Research Article
BibTex RIS Cite
Year 2024, Volume: 10 Issue: 1, 130 - 141, 31.01.2024
https://doi.org/10.18186/thermal.1429427

Abstract

References

  • REFERENCES
  • [1] Al-Yasiri Q, Szabó M, Arıcı M. A review on solar-powered cooling and air-conditioning systems for building applications. Energy Rep 2022;8:2888–2907. [CrossRef]
  • [2] Ullah KR, Saidur R, Ping HW, Akikur RK, Shuvo NH. A review of solar thermal refrigeration and cooling methods. Renew Sustain Energy Rev 2013;24:499–513. [CrossRef]
  • [3] Kaushik SC, Hans R, Manikandan S. Theoretical and experimental investigations on solar photovoltaic-driven thermoelectric cooler system for cold storage application. Int J Environ Sci Dev 2016;7. [CrossRef]
  • [4] Alobaid M, Hughes B, Calautit J, O’Connor D, Heyes A. A review of solar-driven absorption cooling with photovoltaic thermal systems. Renew Sustain Energy Rev 2017;76:728–742. [CrossRef]
  • [5] Kattakayam TA, Srinivasan K. Thermal performance characterization of a photovoltaic-driven domestic refrigerator. Int J Refrig 2000;23:190–196. [CrossRef]
  • [6] Modi A, Chaudhuri A, Vijay B, Mathur J. Performance analysis of a solar photovoltaic-operated domestic refrigerator. Appl Energy 2009;86:2583–2591. [CrossRef]
  • [7] Aktacir MA. Experimental study of a multi-purpose PV-refrigerator system. Int J Phys Sci 2011;6:746–757.
  • [8] Ekren O, Yilanci A, Cetin E, Ozturk HK. Experimental performance evaluation of a PV-powered refrigeration system. IEEE Elektron ir Elektrotech 2011;114:7–10. [CrossRef]
  • [9] Del Pero C, Butera FM, Buffoli M, Piegari L, Capolongo L, Fattore M. Feasibility study of a solar photovoltaic adaptable refrigeration kit for remote areas in developing countries. In Proceedings of the 5th International Conference on Clean Electrical Power (ICCEP 2015). 2015:701–708. [CrossRef]
  • [10] Kalbande SR, Deshmukh S. Photovoltaic Based Vapour Compression Refrigeration System for Vaccine Preservation. Univ J Eng Sci 2015;3:17–23. [CrossRef]
  • [11] Kalbande SR, Deshmukh S, Khambalkar VP. Feasibility Evaluation of Solar Refrigeration System: A Case Study. Int J Res Appl Nat Soc Sci (IMPACT: IJRANSS). 2016;4:87–94.
  • [12] Li Y, Zhang G, Lv GZ, Zhang AN, Wang RZ. Performance study of a solar photovoltaic air conditioner in the hot summer and cold winter zone. Sol Energy 2015;117:167–179. [CrossRef]
  • [13] Huang BJ, Hou TF, Hsu PC, Lin TH, Chen YT, Chen CW, et al. Design of direct solar PV-driven air conditioner. Renew Energy 2016;88:95–101. [CrossRef]
  • [14] Li Y, Zhao BY, Zhao ZG, Taylor RA, Wang RZ. Performance study of a grid-connected photovoltaic-powered central air conditioner in the South China climate. Renew Energy 2017. [CrossRef]
  • [15] Aguilar FJ, Aledo S, Quiles PV. Experimental analysis of an air conditioner powered by photovoltaic energy and supported by the grid. Appl Therm Eng 2017. [CrossRef]
  • [16] Opoku R, Mensah-Darkwa K, Muntaka A. Techno-economic analysis of a hybrid solar PV grid-powered air-conditioner for daytime office use in hot humid climates – A case study in Kumasi city, Ghana. Sol Energy 2018;165:65–74. [CrossRef]
  • [17] Opoku R, Anane S, Edwin IA, Adaramola MS, Seidu R. Comparative techno-economic assessment of a converted DC refrigerator and a conventional AC refrigerator both powered by solar PV. Int J Refrig 2016. [CrossRef]
  • [18] Bilgili M. Hourly simulation and performance of solar electric-vapor compression refrigeration system. Sol Energy 2011;85:2720–2731. [CrossRef]
  • [19] Mba EF, Chukwuneke JL, Achebe CH, Okolie PC. Modeling and simulation of a photovoltaic powered vapor compression refrigeration system. J Inf Eng Appl 2012;2:1–15.
  • [20] Gupta BL, Bhatnagar M, Mathur J. Optimum sizing of PV panel, battery capacity and insulation thickness for a photovoltaic operated domestic refrigerator. Sustain Energy Technol Assess 2014;7:55–67. [CrossRef]
  • [21] Torres-Toledo V, Meissner K, Coronas A, Müller J. Performance characterization of a small milk cooling system with ice storage for PV applications. Int J Refrig 2017. [22] Sharma NK, Singh H, Sharma MK, Gupta BL. Performance analysis of vapour compression and vapour absorption refrigeration units working on photovoltaic power supply. Int J Renew Energy Res 2016;6:455–464.
  • [23] Hammad M, Tarawneh T. Performance study of a DC refrigerator powered by solar PV modular sets: paper II. J Dyn Mach 2018;1:1–11. [CrossRef]
  • [24] Salilih EM, Birhane YT. Modelling and performance analysis of directly coupled vapor compression refrigeration solar refrigeration system. Sol Energy 2019;190:228–238. [CrossRef]
  • [25] Su P, Ji J, Cai J, Gao Y, Han K. Dynamic simulation and experimental study of a variable speed photovoltaic DC refrigerator. Renew Energy 2020;152:155–164. [CrossRef]
  • [26] Gao Y, Ji J, Han K, Zhang F. Comparative analysis on performance of PV direct-driven refrigeration system under two control methods. Int J Refrig 2021;127:21–33. [CrossRef]
  • [27] Mota-Babiloni A, Makhnatch P, Khodabandeh R. Recent investigations in HFCs substitution with lower GWP synthetic alternatives: Focus on energetic performance and environmental impact. Int J Refrig 2017;82:288–301. [CrossRef]
  • [28] Ben Jemaa R, Mansouri R, Boukholda I, Bellagi A. Energy and Exergy Investigation of R1234ze as R134a Replacement in Vapor Compression Chillers. Int J Hydrogen Energy 2016;1–11. [CrossRef]
  • [29] Rajendran P, Sidney S, Ramakrishnan I, Dhasan ML. Experimental studies on the performance of mobile air conditioning system using environmental friendly HFO 1234yf as a refrigerant. Proc Inst Mech Eng Part E J Process Mech Eng 2019. [CrossRef]
  • [30] Touaibi R, Koten H. Energy Analysis of Vapor Compression Refrigeration Cycle Using a New Generation Refrigerants with Low Global Warming Potential. J Adv Res Fluid Mech Therm Sci 2021;87:106–117. [CrossRef]
  • [31] Prasad US, Mishra RS, Das RK, Soni H. Experimental and Simulation Study of the Latest HFC/HFO and Blend of Refrigerants in Vapour Compression Refrigeration System as an Alternative of R134a. Processes 2023;11:814. [CrossRef]
  • [32] Zaghba L, Khennane M, Fezzani A, Borni A, Hadj Mahammed I. Experimental performance assessment of a 2.25 kWp Rooftop PV system installed in the desert environment: a case study of Ghardaia, Algeria. Int J Sustain Eng 2020. [CrossRef]
  • [33] Kyoto Protocol. Report of the Conference of the Parties, United Nations Framework Convention on Climate Change (UNFCCC). 1997.
  • [34] Directive 2006/40/EC of the European Parliament and of the Council of 17 May 2006 Relating to Emissions from Air Conditioning Systems in Motor Vehicles and Amending Council Directive 70/156/EC. Off J Eur Union. 2006.
  • [35] Regulation (EU) No 517/2014 of the European Parliament and the Council of 16 April 2014 on Fluorinated Greenhouse Gases and Repealing Regulation (EC) No 842/2006. Off J Eur Union.
  • 2014. [36] Hodnebrog Ø, Etminan M, Fuglestvedt JS, Marston G, Myhre G, Nielsen CJ, Shine KP, Wallington TJ. Global warming potentials and radiative efficiencies of halocarbons and related compounds: A comprehensive review. Rev Geophys. 2013;51:300–378. [CrossRef]
  • [37] Censi G, Padovan A. R1234ze(E) as drop-in replacement for R134a in a micro-fin shell-and-tube evaporator: Experimental tests and calculation model. In Proceedings of the 18th International Refrigeration and Air Conditioning Conference, West Lafayette, IN, USA, 24–28 May 2021.
  • [38] Hartmann DL, Klein Tank AMG, Rusticucci M, Alexander LV, Brönnimann S, Charabi Y, et al. Observations: Atmosphere and Surface. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, eds. Climate Change 2013: The Physical Science Basis. Cambridge University Press; 2013:p.159–254. [CrossRef]
  • [39] Lemmon EW, Huber ML, McLinden MO. REFPROP, NIST Standard Reference. 2014.
  • [40] Moran MJ, Shapiro HN. Fundamentals of Engineering Thermodynamics, fifth ed. John Wiley and Sons Inc; 2006.
  • [41] Yamankaradeniz R, Horuz I, Kaynakli O, Coskun S, Yamankaradeniz N. Refrigeration Techniques and Heat Pump Applications, second ed. Dora Company; 2009. ISBN: 978-605-4118-14-4.
  • [42] Bahadori A. Chapter 5 - Gas Compressors in Natural Gas Processing. Gulf Professional Publishing; 2014. pp. 223–273. [CrossRef]
  • [43] Kourchi M, Rachdy A. Calcul Rapide des Propriétés Thermodynamiques des Frigorigènes [Fast Calculation of Thermodynamic Properties of Refrigerants]. Int J Innov Appl Stud. 2016;14.
  • [44] Życzkowski P, Borowski M, Łuczak R, Kuczera Z, Ptaszyński B. Functional Equations for Calculating the Properties of Low-GWP R1234ze(E) Refrigerant. Energies. 2020;13:3052. [CrossRef]
  • [45] Kim DS, Infante-Ferreira CA. Solar refrigeration options – state-of-the-art review. Int J Refrig. 2008;31:3–15. [CrossRef]
  • [46] Sánchez D, Cabello R, Llopis R, Arauzo I, Catalán-Gil J, Torrella E. Energy performance evaluation of R1234yf, R1234ze(E), R600a, R290 and R152a as low-GWP R134a alternatives. Int J Refrig. 2017;74:267–280. [CrossRef]
  • [47] Mota-Babiloni A, Navarro-Esbrí J, Barragán A, Molés F, Peris B. Drop-in energy performance evaluation of R1234yf and R1234ze(E) in a vapor compression system as R134a replacements. Appl Therm Eng. 2014;71:259–265. [CrossRef]
  • [48] Colombo LPM, Lucchini A, Molinaroli L. Experimental analysis of the use of R1234yf and R1234ze(E) as drop-in alternatives of R134a in a water-to-water heat pump. Int J Refrig. 2020;115:18– 27. [CrossRef]
  • [49] Leighton D, Hwang Y, Radermacher R. Modeling of household refrigerator performance with low global warming potential alternative refrigerants. ASHRAE Trans. 2012;118:658–665.
  • [50] Kabeel AE, Khalil A, Bassuoni MM, Raslan MS. Comparative experimental study of low GWP alternative for R134a in a walk-in cold room. Int J Refrig. 2016;69:303–312. [CrossRef]
  • [51] Mendoza-Miranda JM, Mota-Babiloni A, Navarro-Esbrí J. Evaluation of R448A and R450A as low-GWP alternatives for R404A and R134a using a micro-fin tube evaporator model. Appl Therm Eng. 2016;98:330–339. [CrossRef]
  • [52] Molinaroli L, Lucchini A, Colombo LPM. Experimental comparison of the use of R134a and R1234ze(E) in a semi-hermetic reciprocating compressor. Proceedings of the 25th IIR International Congress of Refrigeration: Montréal, Canada, August 24-30, 2019.
  • [53] Ramírez-Hernández HG, Morales-Fuentes A, Sanchez-Cruz FA, Méndez-Díaz S, García-Lara HD, Martínez-Martínez S. Experimental study on the operating characteristics of a display refrigerator phasing out R134a to R1234ze(E) and its binary blends. Int J Refrig. 2022;138:1–12. [CrossRef]
  • [54] Conte R, Azzolin M, Bernardinello S, Del Col D. Experimental investigation of large scroll compressors working with six low-GWP refrigerants. Therm Sci Eng Prog. 2023;44:102043. [CrossRef]

Thermodynamic analysis of a solar-driven vapor compression refrigeration system using R1234ze for cooling applications in Ghardaïa region (Southern Algeria)

Year 2024, Volume: 10 Issue: 1, 130 - 141, 31.01.2024
https://doi.org/10.18186/thermal.1429427

Abstract

This study presents a thermodynamic analysis of a solar-driven vapor compression refrigera-tion (VCR) system designed for use in the region of Ghardaïa (Southern Algeria) which is lo-cated in a desert with a semi-arid climate where the demand for cooling is high, and the solar radiation is abundant. Two working fluids are tested and compared, the HFC high GWP going to phased out, R134a and the low GWP, HFO refrigerant recently introduced R1234ze. The performance of the solar VCR system was evaluated using a numerical model developed in MATLAB software, based on thermodynamic properties of R1234ze and R134a refrigerants. The results showed that coefficient of performance (COP) and thermodynamic efficiency of the solar VCR system increased with decreasing ambient temperature due to the increase in the compressor power consumption. The COP during the 21st day of July month is obtained in the range of 4.37–5.77 for R1234ze refrigerant which are close and more than 90% of the maximum COP value, while it is in the range of 2.56–3.17 for R134a fluid. The lowest COP values are found around noon hours during 12:00 AM and 15:00 PM. In addition, the greatest amount of the PV power production for R134a and R1234ze refrigerants occurs in the middle of the day (12:00 PM) as 2.8 and 1.6 kWh, respectively.

References

  • REFERENCES
  • [1] Al-Yasiri Q, Szabó M, Arıcı M. A review on solar-powered cooling and air-conditioning systems for building applications. Energy Rep 2022;8:2888–2907. [CrossRef]
  • [2] Ullah KR, Saidur R, Ping HW, Akikur RK, Shuvo NH. A review of solar thermal refrigeration and cooling methods. Renew Sustain Energy Rev 2013;24:499–513. [CrossRef]
  • [3] Kaushik SC, Hans R, Manikandan S. Theoretical and experimental investigations on solar photovoltaic-driven thermoelectric cooler system for cold storage application. Int J Environ Sci Dev 2016;7. [CrossRef]
  • [4] Alobaid M, Hughes B, Calautit J, O’Connor D, Heyes A. A review of solar-driven absorption cooling with photovoltaic thermal systems. Renew Sustain Energy Rev 2017;76:728–742. [CrossRef]
  • [5] Kattakayam TA, Srinivasan K. Thermal performance characterization of a photovoltaic-driven domestic refrigerator. Int J Refrig 2000;23:190–196. [CrossRef]
  • [6] Modi A, Chaudhuri A, Vijay B, Mathur J. Performance analysis of a solar photovoltaic-operated domestic refrigerator. Appl Energy 2009;86:2583–2591. [CrossRef]
  • [7] Aktacir MA. Experimental study of a multi-purpose PV-refrigerator system. Int J Phys Sci 2011;6:746–757.
  • [8] Ekren O, Yilanci A, Cetin E, Ozturk HK. Experimental performance evaluation of a PV-powered refrigeration system. IEEE Elektron ir Elektrotech 2011;114:7–10. [CrossRef]
  • [9] Del Pero C, Butera FM, Buffoli M, Piegari L, Capolongo L, Fattore M. Feasibility study of a solar photovoltaic adaptable refrigeration kit for remote areas in developing countries. In Proceedings of the 5th International Conference on Clean Electrical Power (ICCEP 2015). 2015:701–708. [CrossRef]
  • [10] Kalbande SR, Deshmukh S. Photovoltaic Based Vapour Compression Refrigeration System for Vaccine Preservation. Univ J Eng Sci 2015;3:17–23. [CrossRef]
  • [11] Kalbande SR, Deshmukh S, Khambalkar VP. Feasibility Evaluation of Solar Refrigeration System: A Case Study. Int J Res Appl Nat Soc Sci (IMPACT: IJRANSS). 2016;4:87–94.
  • [12] Li Y, Zhang G, Lv GZ, Zhang AN, Wang RZ. Performance study of a solar photovoltaic air conditioner in the hot summer and cold winter zone. Sol Energy 2015;117:167–179. [CrossRef]
  • [13] Huang BJ, Hou TF, Hsu PC, Lin TH, Chen YT, Chen CW, et al. Design of direct solar PV-driven air conditioner. Renew Energy 2016;88:95–101. [CrossRef]
  • [14] Li Y, Zhao BY, Zhao ZG, Taylor RA, Wang RZ. Performance study of a grid-connected photovoltaic-powered central air conditioner in the South China climate. Renew Energy 2017. [CrossRef]
  • [15] Aguilar FJ, Aledo S, Quiles PV. Experimental analysis of an air conditioner powered by photovoltaic energy and supported by the grid. Appl Therm Eng 2017. [CrossRef]
  • [16] Opoku R, Mensah-Darkwa K, Muntaka A. Techno-economic analysis of a hybrid solar PV grid-powered air-conditioner for daytime office use in hot humid climates – A case study in Kumasi city, Ghana. Sol Energy 2018;165:65–74. [CrossRef]
  • [17] Opoku R, Anane S, Edwin IA, Adaramola MS, Seidu R. Comparative techno-economic assessment of a converted DC refrigerator and a conventional AC refrigerator both powered by solar PV. Int J Refrig 2016. [CrossRef]
  • [18] Bilgili M. Hourly simulation and performance of solar electric-vapor compression refrigeration system. Sol Energy 2011;85:2720–2731. [CrossRef]
  • [19] Mba EF, Chukwuneke JL, Achebe CH, Okolie PC. Modeling and simulation of a photovoltaic powered vapor compression refrigeration system. J Inf Eng Appl 2012;2:1–15.
  • [20] Gupta BL, Bhatnagar M, Mathur J. Optimum sizing of PV panel, battery capacity and insulation thickness for a photovoltaic operated domestic refrigerator. Sustain Energy Technol Assess 2014;7:55–67. [CrossRef]
  • [21] Torres-Toledo V, Meissner K, Coronas A, Müller J. Performance characterization of a small milk cooling system with ice storage for PV applications. Int J Refrig 2017. [22] Sharma NK, Singh H, Sharma MK, Gupta BL. Performance analysis of vapour compression and vapour absorption refrigeration units working on photovoltaic power supply. Int J Renew Energy Res 2016;6:455–464.
  • [23] Hammad M, Tarawneh T. Performance study of a DC refrigerator powered by solar PV modular sets: paper II. J Dyn Mach 2018;1:1–11. [CrossRef]
  • [24] Salilih EM, Birhane YT. Modelling and performance analysis of directly coupled vapor compression refrigeration solar refrigeration system. Sol Energy 2019;190:228–238. [CrossRef]
  • [25] Su P, Ji J, Cai J, Gao Y, Han K. Dynamic simulation and experimental study of a variable speed photovoltaic DC refrigerator. Renew Energy 2020;152:155–164. [CrossRef]
  • [26] Gao Y, Ji J, Han K, Zhang F. Comparative analysis on performance of PV direct-driven refrigeration system under two control methods. Int J Refrig 2021;127:21–33. [CrossRef]
  • [27] Mota-Babiloni A, Makhnatch P, Khodabandeh R. Recent investigations in HFCs substitution with lower GWP synthetic alternatives: Focus on energetic performance and environmental impact. Int J Refrig 2017;82:288–301. [CrossRef]
  • [28] Ben Jemaa R, Mansouri R, Boukholda I, Bellagi A. Energy and Exergy Investigation of R1234ze as R134a Replacement in Vapor Compression Chillers. Int J Hydrogen Energy 2016;1–11. [CrossRef]
  • [29] Rajendran P, Sidney S, Ramakrishnan I, Dhasan ML. Experimental studies on the performance of mobile air conditioning system using environmental friendly HFO 1234yf as a refrigerant. Proc Inst Mech Eng Part E J Process Mech Eng 2019. [CrossRef]
  • [30] Touaibi R, Koten H. Energy Analysis of Vapor Compression Refrigeration Cycle Using a New Generation Refrigerants with Low Global Warming Potential. J Adv Res Fluid Mech Therm Sci 2021;87:106–117. [CrossRef]
  • [31] Prasad US, Mishra RS, Das RK, Soni H. Experimental and Simulation Study of the Latest HFC/HFO and Blend of Refrigerants in Vapour Compression Refrigeration System as an Alternative of R134a. Processes 2023;11:814. [CrossRef]
  • [32] Zaghba L, Khennane M, Fezzani A, Borni A, Hadj Mahammed I. Experimental performance assessment of a 2.25 kWp Rooftop PV system installed in the desert environment: a case study of Ghardaia, Algeria. Int J Sustain Eng 2020. [CrossRef]
  • [33] Kyoto Protocol. Report of the Conference of the Parties, United Nations Framework Convention on Climate Change (UNFCCC). 1997.
  • [34] Directive 2006/40/EC of the European Parliament and of the Council of 17 May 2006 Relating to Emissions from Air Conditioning Systems in Motor Vehicles and Amending Council Directive 70/156/EC. Off J Eur Union. 2006.
  • [35] Regulation (EU) No 517/2014 of the European Parliament and the Council of 16 April 2014 on Fluorinated Greenhouse Gases and Repealing Regulation (EC) No 842/2006. Off J Eur Union.
  • 2014. [36] Hodnebrog Ø, Etminan M, Fuglestvedt JS, Marston G, Myhre G, Nielsen CJ, Shine KP, Wallington TJ. Global warming potentials and radiative efficiencies of halocarbons and related compounds: A comprehensive review. Rev Geophys. 2013;51:300–378. [CrossRef]
  • [37] Censi G, Padovan A. R1234ze(E) as drop-in replacement for R134a in a micro-fin shell-and-tube evaporator: Experimental tests and calculation model. In Proceedings of the 18th International Refrigeration and Air Conditioning Conference, West Lafayette, IN, USA, 24–28 May 2021.
  • [38] Hartmann DL, Klein Tank AMG, Rusticucci M, Alexander LV, Brönnimann S, Charabi Y, et al. Observations: Atmosphere and Surface. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, eds. Climate Change 2013: The Physical Science Basis. Cambridge University Press; 2013:p.159–254. [CrossRef]
  • [39] Lemmon EW, Huber ML, McLinden MO. REFPROP, NIST Standard Reference. 2014.
  • [40] Moran MJ, Shapiro HN. Fundamentals of Engineering Thermodynamics, fifth ed. John Wiley and Sons Inc; 2006.
  • [41] Yamankaradeniz R, Horuz I, Kaynakli O, Coskun S, Yamankaradeniz N. Refrigeration Techniques and Heat Pump Applications, second ed. Dora Company; 2009. ISBN: 978-605-4118-14-4.
  • [42] Bahadori A. Chapter 5 - Gas Compressors in Natural Gas Processing. Gulf Professional Publishing; 2014. pp. 223–273. [CrossRef]
  • [43] Kourchi M, Rachdy A. Calcul Rapide des Propriétés Thermodynamiques des Frigorigènes [Fast Calculation of Thermodynamic Properties of Refrigerants]. Int J Innov Appl Stud. 2016;14.
  • [44] Życzkowski P, Borowski M, Łuczak R, Kuczera Z, Ptaszyński B. Functional Equations for Calculating the Properties of Low-GWP R1234ze(E) Refrigerant. Energies. 2020;13:3052. [CrossRef]
  • [45] Kim DS, Infante-Ferreira CA. Solar refrigeration options – state-of-the-art review. Int J Refrig. 2008;31:3–15. [CrossRef]
  • [46] Sánchez D, Cabello R, Llopis R, Arauzo I, Catalán-Gil J, Torrella E. Energy performance evaluation of R1234yf, R1234ze(E), R600a, R290 and R152a as low-GWP R134a alternatives. Int J Refrig. 2017;74:267–280. [CrossRef]
  • [47] Mota-Babiloni A, Navarro-Esbrí J, Barragán A, Molés F, Peris B. Drop-in energy performance evaluation of R1234yf and R1234ze(E) in a vapor compression system as R134a replacements. Appl Therm Eng. 2014;71:259–265. [CrossRef]
  • [48] Colombo LPM, Lucchini A, Molinaroli L. Experimental analysis of the use of R1234yf and R1234ze(E) as drop-in alternatives of R134a in a water-to-water heat pump. Int J Refrig. 2020;115:18– 27. [CrossRef]
  • [49] Leighton D, Hwang Y, Radermacher R. Modeling of household refrigerator performance with low global warming potential alternative refrigerants. ASHRAE Trans. 2012;118:658–665.
  • [50] Kabeel AE, Khalil A, Bassuoni MM, Raslan MS. Comparative experimental study of low GWP alternative for R134a in a walk-in cold room. Int J Refrig. 2016;69:303–312. [CrossRef]
  • [51] Mendoza-Miranda JM, Mota-Babiloni A, Navarro-Esbrí J. Evaluation of R448A and R450A as low-GWP alternatives for R404A and R134a using a micro-fin tube evaporator model. Appl Therm Eng. 2016;98:330–339. [CrossRef]
  • [52] Molinaroli L, Lucchini A, Colombo LPM. Experimental comparison of the use of R134a and R1234ze(E) in a semi-hermetic reciprocating compressor. Proceedings of the 25th IIR International Congress of Refrigeration: Montréal, Canada, August 24-30, 2019.
  • [53] Ramírez-Hernández HG, Morales-Fuentes A, Sanchez-Cruz FA, Méndez-Díaz S, García-Lara HD, Martínez-Martínez S. Experimental study on the operating characteristics of a display refrigerator phasing out R134a to R1234ze(E) and its binary blends. Int J Refrig. 2022;138:1–12. [CrossRef]
  • [54] Conte R, Azzolin M, Bernardinello S, Del Col D. Experimental investigation of large scroll compressors working with six low-GWP refrigerants. Therm Sci Eng Prog. 2023;44:102043. [CrossRef]
There are 54 citations in total.

Details

Primary Language English
Subjects Thermodynamics and Statistical Physics
Journal Section Articles
Authors

Ahmed Selloum This is me 0000-0002-5991-6393

Zakaria Trıkı This is me 0000-0001-6625-4853

Younes Chıba This is me 0000-0003-0560-5212

Publication Date January 31, 2024
Submission Date July 21, 2023
Published in Issue Year 2024 Volume: 10 Issue: 1

Cite

APA Selloum, A., Trıkı, Z., & Chıba, Y. (2024). Thermodynamic analysis of a solar-driven vapor compression refrigeration system using R1234ze for cooling applications in Ghardaïa region (Southern Algeria). Journal of Thermal Engineering, 10(1), 130-141. https://doi.org/10.18186/thermal.1429427
AMA Selloum A, Trıkı Z, Chıba Y. Thermodynamic analysis of a solar-driven vapor compression refrigeration system using R1234ze for cooling applications in Ghardaïa region (Southern Algeria). Journal of Thermal Engineering. January 2024;10(1):130-141. doi:10.18186/thermal.1429427
Chicago Selloum, Ahmed, Zakaria Trıkı, and Younes Chıba. “Thermodynamic Analysis of a Solar-Driven Vapor Compression Refrigeration System Using R1234ze for Cooling Applications in Ghardaïa Region (Southern Algeria)”. Journal of Thermal Engineering 10, no. 1 (January 2024): 130-41. https://doi.org/10.18186/thermal.1429427.
EndNote Selloum A, Trıkı Z, Chıba Y (January 1, 2024) Thermodynamic analysis of a solar-driven vapor compression refrigeration system using R1234ze for cooling applications in Ghardaïa region (Southern Algeria). Journal of Thermal Engineering 10 1 130–141.
IEEE A. Selloum, Z. Trıkı, and Y. Chıba, “Thermodynamic analysis of a solar-driven vapor compression refrigeration system using R1234ze for cooling applications in Ghardaïa region (Southern Algeria)”, Journal of Thermal Engineering, vol. 10, no. 1, pp. 130–141, 2024, doi: 10.18186/thermal.1429427.
ISNAD Selloum, Ahmed et al. “Thermodynamic Analysis of a Solar-Driven Vapor Compression Refrigeration System Using R1234ze for Cooling Applications in Ghardaïa Region (Southern Algeria)”. Journal of Thermal Engineering 10/1 (January 2024), 130-141. https://doi.org/10.18186/thermal.1429427.
JAMA Selloum A, Trıkı Z, Chıba Y. Thermodynamic analysis of a solar-driven vapor compression refrigeration system using R1234ze for cooling applications in Ghardaïa region (Southern Algeria). Journal of Thermal Engineering. 2024;10:130–141.
MLA Selloum, Ahmed et al. “Thermodynamic Analysis of a Solar-Driven Vapor Compression Refrigeration System Using R1234ze for Cooling Applications in Ghardaïa Region (Southern Algeria)”. Journal of Thermal Engineering, vol. 10, no. 1, 2024, pp. 130-41, doi:10.18186/thermal.1429427.
Vancouver Selloum A, Trıkı Z, Chıba Y. Thermodynamic analysis of a solar-driven vapor compression refrigeration system using R1234ze for cooling applications in Ghardaïa region (Southern Algeria). Journal of Thermal Engineering. 2024;10(1):130-41.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering