Research Article
BibTex RIS Cite
Year 2024, Volume: 10 Issue: 1, 188 - 195, 31.01.2024
https://doi.org/10.18186/thermal.1429918

Abstract

References

  • REFERENCES
  • [1] Jain T, Sheth PN. Design of energy utilization test for a biomass cook stove: Formulation of an optimum air flow recipe. Energy 2019;166:1097–1105. [CrossRef]
  • [2] Hu J, Jia Z, Zhao S, Wang W, Zhang Q, Liu R, Huang Z. Activated char supported Fe-Ni catalyst for syngas production from catalytic gasification of pine wood. Bioresour Technol 2021;340:125600. [CrossRef]
  • [3] Li J, Burra KG, Wang Z, Lu X, Gupta K. CO2 assisted gasification of ion-exchanged pine wood. Fuel 2022;317:123549. [CrossRef]
  • [4] Liakakou ET, Infantes A, Neumann A, Vreugdenhil BJ. Connecting gasification with syngas fermentation: Comparison of the performance of lignin and beech wood. Fuel 2021;290:120054. [CrossRef]
  • [5] Parrillo F, Ardolino F, Calì G, Marotto D, Pettinau A, Arena U. Fluidized bed gasification of eucalyptus chips: Axial profiles of syngas composition in a pilot scale reactor. Energy 2021;219:119604. [CrossRef]
  • [6] Barco-Burgos J, Carles-Bruno J, Eicker U, Saldana-Robles AL, Alcántar-Camarena V. Hydrogen-rich syngas production from palm kernel shells (PKS) biomass on a downdraft allothermal gasifier using steam as a gasifying agent. Energy Convers Manag 2021;245:114592. [CrossRef]
  • [7] Yahaya AZ, Somalu MR, Muchtar A, Sulaiman SA, Wan Daud WR. Effect of particle size and temperature on gasification performance of coconut and palm kernel shells in downdraft fixed-bed reactor. Energy 2019;175:931–940. [CrossRef]
  • [8] Susastriawan AAP, Saptoadi H, Purnomo. Design and experimental study of pilot scale throat-less downdraft gasifier fed by rice husk and wood sawdust. Int J Sustain Energy 2017;6451:1–13. [CrossRef]
  • [9] Zhang G, Liu H, Wang J, Wu B. Catalytic gasification characteristics of rice husk with calcined dolomite. Energy 2018;165:1173–1177. [CrossRef]
  • [10] El-Shafay AS, Hegazi AA, Zeidan ESB, El-Emam SH, Okasha FM. Experimental and numerical study of sawdust air-gasification. Alexandria Eng J 2020;59:3665–3679. [CrossRef]
  • [11] Angeline AA, Jayakumar J, Asirvatham LG, Wongwises S Power generation from combusted “syngas” using hybrid thermoelectric generator and forecasting the performance with ANN technique. J Therm Eng 2018;4, Special Issue 8:2149–2168. [CrossRef]
  • [12] Ghasemi A, Shayesteh AA, Doustgani A, Pazoki M. Thermodynamic assessment and optimization of a novel trigeneration energy system based on solar energy and MSW gasification using energy and exergy concept. J Therm Eng 2021;7:349–366. [CrossRef]
  • [13] Du X, Li Y. Experimental comparison and optimization on granular bed filters with three types of filling schemes. Appl Energy 2019;253:113563. [CrossRef]
  • [14] Tuomi S, Kurkela E, Simell P, Reinikainen M. Behaviour of tars on the filter in high temperature filtration of biomass-based gasification gas. Fuel 2015;139:220–231. [CrossRef]
  • [15] Nakamura S, Kitano S, Yoshikawa K. Biomass gasification process with the tar removal technologies utilizing bio-oil scrubber and char bed. Appl Energy 2016;170:86–92. [CrossRef]
  • [16] Milne TA, Evans RJ, Abatzaglou N. Biomass Gasifier “Tars”: Their Nature, Formation, and Conversion. National Renewable Energy Laboratory; 1998:25357. [CrossRef]
  • [17] Perpres 22 Tahun 2017. Peraturan Presiden Republik Indonesia Nomor 22 Tahun 2017 tentang Rencana Umum Energi Nasional.
  • [18] Siswoputranto YS. Prospek Percoklatan Dunia dan Kepentingan Indonesia. Konvensi Coklat Nasional II. Medan, Indonesia; 1983.
  • [19] Adjin-Tetteh M, Asiedu N, Dodoo-Arhin D, Karam A, Amaniampong PA. Thermochemical conversion and characterization of cocoa pod husks a potential agricultural waste from Ghana. Ind Crops Prod 2018;119:304–312. [CrossRef]
  • [20] Sutar KB, Ravi MR, Kohli S. Design of a partially aerated naturally aspirated burner for producer gas. Energy 2016;116:773–785. [CrossRef]
  • [21] Tryner J, Willson BD, Marchese AJ. The effects of fuel type and stove design on emissions and efficiency of natural-draft semi-gasifier biomass cookstoves. Energy Sustain Dev 2014;23:99–109. [CrossRef]
  • [22] Obi OF, Ezeoha SL, Okorie IC. Energetic performance of a top-lit updraft (TLUD) cookstove. Renewable Energy 2019;99:730–737. [CrossRef]
  • [23] Kaupp A, Goss JR. State of the art report for small scale (to 50 kW) gas producer - engine systems. Dept. of Agricultural Engineering University of California; 1981.
  • [24] Guo F, Dong Y, Dong L, Guo C. Effect of design and operating parameters on the gasification process of biomass in a downdraft fixed bed: An experimental study. Int J Hydrogen Energy 2014;39:5625–5633. [CrossRef]
  • [25] Wang Z, He T, Qin J, Wu J, Li J, Zi Z, Liu G, Wu J, Sun L. Gasification of biomass with oxygen-enriched air in a pilot scale two-stage gasifier. Fuel 2015;150:386–393. [CrossRef]
  • [26] Jirakulsomchok A, Wongchang T, Prasartthong K. Experimental study of combustion of low-calorific producer gas from small scale biomass gasification within porous burner. J Therm Eng 2021;7:1344–1352. [CrossRef]
  • [27] Chanphavong L, Zainal ZA. Characterization and challenge of development of producer gas fuel combustor: A review. J Energy Inst 2019;92:1577–1590.
  • [28] Uchman W, Werle S. The use of low-calorific value gases. Arch Civ Eng Environ 2016;1:127–132. [CrossRef]
  • [29] Chen Y, Shen G, Su S, Du W, Huangfu Y, Liu G, Xing B, Smith KR, Tao S, Wang X. Efficiencies and pollutant emissions from forced-draft biomass-pellet semi-gasifier stoves: Comparison of International and Chinese water boiling test protocols. Energy Sustain Dev 2016;32:22–30. [CrossRef]
  • [30] Susastriawan AAP, Puwanto Y, Purnomo, Warisman A. Development of an air-stage downdraft and performance evaluation on feedstock of rice husk. J Adv Res Fluid Mech Therm Sci 2021;84:20–32. [CrossRef]
  • [31] Basu P. Biomass Gasification and Pyrolysis: Practical Design. Elsevier Inc; 2010.
  • [32] Parmigiani SP, Vitali F, Lezzi AM, Vaccari M. Design and performance assessment of a rice husk fueled stove for household cooking in a typical sub-Saharan setting. Energy Sustain Dev 2014;23:15–24. [CrossRef]

Thermal performance of cocoa pod cook stove

Year 2024, Volume: 10 Issue: 1, 188 - 195, 31.01.2024
https://doi.org/10.18186/thermal.1429918

Abstract

Indonesia produces approximately 550.000 ton/year of cocoa pod waste from chocolate indus-try. The waste has a good potential to be used as a biomass feedstock of a cook stove. How-ever, thermal performance of the conventional cook stove is low when using a high moisture content feedstock, such as a cocoa pod waste. In addition, conventional cook stove generates high pollutant when high moisture content feedstock is used. In other to encounter the prob-lems, the present work develops gasifier based cocoa pod cook stove and investigates thermal performance of the stove at various equivalence ratios. The data collection is performed by varying equivalence ratio at 0.4, 0.5, and 0.6. Temperature of the stove, flame image, flame temperature, and water temperature are collected and used to analyze the thermal perfor-mance (i.e. useful heat and thermal efficiency) of the stove. The results reveal that a waste of cocoa pod can be used as a feedstock of gasifier based cook stove. Maximum useful heat of 1337.6 kJ and maximum thermal efficiency of 3.5% are obtained at optimum equivalence ratio of 0.5. To improve performance of the stove, the cocoa pod waste should be sun dried to reduce its moisture content and the porous burner may be applied as a burner of the gasifier based cook stove in the future work.

References

  • REFERENCES
  • [1] Jain T, Sheth PN. Design of energy utilization test for a biomass cook stove: Formulation of an optimum air flow recipe. Energy 2019;166:1097–1105. [CrossRef]
  • [2] Hu J, Jia Z, Zhao S, Wang W, Zhang Q, Liu R, Huang Z. Activated char supported Fe-Ni catalyst for syngas production from catalytic gasification of pine wood. Bioresour Technol 2021;340:125600. [CrossRef]
  • [3] Li J, Burra KG, Wang Z, Lu X, Gupta K. CO2 assisted gasification of ion-exchanged pine wood. Fuel 2022;317:123549. [CrossRef]
  • [4] Liakakou ET, Infantes A, Neumann A, Vreugdenhil BJ. Connecting gasification with syngas fermentation: Comparison of the performance of lignin and beech wood. Fuel 2021;290:120054. [CrossRef]
  • [5] Parrillo F, Ardolino F, Calì G, Marotto D, Pettinau A, Arena U. Fluidized bed gasification of eucalyptus chips: Axial profiles of syngas composition in a pilot scale reactor. Energy 2021;219:119604. [CrossRef]
  • [6] Barco-Burgos J, Carles-Bruno J, Eicker U, Saldana-Robles AL, Alcántar-Camarena V. Hydrogen-rich syngas production from palm kernel shells (PKS) biomass on a downdraft allothermal gasifier using steam as a gasifying agent. Energy Convers Manag 2021;245:114592. [CrossRef]
  • [7] Yahaya AZ, Somalu MR, Muchtar A, Sulaiman SA, Wan Daud WR. Effect of particle size and temperature on gasification performance of coconut and palm kernel shells in downdraft fixed-bed reactor. Energy 2019;175:931–940. [CrossRef]
  • [8] Susastriawan AAP, Saptoadi H, Purnomo. Design and experimental study of pilot scale throat-less downdraft gasifier fed by rice husk and wood sawdust. Int J Sustain Energy 2017;6451:1–13. [CrossRef]
  • [9] Zhang G, Liu H, Wang J, Wu B. Catalytic gasification characteristics of rice husk with calcined dolomite. Energy 2018;165:1173–1177. [CrossRef]
  • [10] El-Shafay AS, Hegazi AA, Zeidan ESB, El-Emam SH, Okasha FM. Experimental and numerical study of sawdust air-gasification. Alexandria Eng J 2020;59:3665–3679. [CrossRef]
  • [11] Angeline AA, Jayakumar J, Asirvatham LG, Wongwises S Power generation from combusted “syngas” using hybrid thermoelectric generator and forecasting the performance with ANN technique. J Therm Eng 2018;4, Special Issue 8:2149–2168. [CrossRef]
  • [12] Ghasemi A, Shayesteh AA, Doustgani A, Pazoki M. Thermodynamic assessment and optimization of a novel trigeneration energy system based on solar energy and MSW gasification using energy and exergy concept. J Therm Eng 2021;7:349–366. [CrossRef]
  • [13] Du X, Li Y. Experimental comparison and optimization on granular bed filters with three types of filling schemes. Appl Energy 2019;253:113563. [CrossRef]
  • [14] Tuomi S, Kurkela E, Simell P, Reinikainen M. Behaviour of tars on the filter in high temperature filtration of biomass-based gasification gas. Fuel 2015;139:220–231. [CrossRef]
  • [15] Nakamura S, Kitano S, Yoshikawa K. Biomass gasification process with the tar removal technologies utilizing bio-oil scrubber and char bed. Appl Energy 2016;170:86–92. [CrossRef]
  • [16] Milne TA, Evans RJ, Abatzaglou N. Biomass Gasifier “Tars”: Their Nature, Formation, and Conversion. National Renewable Energy Laboratory; 1998:25357. [CrossRef]
  • [17] Perpres 22 Tahun 2017. Peraturan Presiden Republik Indonesia Nomor 22 Tahun 2017 tentang Rencana Umum Energi Nasional.
  • [18] Siswoputranto YS. Prospek Percoklatan Dunia dan Kepentingan Indonesia. Konvensi Coklat Nasional II. Medan, Indonesia; 1983.
  • [19] Adjin-Tetteh M, Asiedu N, Dodoo-Arhin D, Karam A, Amaniampong PA. Thermochemical conversion and characterization of cocoa pod husks a potential agricultural waste from Ghana. Ind Crops Prod 2018;119:304–312. [CrossRef]
  • [20] Sutar KB, Ravi MR, Kohli S. Design of a partially aerated naturally aspirated burner for producer gas. Energy 2016;116:773–785. [CrossRef]
  • [21] Tryner J, Willson BD, Marchese AJ. The effects of fuel type and stove design on emissions and efficiency of natural-draft semi-gasifier biomass cookstoves. Energy Sustain Dev 2014;23:99–109. [CrossRef]
  • [22] Obi OF, Ezeoha SL, Okorie IC. Energetic performance of a top-lit updraft (TLUD) cookstove. Renewable Energy 2019;99:730–737. [CrossRef]
  • [23] Kaupp A, Goss JR. State of the art report for small scale (to 50 kW) gas producer - engine systems. Dept. of Agricultural Engineering University of California; 1981.
  • [24] Guo F, Dong Y, Dong L, Guo C. Effect of design and operating parameters on the gasification process of biomass in a downdraft fixed bed: An experimental study. Int J Hydrogen Energy 2014;39:5625–5633. [CrossRef]
  • [25] Wang Z, He T, Qin J, Wu J, Li J, Zi Z, Liu G, Wu J, Sun L. Gasification of biomass with oxygen-enriched air in a pilot scale two-stage gasifier. Fuel 2015;150:386–393. [CrossRef]
  • [26] Jirakulsomchok A, Wongchang T, Prasartthong K. Experimental study of combustion of low-calorific producer gas from small scale biomass gasification within porous burner. J Therm Eng 2021;7:1344–1352. [CrossRef]
  • [27] Chanphavong L, Zainal ZA. Characterization and challenge of development of producer gas fuel combustor: A review. J Energy Inst 2019;92:1577–1590.
  • [28] Uchman W, Werle S. The use of low-calorific value gases. Arch Civ Eng Environ 2016;1:127–132. [CrossRef]
  • [29] Chen Y, Shen G, Su S, Du W, Huangfu Y, Liu G, Xing B, Smith KR, Tao S, Wang X. Efficiencies and pollutant emissions from forced-draft biomass-pellet semi-gasifier stoves: Comparison of International and Chinese water boiling test protocols. Energy Sustain Dev 2016;32:22–30. [CrossRef]
  • [30] Susastriawan AAP, Puwanto Y, Purnomo, Warisman A. Development of an air-stage downdraft and performance evaluation on feedstock of rice husk. J Adv Res Fluid Mech Therm Sci 2021;84:20–32. [CrossRef]
  • [31] Basu P. Biomass Gasification and Pyrolysis: Practical Design. Elsevier Inc; 2010.
  • [32] Parmigiani SP, Vitali F, Lezzi AM, Vaccari M. Design and performance assessment of a rice husk fueled stove for household cooking in a typical sub-Saharan setting. Energy Sustain Dev 2014;23:15–24. [CrossRef]
There are 33 citations in total.

Details

Primary Language English
Subjects Thermodynamics and Statistical Physics
Journal Section Articles
Authors

Anak Agung Putu Susastrıawan This is me 0000-0001-7449-4654

Yuli Purwanto This is me

Bambang Wahyu Sıdharta This is me

Noval Sıolımbona This is me

Publication Date January 31, 2024
Submission Date May 8, 2022
Published in Issue Year 2024 Volume: 10 Issue: 1

Cite

APA Putu Susastrıawan, A. A., Purwanto, Y., Sıdharta, B. W., Sıolımbona, N. (2024). Thermal performance of cocoa pod cook stove. Journal of Thermal Engineering, 10(1), 188-195. https://doi.org/10.18186/thermal.1429918
AMA Putu Susastrıawan AA, Purwanto Y, Sıdharta BW, Sıolımbona N. Thermal performance of cocoa pod cook stove. Journal of Thermal Engineering. January 2024;10(1):188-195. doi:10.18186/thermal.1429918
Chicago Putu Susastrıawan, Anak Agung, Yuli Purwanto, Bambang Wahyu Sıdharta, and Noval Sıolımbona. “Thermal Performance of Cocoa Pod Cook Stove”. Journal of Thermal Engineering 10, no. 1 (January 2024): 188-95. https://doi.org/10.18186/thermal.1429918.
EndNote Putu Susastrıawan AA, Purwanto Y, Sıdharta BW, Sıolımbona N (January 1, 2024) Thermal performance of cocoa pod cook stove. Journal of Thermal Engineering 10 1 188–195.
IEEE A. A. Putu Susastrıawan, Y. Purwanto, B. W. Sıdharta, and N. Sıolımbona, “Thermal performance of cocoa pod cook stove”, Journal of Thermal Engineering, vol. 10, no. 1, pp. 188–195, 2024, doi: 10.18186/thermal.1429918.
ISNAD Putu Susastrıawan, Anak Agung et al. “Thermal Performance of Cocoa Pod Cook Stove”. Journal of Thermal Engineering 10/1 (January 2024), 188-195. https://doi.org/10.18186/thermal.1429918.
JAMA Putu Susastrıawan AA, Purwanto Y, Sıdharta BW, Sıolımbona N. Thermal performance of cocoa pod cook stove. Journal of Thermal Engineering. 2024;10:188–195.
MLA Putu Susastrıawan, Anak Agung et al. “Thermal Performance of Cocoa Pod Cook Stove”. Journal of Thermal Engineering, vol. 10, no. 1, 2024, pp. 188-95, doi:10.18186/thermal.1429918.
Vancouver Putu Susastrıawan AA, Purwanto Y, Sıdharta BW, Sıolımbona N. Thermal performance of cocoa pod cook stove. Journal of Thermal Engineering. 2024;10(1):188-95.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering