Research Article
BibTex RIS Cite
Year 2024, Volume: 10 Issue: 2, 263 - 272, 22.03.2024
https://doi.org/10.18186/thermal.1448527

Abstract

References

  • [1] IEA. World Energy Outlook 2021. Available at: https://www.iea.org/reports/world-energy-outlook-2021. Accessed Feb 13, 2024.
  • [2] Farid MM, Khudhair AM, Razack SAK, Al-Hallaj S. A review on phase change energy storage: Materials and applications. Energy Convers Manage 2004;45:1597–1615. [CrossRef]
  • [3] Trp A. An experimental and numerical investigation of heat transfer during technical grade paraffin melting and solidification in a shell-and-tube latent thermal energy storage unit. Solar Energy 2005;79:648–660. [CrossRef]
  • [4] Kurnia JC, Sasmito AP, Jangam SV, Mujumdar AS. Improved design for heat transfer performance of a novel phase change material (PCM) thermal energy storage (TES). Appl Therm Engineer 2013;50:896–907. [CrossRef]
  • [5] Fan L, Khodadadi JM. Thermal conductivity enhancement of phase change materials for thermal energy storage: A review. Renew Sustain Energy Rev 2011;15:24–46. [CrossRef]
  • [6] Koukou M, Michail V, Tachos N, Dogkas G. Experimental and computational investigation of a latent heat energy storage system with a staggered heat exchanger for various phase change materials. Therm Sci Eng Prog 2018;7:87–98. [CrossRef]
  • [7] Al-Abidi AA, Bin Mat S, Sopian K, Sulaiman MY, Lim CH. Review of thermal energy storage for air conditioning systems. Renew Sustain Energy Rev 2012;16:5802–5819. [CrossRef]
  • [8] Gong Z, Mujumdar AS. Finite-element analysis of cyclic heat transfer in a shell and tube latent heat energy storage exchanger. Appl Therm Engineer 1997;17:583–591. [CrossRef]
  • [9] Chen J, Ji X, Lu X, Wang C. Mechanism study of heat transfer enhancement using twisted hexagonal tube with slurry from biogas plant. Energy Procedia 2017;142 880–885. [CrossRef]
  • [10] Wright K. A new model explains why cracks in cooling lava tend to form hexagonal patterns. Physic Rev Letters 2015;8:115.
  • [11] Fang M, Chen G. Effects of different multiple PCMs on the performance of a latent thermal energy storage system. Appl Therm Engineer 2007;27:994–1000. [CrossRef]
  • [12] Hale DV, Hoover MJ, O’Neill MJ. Phase Change Materials Handbook. National Technical Information Service U.S. Department of Commerce; 1971.
  • [13] Khalifa A, Tan L, Date A, Akbarzadeh A. Performance of suspended finned heat pipes in high-temperature latent heat thermal energy storage. Appl Therm Engineer 2015;81:242–252. [CrossRef]
  • [14] Leng G, Qiao G, Liang Z, Xu G, Qin Y, Chang C, et al. Micro encapsulated & form-stable phase change materials for high temperature thermal energy storage. Appl Energy 2018;217:212–220. [CrossRef]
  • [15] Sakhrieh A, Abdullat Y, Hamdan MA. Enhancement of thermal energy storage using phase-change material under Jordanian climate. J Infrastruct Syst 2014;28:A4014001.
  • [16] Sharma A, Tyagi VV, Chen CR, Budhi D. Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev 2009;13:318–345. [CrossRef]
  • [17] Hamada Y, Fukai J. Latent heat thermal energy storage tanks for space heating of buildings: comparison between calculations and experiments. Energy Conver Manage 2005;46:3221–3235. [CrossRef]
  • [18] Reyes A, Henríquez-Vargas L, Rivera J, Sepúlveda F. Theoretical and experimental study of aluminium foils and paraffin wax mixtures as thermal energy storage material. Renew Energy 2017;101:225–235. [CrossRef]
  • [19] Sharifi N, Bergman TL, Allen MJ, Faghri A. Melting and solidification enhancement using a combined heat pipe, foil approach. Int J Heat Mass Transf 2014;78:930–941. [CrossRef]
  • [20] Ibrahim NI, Al-Sulaiman FA, Rahman S, Yilbas BS, Sahin AZ. Heat transfer enhancement of phase change materials for thermal energy storage applications: a critical review. Renew Sustain Energy Rev 2017;74:26–50. [CrossRef]
  • [21] Modi N, Wang X, Negnevitsky M, Cao F. Melting characteristics of a longitudinally finned-tube horizontal latent heat thermal energy storage system. Solar Energy 2021;230:333–344. [CrossRef]
  • [22] Ramaiah R, Shekar KSS. Solar, thermal energy utilization for medium temperature industrial process heat applications - a review. Mater Sci Engineer 2018;376:12–35. [CrossRef]
  • [23] Devki Energy. Driers manual. Available at: http://www.devkienergy.com. Accessed Feb 13, 2024.
  • [24] Timber GE, Robertson GD, Gochnauer TA. Thermal properties of beeswax and beeswax- paraffin mixtures. J Apic Res 1977;16:49–55. [CrossRef]

Numerical investigation of an amalgamation of two phase change materials thermal energy storage system

Year 2024, Volume: 10 Issue: 2, 263 - 272, 22.03.2024
https://doi.org/10.18186/thermal.1448527

Abstract

In the last three decades, many researchers have published their findings on the storage of thermal energy using various phase transition materials (both organic and non-organic). One of their goals was to have a higher heat storage capacity with a shorter heat charging cycle for thermal energy storage. This study looked into a floating capsule thermal energy storage system (TESS). A number of spherical capsules filled with beeswax were placed in a paraffin-filled cylindrical shell. With heat transfer fluid flowing through three hexagonal tubes arranged at 120° inside the TESS core, the two phase change materials (beeswax with a thermal conductivity of 0.25 W/mK and paraffin with a thermal conductivity of 0.23 W/mK) were charged and discharged. For the proposed TESS, a mathematical model was created and utilised to forecast thermal energy storage capacity and charging/discharge times for various configurations. In TESS, a 70–30% mixture of the two PCMs results in a 21.5 percent increase in heat storage capacity when beeswax alone is used, and an 8.4 percent decrease in storage capacity when paraffin alone is used. For a heat storage capacity of 7300 kJ, the model estimates charging and discharging times of around 2.6 and 3.2 hours, respectively.

References

  • [1] IEA. World Energy Outlook 2021. Available at: https://www.iea.org/reports/world-energy-outlook-2021. Accessed Feb 13, 2024.
  • [2] Farid MM, Khudhair AM, Razack SAK, Al-Hallaj S. A review on phase change energy storage: Materials and applications. Energy Convers Manage 2004;45:1597–1615. [CrossRef]
  • [3] Trp A. An experimental and numerical investigation of heat transfer during technical grade paraffin melting and solidification in a shell-and-tube latent thermal energy storage unit. Solar Energy 2005;79:648–660. [CrossRef]
  • [4] Kurnia JC, Sasmito AP, Jangam SV, Mujumdar AS. Improved design for heat transfer performance of a novel phase change material (PCM) thermal energy storage (TES). Appl Therm Engineer 2013;50:896–907. [CrossRef]
  • [5] Fan L, Khodadadi JM. Thermal conductivity enhancement of phase change materials for thermal energy storage: A review. Renew Sustain Energy Rev 2011;15:24–46. [CrossRef]
  • [6] Koukou M, Michail V, Tachos N, Dogkas G. Experimental and computational investigation of a latent heat energy storage system with a staggered heat exchanger for various phase change materials. Therm Sci Eng Prog 2018;7:87–98. [CrossRef]
  • [7] Al-Abidi AA, Bin Mat S, Sopian K, Sulaiman MY, Lim CH. Review of thermal energy storage for air conditioning systems. Renew Sustain Energy Rev 2012;16:5802–5819. [CrossRef]
  • [8] Gong Z, Mujumdar AS. Finite-element analysis of cyclic heat transfer in a shell and tube latent heat energy storage exchanger. Appl Therm Engineer 1997;17:583–591. [CrossRef]
  • [9] Chen J, Ji X, Lu X, Wang C. Mechanism study of heat transfer enhancement using twisted hexagonal tube with slurry from biogas plant. Energy Procedia 2017;142 880–885. [CrossRef]
  • [10] Wright K. A new model explains why cracks in cooling lava tend to form hexagonal patterns. Physic Rev Letters 2015;8:115.
  • [11] Fang M, Chen G. Effects of different multiple PCMs on the performance of a latent thermal energy storage system. Appl Therm Engineer 2007;27:994–1000. [CrossRef]
  • [12] Hale DV, Hoover MJ, O’Neill MJ. Phase Change Materials Handbook. National Technical Information Service U.S. Department of Commerce; 1971.
  • [13] Khalifa A, Tan L, Date A, Akbarzadeh A. Performance of suspended finned heat pipes in high-temperature latent heat thermal energy storage. Appl Therm Engineer 2015;81:242–252. [CrossRef]
  • [14] Leng G, Qiao G, Liang Z, Xu G, Qin Y, Chang C, et al. Micro encapsulated & form-stable phase change materials for high temperature thermal energy storage. Appl Energy 2018;217:212–220. [CrossRef]
  • [15] Sakhrieh A, Abdullat Y, Hamdan MA. Enhancement of thermal energy storage using phase-change material under Jordanian climate. J Infrastruct Syst 2014;28:A4014001.
  • [16] Sharma A, Tyagi VV, Chen CR, Budhi D. Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev 2009;13:318–345. [CrossRef]
  • [17] Hamada Y, Fukai J. Latent heat thermal energy storage tanks for space heating of buildings: comparison between calculations and experiments. Energy Conver Manage 2005;46:3221–3235. [CrossRef]
  • [18] Reyes A, Henríquez-Vargas L, Rivera J, Sepúlveda F. Theoretical and experimental study of aluminium foils and paraffin wax mixtures as thermal energy storage material. Renew Energy 2017;101:225–235. [CrossRef]
  • [19] Sharifi N, Bergman TL, Allen MJ, Faghri A. Melting and solidification enhancement using a combined heat pipe, foil approach. Int J Heat Mass Transf 2014;78:930–941. [CrossRef]
  • [20] Ibrahim NI, Al-Sulaiman FA, Rahman S, Yilbas BS, Sahin AZ. Heat transfer enhancement of phase change materials for thermal energy storage applications: a critical review. Renew Sustain Energy Rev 2017;74:26–50. [CrossRef]
  • [21] Modi N, Wang X, Negnevitsky M, Cao F. Melting characteristics of a longitudinally finned-tube horizontal latent heat thermal energy storage system. Solar Energy 2021;230:333–344. [CrossRef]
  • [22] Ramaiah R, Shekar KSS. Solar, thermal energy utilization for medium temperature industrial process heat applications - a review. Mater Sci Engineer 2018;376:12–35. [CrossRef]
  • [23] Devki Energy. Driers manual. Available at: http://www.devkienergy.com. Accessed Feb 13, 2024.
  • [24] Timber GE, Robertson GD, Gochnauer TA. Thermal properties of beeswax and beeswax- paraffin mixtures. J Apic Res 1977;16:49–55. [CrossRef]
There are 24 citations in total.

Details

Primary Language English
Subjects Thermodynamics and Statistical Physics
Journal Section Articles
Authors

Pankaj R. Gharde This is me 0000-0002-9906-9475

Sanjay N. Havaldar This is me 0000-0001-9413-5261

Publication Date March 22, 2024
Submission Date January 20, 2022
Published in Issue Year 2024 Volume: 10 Issue: 2

Cite

APA Gharde, P. R., & Havaldar, S. N. (2024). Numerical investigation of an amalgamation of two phase change materials thermal energy storage system. Journal of Thermal Engineering, 10(2), 263-272. https://doi.org/10.18186/thermal.1448527
AMA Gharde PR, Havaldar SN. Numerical investigation of an amalgamation of two phase change materials thermal energy storage system. Journal of Thermal Engineering. March 2024;10(2):263-272. doi:10.18186/thermal.1448527
Chicago Gharde, Pankaj R., and Sanjay N. Havaldar. “Numerical Investigation of an Amalgamation of Two Phase Change Materials Thermal Energy Storage System”. Journal of Thermal Engineering 10, no. 2 (March 2024): 263-72. https://doi.org/10.18186/thermal.1448527.
EndNote Gharde PR, Havaldar SN (March 1, 2024) Numerical investigation of an amalgamation of two phase change materials thermal energy storage system. Journal of Thermal Engineering 10 2 263–272.
IEEE P. R. Gharde and S. N. Havaldar, “Numerical investigation of an amalgamation of two phase change materials thermal energy storage system”, Journal of Thermal Engineering, vol. 10, no. 2, pp. 263–272, 2024, doi: 10.18186/thermal.1448527.
ISNAD Gharde, Pankaj R. - Havaldar, Sanjay N. “Numerical Investigation of an Amalgamation of Two Phase Change Materials Thermal Energy Storage System”. Journal of Thermal Engineering 10/2 (March 2024), 263-272. https://doi.org/10.18186/thermal.1448527.
JAMA Gharde PR, Havaldar SN. Numerical investigation of an amalgamation of two phase change materials thermal energy storage system. Journal of Thermal Engineering. 2024;10:263–272.
MLA Gharde, Pankaj R. and Sanjay N. Havaldar. “Numerical Investigation of an Amalgamation of Two Phase Change Materials Thermal Energy Storage System”. Journal of Thermal Engineering, vol. 10, no. 2, 2024, pp. 263-72, doi:10.18186/thermal.1448527.
Vancouver Gharde PR, Havaldar SN. Numerical investigation of an amalgamation of two phase change materials thermal energy storage system. Journal of Thermal Engineering. 2024;10(2):263-72.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering