Research Article
BibTex RIS Cite
Year 2024, Volume: 10 Issue: 1, 10 - 20, 31.01.2024
https://doi.org/10.18186/thermal.1428967

Abstract

References

  • REFERENCES
  • [1] Thammanna J, Srivastav A. Thermal Management in Electronic Equipment. Hcl 2010:2–20.
  • [2] Lee HS. Thermal Design: Heat Sinks, Thermoelectrics, Heat Pipes, Compact Heat Exchangers, and Solar Cells. 2010. https://doi.org/10.1002/9780470949979.
  • [3] Khan WA, Culham JR, Yovanovich MM. Modeling of Cylindrical Pin-Fin Heat Sinks for Electronic Packaging. IEEE Trans COMPONENTS Packag Technol 2005;31:536–45.
  • [4] Khan WA, Culham JR, Yovanovich MM. Optimization of microchannel heat sinks using entropy generation minimization. IEEE Trans. Components Packag. Technol., vol. 32, 2009, p. 243–51. https://doi.org/10.1109/TCAPT.2009.2022586.
  • [5] Warty AA, Prajapat AK, Yadav KD, Kanawade VN, Keste AA, Sonawane VJ, et al. Experimental Studyon Performance Evaluation of Pin Fin. IOSR J Mech Civ Eng 2016:23–9.
  • [6] Gaikwad VP, Mohite SS. Performance analysis of microchannel heat sink with flow disrupting pins. J Therm Eng 2022;8:402–25. https://doi.org/10.18186/thermal.1117391.
  • [7] Lee S. Optimum Design and Selection of Heat Sinks. IEEE Trans Components Packag Manuf Technol Part A 1995;18:812–7. https://doi.org/10.1109/95.477468.
  • [8] Culham JR, Muzychka YS. Optimization of plate fin heat sinks using entropy generation minimization. IEEE Trans Components Packag Technol 2001;24:159–65. https://doi.org/10.1109/6144.926378.
  • [9] Seo JH, Lee MY. Illuminance and heat transfer characteristics of high power LED cooling system with heat sink filled with ferrofluid. Appl Therm Eng 2018;143:438–49. https://doi.org/10.1016/j.applthermaleng.2018.07.079.
  • [10] Vafai K, Zhu L. Analysis of two-layered micro-channel heat sink concept in electronic cooling. Int J Heat Mass Transf 1999;42:2287–97. https://doi.org/10.1016/S0017-9310(98)00017-9.
  • [11] Chein R, Huang G. Analysis of microchannel heat sink performance using nanofluids. Appl Therm Eng 2005;25:3104–14. https://doi.org/10.1016/j.applthermaleng.2005.03.008.
  • [12] Yang KS, Chu WH, Chen IY, Wang CC. A comparative study of the airside performance of heat sinks having pin fin configurations. Int J Heat Mass Transf 2007;50:4661–7. https://doi.org/10.1016/j.ijheatmasstransfer.2007.03.006.
  • [13] Han C-W, Jeong S-B. Evaluation of the thermal performance with different fin shapes of the air-cooled heat sink for power electronic applications. J Int Counc Electr Eng 2016;6:17–25. https://doi.org/10.1080/22348972.2015.1115168.
  • [14] Al-Sallami W, Al-Damook A, Thompson HM. A numerical investigation of the thermal-hydraulic characteristics of perforated plate fin heat sinks. Int J Therm Sci 2017;121:266–77. https://doi.org/10.1016/j.ijthermalsci.2017.07.022.
  • [15] Jaffal HM. The Effect of Fin Design on Thermal Performance of Heat Sink. J Eng 2017;23:123–46.
  • [16] Sakanova A, Tseng KJ. Comparison of pin-fin and finned shape heat sink for power electronics in future aircraft. Appl Therm Eng 2018;136:364–74. https://doi.org/10.1016/j.applthermaleng.2018.03.020.
  • [17] Khurshid H, Silaipillayarputhur K, Al Mughanam T. Design of a Heat Sink for an Electronic Component in ABB Drive using Different Types of Fins. MATEC Web Conf 2018;249. https://doi.org/10.1051/matecconf/201824903009.
  • [18] Lee G, Kim SJ. Thermal optimization of radial plate fin heat sinks under an L-shaped flow. Appl Therm Eng 2018;133:580–7. https://doi.org/10.1016/j.applthermaleng.2018.01.076.
  • [19] Tariq A, Altaf K, Ahmad SW, Hussain G, Ratlamwala TAH. Comparative numerical and experimental analysis of thermal and hydraulic performance of improved plate fin heat sinks. Appl Therm Eng 2021;182:115949. https://doi.org/10.1016/j.applthermaleng.2020.115949.
  • [20] Nilpueng K, Wongwises S. Thermal performance investigation of a plate fin heat sink equipped with twisted tape and perforated twisted tape. J Therm Sci Technol 2021;16:1–12. https://doi.org/10.1299/jtst.2021jtst0024.
  • [21] Dhaiban HT, Hussein MA. The Optimal Design of Heat Sinks: a Review. J Appl Comput Mech 2020;6:1030–43. https://doi.org/10.22055/jacm.2019.14852.
  • [22] Rehman T, Ali HM. Thermal performance analysis of metallic foam-based heat sinks embedded with RT-54HC paraffin: an experimental investigation for electronic cooling. J Therm Anal Calorim 2019;140:979–90. https://doi.org/10.1007/s10973-019-08961-8.
  • [23] Rohani H, Badakhsh A, Park CW. Thermal performance of modified polymeric heatsinks as an alternative for aluminum in heat rejection systems. Appl Therm Eng 2019;159:113823. https://doi.org/10.1016/j.applthermaleng.2019.113823.
  • [24] Nazzal IT, Salem TK, Al Doury RRJ. Theoretical Investigation of a Pin Fin Heat Sink Performance for Electronic Cooling using Different Alloys Materials. IOP Conf Ser Mater Sci Eng 2021;1094:012087. https://doi.org/10.1088/1757-899x/1094/1/012087.
  • [25] Khan WA, Culham JR, Yovanovich MM. Performance of Shrouded Pin-Fin Heat Sinks for electronic cooling. 38th AIAA thermophusics Conf. 6-9 June 2005, Toronto, ontario Canada, 2005.
  • [26] Kang S, Holahan M. The thermal resistance of pin fin heat sinks in transverse flow. nternational Electron. Packag. Tech. Conf. Exhib. July 6–11, 2003, Maui, Hawaii, USA, 2003, p. 1–8.
  • [27] Deshmukh PA, Warkhedkar RM. Thermal performance of elliptical pin fin heat sink under combined natural and forced convection. Exp Therm Fluid Sci 2013;50:61–8. https://doi.org/10.1016/j.expthermflusci.2013.05.005.
  • [28] Khan WA, Culham JR, Yovanovich MM. Modeling of Cylindrical Pin-Fin Heat Sinks for Electronic Packaging. 21st IEEE SEMI-THERM Symp., 2005.
  • [29] Roy R, Kundu B. Effects of fin shapes on heat transfer in microchannel heat sinks. Heat Transf - Asian Res 2018;47:646–59. https://doi.org/10.1002/htj.21332.
  • [30] Review S. Forced convective heat transfer enhancement with perforated pin fins subject to an impinging. SEGi Rev 2012;5:29–40.
  • [31] Zhou F, Catton I. Numerical evaluation of flow and heat transfer in plate-pin fin heat sinks with various pin cross-sections. Numer Heat Transf Part A Appl 2011;60:107–28. https://doi.org/10.1080/10407782.2011.588574.
  • [32] Khudhur DS, Al-Zuhairy RC, Kassim MS. Thermal analysis of heat transfer with different fin geometry through straight plate-fin heat sinks. Int J Therm Sci 2022;174:107443. https://doi.org/10.1016/j.ijthermalsci.2021.107443.
  • [33] Han C-W, Jeong S-B. Evaluation of the thermal performance with different fin shapes of the air-cooled heat sink for power electronic applications. J Int Counc Electr Eng 2016;6:17–25. https://doi.org/10.1080/22348972.2015.1115168.

Investigation into the heat sink performance of the inline and cut cross fins types using different aluminum alloys

Year 2024, Volume: 10 Issue: 1, 10 - 20, 31.01.2024
https://doi.org/10.18186/thermal.1428967

Abstract

In this study, two types of heat sinks are selected at similar dimensions. In addition, five types of aluminum alloys are used to find the optimum performance for both models’ inline and cut cross heat sinks. These types of alloy materials were Al-1100, Al-3063, Al+25%Ni, and Al+25%Cu that are selected and compared with pure aluminum. The effectiveness results showed of the heat sink using Al- 25%Cu has the highest value compared to the other material types Al- 25%Ni, Al 1100, and Al 6063 respectively. While the lowest value of the fin efficiency was observed for pure aluminum. Moreover, the heat sink using Al- 25%Ni, Al 1100, and Al 6063 has moderate values. The results also indicated that the rate of heat-dissipated from the cut cross heat sink increases, as the fin thickness increases until reaches maximum value be-fore it decreases with an increase in the fin thickness. While for the inline heat sink, the heat transfer increases as the fin thickness increase before stables at 2 mm approximately.

References

  • REFERENCES
  • [1] Thammanna J, Srivastav A. Thermal Management in Electronic Equipment. Hcl 2010:2–20.
  • [2] Lee HS. Thermal Design: Heat Sinks, Thermoelectrics, Heat Pipes, Compact Heat Exchangers, and Solar Cells. 2010. https://doi.org/10.1002/9780470949979.
  • [3] Khan WA, Culham JR, Yovanovich MM. Modeling of Cylindrical Pin-Fin Heat Sinks for Electronic Packaging. IEEE Trans COMPONENTS Packag Technol 2005;31:536–45.
  • [4] Khan WA, Culham JR, Yovanovich MM. Optimization of microchannel heat sinks using entropy generation minimization. IEEE Trans. Components Packag. Technol., vol. 32, 2009, p. 243–51. https://doi.org/10.1109/TCAPT.2009.2022586.
  • [5] Warty AA, Prajapat AK, Yadav KD, Kanawade VN, Keste AA, Sonawane VJ, et al. Experimental Studyon Performance Evaluation of Pin Fin. IOSR J Mech Civ Eng 2016:23–9.
  • [6] Gaikwad VP, Mohite SS. Performance analysis of microchannel heat sink with flow disrupting pins. J Therm Eng 2022;8:402–25. https://doi.org/10.18186/thermal.1117391.
  • [7] Lee S. Optimum Design and Selection of Heat Sinks. IEEE Trans Components Packag Manuf Technol Part A 1995;18:812–7. https://doi.org/10.1109/95.477468.
  • [8] Culham JR, Muzychka YS. Optimization of plate fin heat sinks using entropy generation minimization. IEEE Trans Components Packag Technol 2001;24:159–65. https://doi.org/10.1109/6144.926378.
  • [9] Seo JH, Lee MY. Illuminance and heat transfer characteristics of high power LED cooling system with heat sink filled with ferrofluid. Appl Therm Eng 2018;143:438–49. https://doi.org/10.1016/j.applthermaleng.2018.07.079.
  • [10] Vafai K, Zhu L. Analysis of two-layered micro-channel heat sink concept in electronic cooling. Int J Heat Mass Transf 1999;42:2287–97. https://doi.org/10.1016/S0017-9310(98)00017-9.
  • [11] Chein R, Huang G. Analysis of microchannel heat sink performance using nanofluids. Appl Therm Eng 2005;25:3104–14. https://doi.org/10.1016/j.applthermaleng.2005.03.008.
  • [12] Yang KS, Chu WH, Chen IY, Wang CC. A comparative study of the airside performance of heat sinks having pin fin configurations. Int J Heat Mass Transf 2007;50:4661–7. https://doi.org/10.1016/j.ijheatmasstransfer.2007.03.006.
  • [13] Han C-W, Jeong S-B. Evaluation of the thermal performance with different fin shapes of the air-cooled heat sink for power electronic applications. J Int Counc Electr Eng 2016;6:17–25. https://doi.org/10.1080/22348972.2015.1115168.
  • [14] Al-Sallami W, Al-Damook A, Thompson HM. A numerical investigation of the thermal-hydraulic characteristics of perforated plate fin heat sinks. Int J Therm Sci 2017;121:266–77. https://doi.org/10.1016/j.ijthermalsci.2017.07.022.
  • [15] Jaffal HM. The Effect of Fin Design on Thermal Performance of Heat Sink. J Eng 2017;23:123–46.
  • [16] Sakanova A, Tseng KJ. Comparison of pin-fin and finned shape heat sink for power electronics in future aircraft. Appl Therm Eng 2018;136:364–74. https://doi.org/10.1016/j.applthermaleng.2018.03.020.
  • [17] Khurshid H, Silaipillayarputhur K, Al Mughanam T. Design of a Heat Sink for an Electronic Component in ABB Drive using Different Types of Fins. MATEC Web Conf 2018;249. https://doi.org/10.1051/matecconf/201824903009.
  • [18] Lee G, Kim SJ. Thermal optimization of radial plate fin heat sinks under an L-shaped flow. Appl Therm Eng 2018;133:580–7. https://doi.org/10.1016/j.applthermaleng.2018.01.076.
  • [19] Tariq A, Altaf K, Ahmad SW, Hussain G, Ratlamwala TAH. Comparative numerical and experimental analysis of thermal and hydraulic performance of improved plate fin heat sinks. Appl Therm Eng 2021;182:115949. https://doi.org/10.1016/j.applthermaleng.2020.115949.
  • [20] Nilpueng K, Wongwises S. Thermal performance investigation of a plate fin heat sink equipped with twisted tape and perforated twisted tape. J Therm Sci Technol 2021;16:1–12. https://doi.org/10.1299/jtst.2021jtst0024.
  • [21] Dhaiban HT, Hussein MA. The Optimal Design of Heat Sinks: a Review. J Appl Comput Mech 2020;6:1030–43. https://doi.org/10.22055/jacm.2019.14852.
  • [22] Rehman T, Ali HM. Thermal performance analysis of metallic foam-based heat sinks embedded with RT-54HC paraffin: an experimental investigation for electronic cooling. J Therm Anal Calorim 2019;140:979–90. https://doi.org/10.1007/s10973-019-08961-8.
  • [23] Rohani H, Badakhsh A, Park CW. Thermal performance of modified polymeric heatsinks as an alternative for aluminum in heat rejection systems. Appl Therm Eng 2019;159:113823. https://doi.org/10.1016/j.applthermaleng.2019.113823.
  • [24] Nazzal IT, Salem TK, Al Doury RRJ. Theoretical Investigation of a Pin Fin Heat Sink Performance for Electronic Cooling using Different Alloys Materials. IOP Conf Ser Mater Sci Eng 2021;1094:012087. https://doi.org/10.1088/1757-899x/1094/1/012087.
  • [25] Khan WA, Culham JR, Yovanovich MM. Performance of Shrouded Pin-Fin Heat Sinks for electronic cooling. 38th AIAA thermophusics Conf. 6-9 June 2005, Toronto, ontario Canada, 2005.
  • [26] Kang S, Holahan M. The thermal resistance of pin fin heat sinks in transverse flow. nternational Electron. Packag. Tech. Conf. Exhib. July 6–11, 2003, Maui, Hawaii, USA, 2003, p. 1–8.
  • [27] Deshmukh PA, Warkhedkar RM. Thermal performance of elliptical pin fin heat sink under combined natural and forced convection. Exp Therm Fluid Sci 2013;50:61–8. https://doi.org/10.1016/j.expthermflusci.2013.05.005.
  • [28] Khan WA, Culham JR, Yovanovich MM. Modeling of Cylindrical Pin-Fin Heat Sinks for Electronic Packaging. 21st IEEE SEMI-THERM Symp., 2005.
  • [29] Roy R, Kundu B. Effects of fin shapes on heat transfer in microchannel heat sinks. Heat Transf - Asian Res 2018;47:646–59. https://doi.org/10.1002/htj.21332.
  • [30] Review S. Forced convective heat transfer enhancement with perforated pin fins subject to an impinging. SEGi Rev 2012;5:29–40.
  • [31] Zhou F, Catton I. Numerical evaluation of flow and heat transfer in plate-pin fin heat sinks with various pin cross-sections. Numer Heat Transf Part A Appl 2011;60:107–28. https://doi.org/10.1080/10407782.2011.588574.
  • [32] Khudhur DS, Al-Zuhairy RC, Kassim MS. Thermal analysis of heat transfer with different fin geometry through straight plate-fin heat sinks. Int J Therm Sci 2022;174:107443. https://doi.org/10.1016/j.ijthermalsci.2021.107443.
  • [33] Han C-W, Jeong S-B. Evaluation of the thermal performance with different fin shapes of the air-cooled heat sink for power electronic applications. J Int Counc Electr Eng 2016;6:17–25. https://doi.org/10.1080/22348972.2015.1115168.
There are 34 citations in total.

Details

Primary Language English
Subjects Thermodynamics and Statistical Physics
Journal Section Articles
Authors

Ibrahim Thamer Nazzal 0000-0002-8745-275X

Thamer Khalif Salem This is me 0000-0002-8893-411X

Saad Farhan 0000-0002-1110-2649

Tahseen Ahmad Tahseen This is me 0000-0003-3863-6138

Publication Date January 31, 2024
Submission Date June 27, 2022
Published in Issue Year 2024 Volume: 10 Issue: 1

Cite

APA Nazzal, I. T., Salem, T. K., Farhan, S., Tahseen, T. A. (2024). Investigation into the heat sink performance of the inline and cut cross fins types using different aluminum alloys. Journal of Thermal Engineering, 10(1), 10-20. https://doi.org/10.18186/thermal.1428967
AMA Nazzal IT, Salem TK, Farhan S, Tahseen TA. Investigation into the heat sink performance of the inline and cut cross fins types using different aluminum alloys. Journal of Thermal Engineering. January 2024;10(1):10-20. doi:10.18186/thermal.1428967
Chicago Nazzal, Ibrahim Thamer, Thamer Khalif Salem, Saad Farhan, and Tahseen Ahmad Tahseen. “Investigation into the Heat Sink Performance of the Inline and Cut Cross Fins Types Using Different Aluminum Alloys”. Journal of Thermal Engineering 10, no. 1 (January 2024): 10-20. https://doi.org/10.18186/thermal.1428967.
EndNote Nazzal IT, Salem TK, Farhan S, Tahseen TA (January 1, 2024) Investigation into the heat sink performance of the inline and cut cross fins types using different aluminum alloys. Journal of Thermal Engineering 10 1 10–20.
IEEE I. T. Nazzal, T. K. Salem, S. Farhan, and T. A. Tahseen, “Investigation into the heat sink performance of the inline and cut cross fins types using different aluminum alloys”, Journal of Thermal Engineering, vol. 10, no. 1, pp. 10–20, 2024, doi: 10.18186/thermal.1428967.
ISNAD Nazzal, Ibrahim Thamer et al. “Investigation into the Heat Sink Performance of the Inline and Cut Cross Fins Types Using Different Aluminum Alloys”. Journal of Thermal Engineering 10/1 (January 2024), 10-20. https://doi.org/10.18186/thermal.1428967.
JAMA Nazzal IT, Salem TK, Farhan S, Tahseen TA. Investigation into the heat sink performance of the inline and cut cross fins types using different aluminum alloys. Journal of Thermal Engineering. 2024;10:10–20.
MLA Nazzal, Ibrahim Thamer et al. “Investigation into the Heat Sink Performance of the Inline and Cut Cross Fins Types Using Different Aluminum Alloys”. Journal of Thermal Engineering, vol. 10, no. 1, 2024, pp. 10-20, doi:10.18186/thermal.1428967.
Vancouver Nazzal IT, Salem TK, Farhan S, Tahseen TA. Investigation into the heat sink performance of the inline and cut cross fins types using different aluminum alloys. Journal of Thermal Engineering. 2024;10(1):10-2.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering