Research Article
BibTex RIS Cite
Year 2024, Volume: 10 Issue: 1, 115 - 129, 31.01.2024
https://doi.org/10.18186/thermal.1429409

Abstract

References

  • REFERENCES
  • [1] Wang CY. The unsteady oblique stagnation point flow. Phys Fluids. 1985;28:2046–2049. [CrossRef]
  • [2] Weidman PD, Putkaradze V. Axisymmetric stagnation flow obliquely impinging on a circular cylinder. Eur J Mech B Fluids. 2003;22:123–131. [CrossRef]
  • [3] Reza M, Gupta AS. Steady two-dimensional oblique stagnation-point flow towards a stretching surface. Fluid Dyn Res. 2005;37:334–340. [CrossRef]
  • [4] Labropulu F, Li D, Pop I. Non-orthogonal stagnation-point flow towards a stretching surface in a non-Newtonian fluid with heat transfer. Int J Therm Sci. 2010;49:1042–1050. [CrossRef]
  • [5] Sarkar S, Sahoo B. Analysis of oblique stagnation point flow over a rough surface. J Math Anal Appl. 2020;490:124208. [CrossRef]
  • [6] Awan AU, Aziz M, Ullah N. Thermal analysis of oblique stagnation point flow with slippage on second-order fluid. J Therm Anal Calorim. 2022;147:3839–3851. [CrossRef]
  • [7] Bhuvaneswari M, Eswaramoorthi S, Sivasankaran S, Hussein AK. Cross-diffusion effects on MHD mixed convection over a stretching surface in a porous medium with chemical reaction and convective condition. Eng Trans. 2019;67:3–19.
  • [8] Maatki C, Ghachem K, Kolsi L, Hussein AK, Mohamed B, Aissia HB. Inclination effects of magnetic field direction in 3D double-diffusive natural convection. Appl Math Comput. 2016;273:178–189. [CrossRef]
  • [9] Mansour MA, Rashad AM, Mallikarjuna B, Hussein AK, Aichouni M, Kolsi L. MHD mixed bioconvection in a square porous cavity filled by gyrotactic microorganisms. Int J Heat Technol. 2019;37:433–445. [CrossRef]
  • [10] Ahmed SE, Hussein AK, Mohammed HA, Kayode I, Kolsi L, Zhang X, et al. Viscous dissipation and radiation effects on MHD natural convection in a square enclosure filled with a porous medium. Nucl Eng Des. 2014;266:34–42. [CrossRef]
  • [11] Hussein AK, Ashorynejad HR, Sivasankaran S, Kolsi L, Kayode I, Sivanandam S, et al. Modeling of MHD natural convection in a square enclosure having an adiabatic square shaped body using Lattice Boltzmann Method. Alexandria Eng J. 2016;55:203–214. [CrossRef]
  • [12] Pakdee W, Yuvakanit B, Hussein AK. Numerical analysis on the two-dimensional unsteady magnetohydrodynamic compressible flow through a porous medium. J Appl Fluid Mech.
  • 2017;10:1153–1159. [CrossRef]
  • [13] Singh P, Sinha D. MHD oblique stagnation-point flow towards a stretching Sheet With Heat transfer. Int J Appl Math Mech. 2010;6:94–111.
  • [14] Borrelli A, Giantesio G, Patria MC. MHD oblique stagnation-point flow of a Newtonian fluid. Z Angew Math Phys. 2012;63:271–294. [CrossRef]
  • [15] Javed T, Ghaffari A, Ahmad H. Numerical study of unsteady MHD oblique stagnation point flow and heat transfer due to an oscillating stream. Thermophys Aeromech. 2016;23:383–391. [CrossRef]
  • [16] Awan AU, Abid S, Abbas N. Theoretical study of unsteady oblique stagnation point based Jeffrey nanofluid flow over an oscillatory stretching sheet. Adv Mech Eng. 2020;12:1–13. [CrossRef]
  • [17] Mohamed MKA, Yasin SHM, Salleh MZ, Alkasasbeh HT. MHD Stagnation Point Flow and Heat Transfer Over a Stretching Sheet in a Blood-Based Casson Ferrofluid With Newtonian Heating. J Adv Res Fluid Mech Therm Sci. 2021;82:1–11. [CrossRef]
  • [18] Asirvatham LG. Nanofluid heat transfer and applications. J Therm Eng. 2015;1:113–115. [CrossRef]
  • [19] Ravisankar R, Venkatachalapathy VSK, Alagumurthi N. Application of nanotechnology to improve the performance of tractor radiator using Cu-water nanofluid. J Therm Eng. 2018;4:2188–2200. [CrossRef]
  • [20] Madani K, Maad RB, Abidi-Saad A. Numerical investigation of cooling a ribbed microchannel using nanofluid. J Therm Eng. 2018;4:2408–2422. [CrossRef]
  • [21] Chand R, Rana GC, Hussein AK. On the onset of thermal instability in a low prandtl number nanofluid layer in a porous medium. J Appl Fluid Mech. 2015;8:265–272. [CrossRef]
  • [22] Ali B, Hussain S, Nie Y, Habib D, Hussein AK. Finite element investigation of Dufour and Soret impacts on MHD rotating flow of Oldroyd-B nanofluid over a stretching sheet with double diffusion Cattaneo Christov heat flux model. Powder Technol. 2021;377:439–452. [CrossRef]
  • [23] Ali FH, Hamzah HK, Hussein AK, Jabbar MY, Talebizadehsardari P. MHD mixed convection due to a rotating circular cylinder in a trapezoidal enclosure filled with a nanofluid saturated with a porous media. Int J Mech Sci. 2020;181. [CrossRef]
  • [24] Ali B, Khan SA, Hussein AK, Thumma T, Hussain S. Hybrid nanofluids: Significance of gravity modulation, heat source/sink, and magnetohydrodynamic on dynamics of micropolar fluid over an inclined surface via finite element simulation. Appl Math Comput. 2022;419:126878. [CrossRef]
  • [25] Al-Rashed AAAA, Kalidasan K, Kolsi L, Abdelkarim A, Malekshah EH, Kanna PR et al. Three-dimensional investigation of the effects of external magnetic field inclination on laminar natural convection heat transfer in CNT–water nanofluid filled cavity. J Mol Liq. 2018;252:454–468. [CrossRef]
  • [26] Ashraf MZ, Rehman SU, Farid S, Hussein AK, Ali B, Shah NA, et al. Insight into Significance of Bioconvection on MHD Tangent Hyperbolic Nanofluid Flow of Irregular Thickness across a Slender Elastic Surface. Mathematics. 2022;10:1–17. [CrossRef]
  • [27] Khan WA, Makinde OD, Khan ZH. Non-aligned MHD stagnation point flow of variable viscosity nanofluids past a stretching sheet with radiative heat. Int J Heat Mass Transf. 2016;96:525–534. [CrossRef]
  • [28] Mehmood R, Nadeem S, Sher Akbar N. Non-aligned Ethylene-Glycol 30% based stagnation point fluid over a stretching surface with hematite nano particles. J Appl Fluid Mech. 2016;9:1359–1366. [CrossRef]
  • [29] Khan AU, Nadeem S, Hussain ST. Phase flow study of MHD nanofluid with slip effects on oscillatory oblique stagnation point flow in view of inclined magnetic field. J Mol Liq. 2016;224:1210– 1219. [CrossRef]
  • [30] S Nadeem M, KhanArif R, Khan U. MHD oblique stagnation point flow of nanofluid over an oscillatory stretching/shrinking sheet: existence of dual solutions. Phys Scr. 2019;94:075204. [CrossRef]
  • [31] Rizwana R, hussain A, Nadeem S. Series solution of unsteady MHD oblique stagnation point flow of copper-water nanofluid flow towards Riga plate. Heliyon. 2020;6. [CrossRef]
  • [32] Ghasemi SE, Hatami M. Solar radiation effects on MHD stagnation point flow and heat transfer of a nanofluid over a stretching sheet. Case Stud Therm Eng. 2021;25:100898. [CrossRef]
  • [33] Zainal NA, Nazar R, Naganthran K, Pop I. Unsteady MHD stagnation point flow induced by exponentially permeable stretching/shrinking sheet of hybrid nanofluid. Eng Sci Technol an Int J. 2021;24:1201–1210. [CrossRef]
  • [34] Nandi S, Kumbhakar B, Sarkar S. MHD stagnation point flow of Fe3O4/Cu/Ag-CH3OH nanofluid along a convectively heated stretching sheet with partial slip and activation energy: Numerical and statistical approach. Int Commun Heat Mass Transf. 2022;130:105791. [CrossRef]
  • [35] Ghaffari A, Javed T, Majeed A. Influence of Radiation on Non-Newtonian Fluid in the Region of Oblique Stagnation Point Flow in a Porous Medium: A Numerical Study. Transp Porous Media. 2016;113:245–266. [CrossRef]
  • [36] Khan M, Iqbal Z, Ahmed A. Stagnation point flow of magnetized Burgers’ nanofluid subject to thermal radiation. Appl Nanosci. 2020;10:5233–5246. [CrossRef]
  • [37] Akaje TW, Olajuwon BI. Impacts of Nonlinear Thermal Radiation on a Stagnation Point of an Aligned MHD Casson Nanofluid Flow with Thompson and Troian Slip Boundary Condition. 2021;1:1–15.
  • [38] Abbasi A, Gulzar S, Mabood F, Farooq W. Nonlinear thermal radiation and activation energy features in axisymmetric rotational stagnation point flow of hybrid nanofluid. Int Commun Heat Mass Transf. 2021;126:105335. [CrossRef]
  • [39] Devi R, Poply V, Manimala M. Effect Of Aligned Magnetic Field And Inclined Outer Velocity In Casson Fluid Flow Over A Stretching Sheet With Heat Source. J Therm Eng. 2021;7:823–844. [CrossRef]
  • [40] Mandal PK, Seth GS, Sarkar S, Chamkha A. A numerical simulation of mixed convective and arbitrarily oblique radiative stagnation point slip flow of a CNT-water MHD nanofluid. J Therm Anal Calorim. 2021;143:1901–1916. [CrossRef]
  • [41] Sulochana C, Sandeep N, Sugunamma V, Rushi Kumar B. Aligned magnetic field and cross-diffusion effects of a nanofluid over an exponentially stretching surface in porous medium. Appl Nanosci. 2016;6:737–746. [CrossRef]
  • [42] Ramzan M, Shahmir N, Alotaibi H, Ali H, Ghazwani S, Muhammad T. Thermal performance comparative analysis of nanofluid flows at an oblique stagnation point considering Xue model: a solar application. J Comput Des Eng. 2022;9:201–215. [CrossRef]
  • [43] Mallikarjuna B, Rashad AM, Hussein AK, Hariprasad Raju S. Transpiration and Thermophoresis Effects on Non-Darcy Convective Flow Past a Rotating Cone with Thermal Radiation. Arab J Sci Eng. 2016;41:4691–4700. [CrossRef]
  • [44] Nadeem S, Mehmood R, Akbar NS. Oblique stagnation point flow of a casson-nano fluid towards a stretching surface with heat transfer. J Comput Theor Nanosci. 2014;11:1422–1432. [CrossRef]
  • [45] Agbaje TM, Mondal S, Makukula ZG, Motsa SS, Sibanda P. A new numerical approach to MHD stagnation point flow and heat transfer towards a stretching sheet. Ain Shams Eng J. 2016;9:233–243. [CrossRef]
  • [46] Kumar A, Sugunamma V, Sandeep N. Impact of Non-linear Radiation on MHD Non-aligned Stagnation Point Flow of Micropolar Fluid over a Convective Surface. J Non-Equilibrium Thermodyn. 2018;43:327–345. [CrossRef]
  • [47] Hayat T, Shafiq A, Alsaedi A, Asghar S. Effect of inclined magnetic field in flow of third grade fluid with variable thermal conductivity. AIP Adv. 2015;5. [CrossRef]

Impact of inclined magnetic field on non-orthogonal stagnation point flow of CNT-water through stretching surface in a porous medium

Year 2024, Volume: 10 Issue: 1, 115 - 129, 31.01.2024
https://doi.org/10.18186/thermal.1429409

Abstract

The magnetohydrodynamic (MHD) nanofluid flow at non-orthogonal stagnation point, with suspended carbon nanotubes in water on a stretched sheet in a permeable media with non-lin-ear thermal radiation is studied. This work aims to explore the inclined magnetic field impacts on normal velocity, tangential velocity and temperature for both types of carbon nanotubes (CNTs). The governing flow equations which are continuity equation, momentum equation and energy equation are reformed into ordinary differential form with the proper boundary conditions using appropriate transformations. The computational solution of the nonlinear ODEs is obtained using the Bvp4c method. The graphs are presented to show the influence of certain physical factors which ranged as magnetic parameter (0.5 ≤ M ≤ 2.5), inclination angle of the magnetic field (п/2 ≤ ζ ≤ п/4), permeability parameter (0 ≤ Ω ≤ 2), volume fraction of nanoparticle (0.03 ≤ Φ ≤ 0.07), stretching ration parameter (0.3 ≤ γ2 ≤ 0.7), Radiation param-eter (0.5 ≤ Nr ≤ 0.9), the heating parameter (0.5 ≤ θw ≤ 1.5) and Prandtl number (5 ≤ Pr ≤ 10). The normal and tangential velocity drops with the augmentation of (M), (ζ) and (Ω), while the
temperature rise with enhance of (Nr) and (θw). This study’s findings may be used to manage the heat transmission and fluid velocity rate to achieve the required final product quality in numerous manufacturing processes such as electronic cooling, solar heating, biomedical and nuclear system cooling. Validation against previous research available in the literature in spe-cific situations shows excellent agreement.

References

  • REFERENCES
  • [1] Wang CY. The unsteady oblique stagnation point flow. Phys Fluids. 1985;28:2046–2049. [CrossRef]
  • [2] Weidman PD, Putkaradze V. Axisymmetric stagnation flow obliquely impinging on a circular cylinder. Eur J Mech B Fluids. 2003;22:123–131. [CrossRef]
  • [3] Reza M, Gupta AS. Steady two-dimensional oblique stagnation-point flow towards a stretching surface. Fluid Dyn Res. 2005;37:334–340. [CrossRef]
  • [4] Labropulu F, Li D, Pop I. Non-orthogonal stagnation-point flow towards a stretching surface in a non-Newtonian fluid with heat transfer. Int J Therm Sci. 2010;49:1042–1050. [CrossRef]
  • [5] Sarkar S, Sahoo B. Analysis of oblique stagnation point flow over a rough surface. J Math Anal Appl. 2020;490:124208. [CrossRef]
  • [6] Awan AU, Aziz M, Ullah N. Thermal analysis of oblique stagnation point flow with slippage on second-order fluid. J Therm Anal Calorim. 2022;147:3839–3851. [CrossRef]
  • [7] Bhuvaneswari M, Eswaramoorthi S, Sivasankaran S, Hussein AK. Cross-diffusion effects on MHD mixed convection over a stretching surface in a porous medium with chemical reaction and convective condition. Eng Trans. 2019;67:3–19.
  • [8] Maatki C, Ghachem K, Kolsi L, Hussein AK, Mohamed B, Aissia HB. Inclination effects of magnetic field direction in 3D double-diffusive natural convection. Appl Math Comput. 2016;273:178–189. [CrossRef]
  • [9] Mansour MA, Rashad AM, Mallikarjuna B, Hussein AK, Aichouni M, Kolsi L. MHD mixed bioconvection in a square porous cavity filled by gyrotactic microorganisms. Int J Heat Technol. 2019;37:433–445. [CrossRef]
  • [10] Ahmed SE, Hussein AK, Mohammed HA, Kayode I, Kolsi L, Zhang X, et al. Viscous dissipation and radiation effects on MHD natural convection in a square enclosure filled with a porous medium. Nucl Eng Des. 2014;266:34–42. [CrossRef]
  • [11] Hussein AK, Ashorynejad HR, Sivasankaran S, Kolsi L, Kayode I, Sivanandam S, et al. Modeling of MHD natural convection in a square enclosure having an adiabatic square shaped body using Lattice Boltzmann Method. Alexandria Eng J. 2016;55:203–214. [CrossRef]
  • [12] Pakdee W, Yuvakanit B, Hussein AK. Numerical analysis on the two-dimensional unsteady magnetohydrodynamic compressible flow through a porous medium. J Appl Fluid Mech.
  • 2017;10:1153–1159. [CrossRef]
  • [13] Singh P, Sinha D. MHD oblique stagnation-point flow towards a stretching Sheet With Heat transfer. Int J Appl Math Mech. 2010;6:94–111.
  • [14] Borrelli A, Giantesio G, Patria MC. MHD oblique stagnation-point flow of a Newtonian fluid. Z Angew Math Phys. 2012;63:271–294. [CrossRef]
  • [15] Javed T, Ghaffari A, Ahmad H. Numerical study of unsteady MHD oblique stagnation point flow and heat transfer due to an oscillating stream. Thermophys Aeromech. 2016;23:383–391. [CrossRef]
  • [16] Awan AU, Abid S, Abbas N. Theoretical study of unsteady oblique stagnation point based Jeffrey nanofluid flow over an oscillatory stretching sheet. Adv Mech Eng. 2020;12:1–13. [CrossRef]
  • [17] Mohamed MKA, Yasin SHM, Salleh MZ, Alkasasbeh HT. MHD Stagnation Point Flow and Heat Transfer Over a Stretching Sheet in a Blood-Based Casson Ferrofluid With Newtonian Heating. J Adv Res Fluid Mech Therm Sci. 2021;82:1–11. [CrossRef]
  • [18] Asirvatham LG. Nanofluid heat transfer and applications. J Therm Eng. 2015;1:113–115. [CrossRef]
  • [19] Ravisankar R, Venkatachalapathy VSK, Alagumurthi N. Application of nanotechnology to improve the performance of tractor radiator using Cu-water nanofluid. J Therm Eng. 2018;4:2188–2200. [CrossRef]
  • [20] Madani K, Maad RB, Abidi-Saad A. Numerical investigation of cooling a ribbed microchannel using nanofluid. J Therm Eng. 2018;4:2408–2422. [CrossRef]
  • [21] Chand R, Rana GC, Hussein AK. On the onset of thermal instability in a low prandtl number nanofluid layer in a porous medium. J Appl Fluid Mech. 2015;8:265–272. [CrossRef]
  • [22] Ali B, Hussain S, Nie Y, Habib D, Hussein AK. Finite element investigation of Dufour and Soret impacts on MHD rotating flow of Oldroyd-B nanofluid over a stretching sheet with double diffusion Cattaneo Christov heat flux model. Powder Technol. 2021;377:439–452. [CrossRef]
  • [23] Ali FH, Hamzah HK, Hussein AK, Jabbar MY, Talebizadehsardari P. MHD mixed convection due to a rotating circular cylinder in a trapezoidal enclosure filled with a nanofluid saturated with a porous media. Int J Mech Sci. 2020;181. [CrossRef]
  • [24] Ali B, Khan SA, Hussein AK, Thumma T, Hussain S. Hybrid nanofluids: Significance of gravity modulation, heat source/sink, and magnetohydrodynamic on dynamics of micropolar fluid over an inclined surface via finite element simulation. Appl Math Comput. 2022;419:126878. [CrossRef]
  • [25] Al-Rashed AAAA, Kalidasan K, Kolsi L, Abdelkarim A, Malekshah EH, Kanna PR et al. Three-dimensional investigation of the effects of external magnetic field inclination on laminar natural convection heat transfer in CNT–water nanofluid filled cavity. J Mol Liq. 2018;252:454–468. [CrossRef]
  • [26] Ashraf MZ, Rehman SU, Farid S, Hussein AK, Ali B, Shah NA, et al. Insight into Significance of Bioconvection on MHD Tangent Hyperbolic Nanofluid Flow of Irregular Thickness across a Slender Elastic Surface. Mathematics. 2022;10:1–17. [CrossRef]
  • [27] Khan WA, Makinde OD, Khan ZH. Non-aligned MHD stagnation point flow of variable viscosity nanofluids past a stretching sheet with radiative heat. Int J Heat Mass Transf. 2016;96:525–534. [CrossRef]
  • [28] Mehmood R, Nadeem S, Sher Akbar N. Non-aligned Ethylene-Glycol 30% based stagnation point fluid over a stretching surface with hematite nano particles. J Appl Fluid Mech. 2016;9:1359–1366. [CrossRef]
  • [29] Khan AU, Nadeem S, Hussain ST. Phase flow study of MHD nanofluid with slip effects on oscillatory oblique stagnation point flow in view of inclined magnetic field. J Mol Liq. 2016;224:1210– 1219. [CrossRef]
  • [30] S Nadeem M, KhanArif R, Khan U. MHD oblique stagnation point flow of nanofluid over an oscillatory stretching/shrinking sheet: existence of dual solutions. Phys Scr. 2019;94:075204. [CrossRef]
  • [31] Rizwana R, hussain A, Nadeem S. Series solution of unsteady MHD oblique stagnation point flow of copper-water nanofluid flow towards Riga plate. Heliyon. 2020;6. [CrossRef]
  • [32] Ghasemi SE, Hatami M. Solar radiation effects on MHD stagnation point flow and heat transfer of a nanofluid over a stretching sheet. Case Stud Therm Eng. 2021;25:100898. [CrossRef]
  • [33] Zainal NA, Nazar R, Naganthran K, Pop I. Unsteady MHD stagnation point flow induced by exponentially permeable stretching/shrinking sheet of hybrid nanofluid. Eng Sci Technol an Int J. 2021;24:1201–1210. [CrossRef]
  • [34] Nandi S, Kumbhakar B, Sarkar S. MHD stagnation point flow of Fe3O4/Cu/Ag-CH3OH nanofluid along a convectively heated stretching sheet with partial slip and activation energy: Numerical and statistical approach. Int Commun Heat Mass Transf. 2022;130:105791. [CrossRef]
  • [35] Ghaffari A, Javed T, Majeed A. Influence of Radiation on Non-Newtonian Fluid in the Region of Oblique Stagnation Point Flow in a Porous Medium: A Numerical Study. Transp Porous Media. 2016;113:245–266. [CrossRef]
  • [36] Khan M, Iqbal Z, Ahmed A. Stagnation point flow of magnetized Burgers’ nanofluid subject to thermal radiation. Appl Nanosci. 2020;10:5233–5246. [CrossRef]
  • [37] Akaje TW, Olajuwon BI. Impacts of Nonlinear Thermal Radiation on a Stagnation Point of an Aligned MHD Casson Nanofluid Flow with Thompson and Troian Slip Boundary Condition. 2021;1:1–15.
  • [38] Abbasi A, Gulzar S, Mabood F, Farooq W. Nonlinear thermal radiation and activation energy features in axisymmetric rotational stagnation point flow of hybrid nanofluid. Int Commun Heat Mass Transf. 2021;126:105335. [CrossRef]
  • [39] Devi R, Poply V, Manimala M. Effect Of Aligned Magnetic Field And Inclined Outer Velocity In Casson Fluid Flow Over A Stretching Sheet With Heat Source. J Therm Eng. 2021;7:823–844. [CrossRef]
  • [40] Mandal PK, Seth GS, Sarkar S, Chamkha A. A numerical simulation of mixed convective and arbitrarily oblique radiative stagnation point slip flow of a CNT-water MHD nanofluid. J Therm Anal Calorim. 2021;143:1901–1916. [CrossRef]
  • [41] Sulochana C, Sandeep N, Sugunamma V, Rushi Kumar B. Aligned magnetic field and cross-diffusion effects of a nanofluid over an exponentially stretching surface in porous medium. Appl Nanosci. 2016;6:737–746. [CrossRef]
  • [42] Ramzan M, Shahmir N, Alotaibi H, Ali H, Ghazwani S, Muhammad T. Thermal performance comparative analysis of nanofluid flows at an oblique stagnation point considering Xue model: a solar application. J Comput Des Eng. 2022;9:201–215. [CrossRef]
  • [43] Mallikarjuna B, Rashad AM, Hussein AK, Hariprasad Raju S. Transpiration and Thermophoresis Effects on Non-Darcy Convective Flow Past a Rotating Cone with Thermal Radiation. Arab J Sci Eng. 2016;41:4691–4700. [CrossRef]
  • [44] Nadeem S, Mehmood R, Akbar NS. Oblique stagnation point flow of a casson-nano fluid towards a stretching surface with heat transfer. J Comput Theor Nanosci. 2014;11:1422–1432. [CrossRef]
  • [45] Agbaje TM, Mondal S, Makukula ZG, Motsa SS, Sibanda P. A new numerical approach to MHD stagnation point flow and heat transfer towards a stretching sheet. Ain Shams Eng J. 2016;9:233–243. [CrossRef]
  • [46] Kumar A, Sugunamma V, Sandeep N. Impact of Non-linear Radiation on MHD Non-aligned Stagnation Point Flow of Micropolar Fluid over a Convective Surface. J Non-Equilibrium Thermodyn. 2018;43:327–345. [CrossRef]
  • [47] Hayat T, Shafiq A, Alsaedi A, Asghar S. Effect of inclined magnetic field in flow of third grade fluid with variable thermal conductivity. AIP Adv. 2015;5. [CrossRef]
There are 49 citations in total.

Details

Primary Language English
Subjects Thermodynamics and Statistical Physics
Journal Section Articles
Authors

Issa El Glılı This is me 0000-0002-9601-1200

Mohamed Drıouıch This is me 0000-0003-4040-1274

Publication Date January 31, 2024
Submission Date August 29, 2022
Published in Issue Year 2024 Volume: 10 Issue: 1

Cite

APA El Glılı, I., & Drıouıch, M. (2024). Impact of inclined magnetic field on non-orthogonal stagnation point flow of CNT-water through stretching surface in a porous medium. Journal of Thermal Engineering, 10(1), 115-129. https://doi.org/10.18186/thermal.1429409
AMA El Glılı I, Drıouıch M. Impact of inclined magnetic field on non-orthogonal stagnation point flow of CNT-water through stretching surface in a porous medium. Journal of Thermal Engineering. January 2024;10(1):115-129. doi:10.18186/thermal.1429409
Chicago El Glılı, Issa, and Mohamed Drıouıch. “Impact of Inclined Magnetic Field on Non-Orthogonal Stagnation Point Flow of CNT-Water through Stretching Surface in a Porous Medium”. Journal of Thermal Engineering 10, no. 1 (January 2024): 115-29. https://doi.org/10.18186/thermal.1429409.
EndNote El Glılı I, Drıouıch M (January 1, 2024) Impact of inclined magnetic field on non-orthogonal stagnation point flow of CNT-water through stretching surface in a porous medium. Journal of Thermal Engineering 10 1 115–129.
IEEE I. El Glılı and M. Drıouıch, “Impact of inclined magnetic field on non-orthogonal stagnation point flow of CNT-water through stretching surface in a porous medium”, Journal of Thermal Engineering, vol. 10, no. 1, pp. 115–129, 2024, doi: 10.18186/thermal.1429409.
ISNAD El Glılı, Issa - Drıouıch, Mohamed. “Impact of Inclined Magnetic Field on Non-Orthogonal Stagnation Point Flow of CNT-Water through Stretching Surface in a Porous Medium”. Journal of Thermal Engineering 10/1 (January 2024), 115-129. https://doi.org/10.18186/thermal.1429409.
JAMA El Glılı I, Drıouıch M. Impact of inclined magnetic field on non-orthogonal stagnation point flow of CNT-water through stretching surface in a porous medium. Journal of Thermal Engineering. 2024;10:115–129.
MLA El Glılı, Issa and Mohamed Drıouıch. “Impact of Inclined Magnetic Field on Non-Orthogonal Stagnation Point Flow of CNT-Water through Stretching Surface in a Porous Medium”. Journal of Thermal Engineering, vol. 10, no. 1, 2024, pp. 115-29, doi:10.18186/thermal.1429409.
Vancouver El Glılı I, Drıouıch M. Impact of inclined magnetic field on non-orthogonal stagnation point flow of CNT-water through stretching surface in a porous medium. Journal of Thermal Engineering. 2024;10(1):115-29.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering