of heat transfer and friction for rib-roughened surfaces. Int J Heat Mass Transf 1978;21:1143–1156. [CrossRef]
  • [23] Park JS, Han JC, Huang Y, Ou S, Boyle RJ. Heat transfer performance comparisons of five different rectangular channels with parallel angled ribs. Int J Heat Mass Transf 1992;35:2891–2903. [CrossRef]
  • [24] Kondo Y, Matsushima H, Ohashi S. Optimization of heat sink geometries for impingement air-cooling of LSI packages; LSI package no funryu reikyaku ni okeru heat sink keijo no saitekika. Nippon Kikai Gakkai Ronbunshu B Hen (Transactions of the Japan Society of Mechanical Engineers Part B) 1997;63. [CrossRef]
  • [25] Li HY, Chao SM, Tsai GL. Thermal performance measurement of heat sinks with confined impinging jet by infrared thermography. Int J Heat Mass Transf 2005;48:5386–5394. [CrossRef]
  • [26] Kim DK, Kim SJ, Bae JK. Comparison of thermal performances of plate-fin and pin-fin heat sinks subject to an impinging flow. Int J Heat Mass Transf 2009;52:3510–3517. [CrossRef]
  • [27] Koşar A, Peles Y. TCPT-2006-096.R2: Micro scale pin fin heat sinks - Parametric performance evaluation study. IEEE Trans Compon Packag Technol 2007;30:855–865. [CrossRef]
  • [28] Naphon P, Wongwises S. Investigation on the jet liquid impingement heat transfer for the central processing unit of personal computers. Int Commun Heat Mass Transf 2010;37:822–826. [CrossRef]Mohammed AA, Razuqi SA. Performance of rectangular pin-fin heat sink subject to an impinging air flow. J Therm Eng 2021;7:666–676. [CrossRef]
  • [29] Mohammed AA, Razuqi SA. Performance of rectangular pın-fın heat sınk subject to an ımpıngıng aır flow. J Therm Eng 2021;7:666–676.
  • [30] Doğan B, Ozturk MM, Erbay LB. Numerical investigation of heat transfer and pressure drop characteristics in an offset strip fin heat exchanger. J Therm Eng 2021;7:1417–1431. [CrossRef]
  • [31] Kilic M, Calisir T, Baskaya S. experımental and numerıcal ınvestıgatıon of vortex promoter effects on heat transfer from heated electronıc components ın a rectangular channel wıth an ımpıngıng jet. Heat Transf Res 2017;48:435–463. [CrossRef]
  • [32] Hui-qing L, Zhi-guo T, Jia-xin H, Chao J, Qing-qing L. Experimental study of thermal performance of a new jetting radiator with cone heat sink. J Hefei Univ Technol 2015:1612–1616. [CrossRef]
  • [33] Sun B, Zhang Y, Yang D, Li H. Experimental study on heat transfer characteristics of hybrid nanofluid impinging jets. Appl Therm Eng 2019;151:556–566. [CrossRef]
  • [34] Liu ZH, Qiu YH. Boiling heat transfer characteristics of nanofluids jet impingement on a plate surface. Heat Mass Transf 2007;43:699–706. [CrossRef]
  • [35] Gaikwad VP, Mohite SS. Performance analysis of microchannel heat sink with flow disrupting pins. J Therm Eng 2022;8:402–425. [CrossRef]
  • [36] Krishnayatra G, Tokas S, Kumar R, Zunaid M. Parametric study of natural convection showing effects of geometry, number and orientation of fins on a finned tube system: A numerical approach. J Therm Eng 2022;8:268–285. [CrossRef]
  • [37] Rana S, Dura HB, Bhattrai S, Shrestha R. Impact of baffle on forced convection heat transfer of CuO/water nanofluid in a micro-scale backward facing step channel. J Therm Eng 2022;8:310– 322. [CrossRef]
  • [38] Kilic M, Ali HM. Numerical investigation of combined effect of nanofluids and multiple impinging jets on heat transfer. Therm Sci 2018;23:3165–3173. [CrossRef]
  • [39] Kilic M, Calisir T, Baskaya S. Experimental and numerical study of heat transfer from a heated flat plate in a rectangular channel with an impinging air jet. J Brazil Soc Mech Sci Eng 2017;39:329–344. [CrossRef]
  • [40] Celik N. Effects of the surface roughness on heat transfer of perpendicularly impinging co-axial jet. Heat Mass Transf 2011;47:1209–1217. [CrossRef]
  • [41] Khan MZU, Akbar B, Sajjad R, Rajput UA, Mastoi S, Uddin E, et al. Investigation of heat transfer in dimple-protrusion micro-channel heat sinks using copper oxide nano-additives. Case Stud Therm Eng 2021;28:101374. [CrossRef]
  • [42] Buzzard WC, Ren Z, Ligrani PM, Nakamata C, Ueguchi S. Influences of target surface small-scale rectangle roughness on impingement jet array heat transfer. Int J Heat Mass Transf 2017;110:805–816. [CrossRef]
  • [43] Singh P, Zhang M, Ahmed S, Ramakrishnan KR, Ekkad S. Effect of micro-roughness shapes on jet impingement heat transfer and fin-effectiveness. Int J Heat Mass Transf 2019;132:80–95. [CrossRef]
  • [44] Nagesha K, Srinivasan K, Sundararajan T. Enhancement of jet impingement heat transfer using surface roughness elements at different heat inputs. Exp Therm Fluid Sci 2020;112:109995. [CrossRef]
  • [45] Zhao K, Lin W, Li X, Ren J. Effect of micro rib on aerothermal dynamic in channel flow. Int J Heat Mass Transf 2021;178:121573. [CrossRef]
  • [46] Caliskan S, Kilic M, Başkaya S, Üniversitesi Y. Numerical investigation of heat transfer using impinging jets on triangular and square ribbed roughened walls Using nano fluids for heat management of bio-systems View project Bond strength of reinforcement in splices in beams View project. 2017.
  • [47] Çalışır T, Çalışkan S, Kılıç M, Başkaya Ş. Numerical investigation of flow field on ribbed surfaces using impinging jets. J Fac Eng Architect Gazi Univ 2017;32:127–138. [Turkish] [CrossRef]
  • [48] Tang Z, Liu Q, Li H, Min X. Numerical simulation of heat transfer characteristics of jet impingement with a novel single cone heat sink. Appl Therm Eng 2017;127:906–914. [CrossRef]
  • [49] Froissart M, Ziółkowski P, Dudda W, Badur J. Heat exchange enhancement of jet impingement cooling with the novel humped-cone heat sink. Case Stud Therm Eng 2021;28:101445. [CrossRef]
  • [50] Kim SM, Afzal A, Kim KY. Optimization of a staggered jet-convex dimple array cooling system. Int J Therm Sci 2016;99:161–169. [CrossRef]
  • [51] Jing Q, Zhang D, Xie Y. Numerical investigations of impingement cooling performance on flat and non-flat targets with dimple/protrusion and triangular rib. Int J Heat Mass Transf 2018;126:169–190. [CrossRef]
  • [52] Singh J, Singh R, Bhushan B. Thermo hydraulic performance of solar air duct having triangular protrusions as roughness geometry. J Therm Eng 2015;1:607–620. [CrossRef]
  • [53] Yildirim C, Tümen Özdil NF. Theoretical investigation of a solar air heater roughened by ribs and grooves. J Therm Eng 2017;4:1702–1712. [CrossRef]
  • [54] Tepe AÜ, Uysal Ü, Yetişken Y, Arslan K. Jet impingement cooling on a rib-roughened surface using extended jet holes. Appl Therm Eng 2020;178:115601. [CrossRef]
  • [55] Xie Y, Li P, Lan J, Zhang D. Flow and heat transfer characteristics of single jet impinging on dimpled surface. J Heat Transf 2013;135. [CrossRef]
  • [56] Choi EY, Choi YD, Lee WS, Chung JT, Kwak JS. Heat transfer augmentation using a rib–dimple compound cooling technique. Appl Therm Eng 2013;51:435–441. [CrossRef]
  • [57] Pachpute S, Premachandran B. Turbulent multi-jet impingement cooling of a heated circular cylinder. Int J Therm Sci 2020;148:106167. [CrossRef]
  • [58] Nazari A, Saedodin S. Critical heat flux enhancement of pool boiling using a porous nanostructured coating. Exp Heat Transf 2017;30:316327. [CrossRef]
  • [59] Gupta SK, Misra RD. Experimental study of pool boiling heat transfer on copper surfaces with Cu-Al2O3 nanocomposite coatings. Int Commun Heat Mass Transf 2018;97:47–55. [CrossRef]
  • [60] Gupta SK, Misra RD. Effect of two-step electrodeposited Cu–TiO 2 nanocomposite coating on pool boiling heat transfer performance. J Therm Anal Calorim 2019;136:1781–1793. [CrossRef]
  • [61] Das S, Saha B, Bhaumik S. Experimental study of nucleate pool boiling heat transfer of water by surface functionalization with crystalline TiO2 nanostructure. Appl Therm Eng 2017;113:1345–1357. [CrossRef]
  • [62] Das S, Saha B, Bhaumik S. Experimental study of nucleate pool boiling heat transfer of water by surface functionalization with SiO2 nanostructure. Exp Therm Fluid Sci 2017;81:454–465. [CrossRef]
  • [63] Feng B, Weaver K, Peterson GP. Enhancement of critical heat flux in pool boiling using atomic layer deposition of alumina. Appl Phys Lett 2012;100:053120. [CrossRef]
  • [64] Ha M, Graham S. Pool boiling characteristics and critical heat flux mechanisms of microporous surfaces and enhancement through structural modification. Appl Phys Lett 2017;111:091601. [CrossRef]
  • [65] Ray M, Deb S, Bhaumik S. Experimental ınvestigation of nucleate pool boiling heat transfer of R134a on TiO2 coated TF surface. Mater Today Proc 2017;4:10002–10009. [CrossRef]
  • [66] Hendricks TJ, Krishnan S, Choi C, Chang CH, Paul B. Enhancement of pool-boiling heat transfer using nanostructured surfaces on aluminum and copper. Int J Heat Mass Transf 2010;53:3357–3365. [CrossRef]
  • [67] Wang XJ, Liu ZH, Li YY. Experimental study of heat transfer characteristics of high-velocity small slot jet impingement boiling on nanoscale modification surfaces. Int J Heat Mass Transf 2016;103:1042–1052. [CrossRef]
  • [68] Hu H, Xu C, Zhao Y, Shaeffer R, Ziegler KJ, Chung JN. Modification and enhancement of cryogenic quenching heat transfer by a nanoporous surface. Int J Heat Mass Transf 2015;80:636– 643. [CrossRef]
  • [69] Liu MY, Wang H, Wang Y. Enhancing flow boiling and antifouling with nanometer titanium dioxide coating surfaces. AIChE J 2007;53:1075–1085. [CrossRef]
  • [70] Joseph A, Mohan S, Sujith Kumar CS, Mathew A, Thomas S, Vishnu BR, et al. An experimental investigation on pool boiling heat transfer enhancement using sol-gel derived nano-CuO porous coating. Exp Therm Fluid Sci 2019;103:37–50. [CrossRef]
  • [71] Zhao Z, Peles Y, Jensen MK. Water jet impingement boiling from structured-porous surfaces. Int J Heat Mass Transf 2013;63:445–453. [CrossRef]
  • [72] Joshi SN, Dede EM. Two-phase jet impingement cooling for high heat flux wide band-gap devices using multi-scale porous surfaces. Appl Therm Eng 2017;110:10–17. [CrossRef]
  • [73] Negeed ESR, Albeirutty M, Al-Sharif SF, Hidaka S, Takata Y. Dynamic Behavior of a Small Water Droplet Impact onto a Heated Hydrophilic Surface. J Heat Transfer 2016;138. [CrossRef]
  • [74] Forrest E, Williamson E, Buongiorno J, Hu LW, Rubner M, Cohen R. Augmentation of nucleate boiling heat transfer and critical heat flux using nanoparticle thin-film coatings. Int J Heat Mass Transf 2010;53:58–67. [CrossRef]
  • [75] Mohammadi N, Fadda D, Choi CK, Lee J, You SM. Effects of surface wettability on pool boiling of water using super-polished silicon surfaces. Int J Heat Mass Transf 2018;127:1128–1137. [CrossRef]
  • [76] Maynes D, Johnson M, Webb BW. Free-surface liquid jet impingement on rib patterned superhydrophobic surfaces. Physics of Fluids 2011;23:052104. [CrossRef]
  • [77] Akdag U, Cetin O, Demiral D, Ozkul I. Experimental investigation of convective heat transfer on a flat plate subjected to a transversely synthetic jet. Int Commun Heat Mass Transf 2013;49:96– 103. [CrossRef]
There are 78 citations in total.

Details

Primary Language English
Subjects Classical Physics (Other)
Journal Section Reviews
Authors

Supern Swapnıl This is me 0000-0002-4198-614X

Ajoy Debbarma This is me 0000-0001-9122-4031

Publication Date October 17, 2023
Submission Date April 5, 2022
Published in Issue Year 2023 Volume: 9 Issue: 5

Cite

APA Swapnıl, S., & Debbarma, A. (2023). Surface modification techniques for cooling by impinging jets-a review. Journal of Thermal Engineering, 9(5), 1372-1385. https://doi.org/10.18186/thermal.1377253
AMA Swapnıl S, Debbarma A. Surface modification techniques for cooling by impinging jets-a review. Journal of Thermal Engineering. October 2023;9(5):1372-1385. doi:10.18186/thermal.1377253
Chicago Swapnıl, Supern, and Ajoy Debbarma. “Surface Modification Techniques for Cooling by Impinging Jets-a Review”. Journal of Thermal Engineering 9, no. 5 (October 2023): 1372-85. https://doi.org/10.18186/thermal.1377253.
EndNote Swapnıl S, Debbarma A (October 1, 2023) Surface modification techniques for cooling by impinging jets-a review. Journal of Thermal Engineering 9 5 1372–1385.
IEEE S. Swapnıl and A. Debbarma, “Surface modification techniques for cooling by impinging jets-a review”, Journal of Thermal Engineering, vol. 9, no. 5, pp. 1372–1385, 2023, doi: 10.18186/thermal.1377253.
ISNAD Swapnıl, Supern - Debbarma, Ajoy. “Surface Modification Techniques for Cooling by Impinging Jets-a Review”. Journal of Thermal Engineering 9/5 (October 2023), 1372-1385. https://doi.org/10.18186/thermal.1377253.
JAMA Swapnıl S, Debbarma A. Surface modification techniques for cooling by impinging jets-a review. Journal of Thermal Engineering. 2023;9:1372–1385.
MLA Swapnıl, Supern and Ajoy Debbarma. “Surface Modification Techniques for Cooling by Impinging Jets-a Review”. Journal of Thermal Engineering, vol. 9, no. 5, 2023, pp. 1372-85, doi:10.18186/thermal.1377253.
Vancouver Swapnıl S, Debbarma A. Surface modification techniques for cooling by impinging jets-a review. Journal of Thermal Engineering. 2023;9(5):1372-85.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering