Research Article
BibTex RIS Cite
Year 2024, Volume: 10 Issue: 2, 308 - 320, 22.03.2024
https://doi.org/10.18186/thermal.1448589

Abstract

References

  • [1] Hejri S, Malekshah EH. Cooling of an electronic processor based on numerical analysis on natural convection and entropy production over a dissipating fin equipped with copper oxide/water nanofluid with Koo-Kleinstreuer-Li model. Therm Sci Eng Prog 2021;23:100916. [CrossRef]
  • [2] Hejri S, Kamali D, Malekshah EH. An experimental/numerical hydrothermal-Second law analysis of a finned/tubular heat exchanger using Bhatnagar–Gross–Krook Lattice Boltzmann (BGKLBM) and rheological-thermal behavior of Fe2O3-water. Int J Numer Methods Heat Fluid Flow 2020;31:2308–2329. [CrossRef]
  • [3] Shariatifard A, Kamali D, Hejri S, Malekshah EH. Smoothed/profile lattice Boltzmann method for hydrothermal analysis of a corrugated parabolic-trough solar collector filled with nanofluid predicted by Koo–Kleinstreuer–Li model. Int J Numer Methods Heat Fluid Flow 2022;32:1421–1439. [CrossRef]
  • [4] Malekshah EH, Hussein AK, Kolsi L. Convective flow over heat dissipating fins for application of electronic package cooling using curved boundary scheme lattice Boltzmann method. Int J Numer Methods Heat Fluid Flow 2023;33:1184–1202. [CrossRef]
  • [5] Gullbrekken L, Grynning S, Gaarder JE. Thermal performance of insulated constructions-experimental studies. Buildings 2019;9. [CrossRef]
  • [6] Wahlström MH, Harsman B. Residential energy consumption and conservation. Energy Buildings 2015;102:58–66. [CrossRef]
  • [7] Benoudjafer Ib, Ghomari F, Mokhtari A. Etude comparative relative à l’efficacité énergétique de deux appartements situés à Béchar. Revue des Energies Renouvelables 2012;15:1–12. [CrossRef]
  • [8] Benoudjafer Ib, Zemmouri N, Benoudjafer I. Étude De L’Amelioration De La Performance Energétique De Bâtiments Résidentiels À Climat Sec Et Chaud. Courrier du Savoir 2018;26:245–258.
  • [9] Ben Amor R, Gueddich N. Amélioration de la performance énergétique des Bâtiments résidentiels en Tunisie entre le choix et l’exigence. Recherche Avancée en Science et Technologie 2020;7:1–11.
  • [10] Mansour SS. Evaluating the thermal performance of the external walls in the residential houses at the dry and hot areas. Arch Arts Magazine 2019;4:309–321.
  • [11] Necib H, Belakroum R, Belakroum K. Amélioration de l’isolation thermique des habitats dans les régions chaudes et arides. Applied Energetics and Pollution, Third International Conference of Energy, Materials. ICEMAEP2016, October30-31, 2016 Constantine, Algeria. 2016:964–971.
  • [12] TRNSYS. Version 16. Getting Started—a transient system simulation program user’s manual. Solar Energy Laboratory, University of Wisconsin, Madison, U.S.A. 2006.
  • [13] International Organization for Standardization (ISO). Ergonomics of the thermal environment - Analytical determination and interpretation of thermal comfort using calculation of the Predicted Mean Vote (PMV) and the Predicted Percentage of Dissatisfied (PPD) indices and local thermal comfort criteria. ISO 7730. Geneva: ISO. 1994.
  • [14] American Society of Heating, Refrigerating and Air-Conditioning Engineers. ASHRAE Handbook: Refrigeration. Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers. 2017.
  • [15] TRNSYS. Version 16. Multi-zone-Building—a transient system simulation program user’s manual. Solar Energy Laboratory, University of Wisconsin, Madison, U.S.A. 2006.
  • [16] Wikipedia [online]. Available from: https://Fr.wikipedia.org/wiki/Bechar.
  • [17] Trachte S, De Herde A. Elaboration d’un outil d’aide à la conception de maisons à très basse consommation d’énergie: choix des matériaux - écobilan de parois annexes 1. Louvain la neuve. 2010.
  • [18] Ministère de l’Habitat. Réglementation thermique des bâtiments d’habitation: règles de calcul des déperditions calorifiques DTR C 3-2. Doc. Tech. Règlementaire, Ministère de l’habitat, Algérie. 1997.
  • [19] Bilan THERMIQUE Economie d’énergie [online]. Available at: http://www.bilan-thermique-28.fr/coef_thermiques-1.html.
  • [20] 2-fascicule matériaux [online]. Available at: http://www.rt-batiment.fr/IMG/pdf/2-fascicule_materiaux.pdf.
  • [21] L. E. Reseau and E. Info. Guide des materiaux isolants. France. pp. 1-32.
  • [22] Hakki IU, Deveci I, Baysal E, Turkoglu T, Toker H, Peker H. Thermal analysis of oriental beech wood treated with some borates as fire retardants. Maderas Cienc Y Tecnol 2016;18:293–304.
  • [23] Lakatos Á, Kalmár F. Investigation of thickness and density dependence of thermal conductivity of expanded polystyrene insulation materials. Mater Struct 2013;46:1101–1105. [CrossRef]
  • [24] Sahu DK, Sen PK, Sahu G, Sharma R, Bohidar S. A review on thermal insulation and its optimum thickness to reduce heat loss. Int J Innov Res Sci Technol 2015;2:1–11.
  • [25] Asdrubali F, D’Alessandro F, Schiavoni S. A review of unconventional sustainable building insulation materials. Sustain Mater Technol 2015;4:1–17. [CrossRef]
  • [26] Zach J, Korjenic A, Petranek V, Hroudova J, Bednar T. Performance evaluation and research of alternative thermal insulations based on sheep wool. Energy Buildings 2012;49:246–253. [CrossRef]
  • [27] Asdrubali F, Bianchi F, Cotana F, D'Alessandro F, Pertosa M, Pisello AL, Schiavoni S. Experimental thermo-acoustic characterization of innovative common reed bio-based panels for building envelope. Building Environ 2016;102:217–229. [CrossRef]
  • [28] Ye Z, Wells CM, Carrington CG, Hewitt NJ. Thermal conductivity of wool and wool-hemp insulation. Int J Energy Res 2006;30:37–49. [CrossRef]
  • [29] Istoan R, Tamas-Gavrea DR, Manea DL. Experimental investigations on the performances of composite building materials based on industrial crops and volcanic rocks. Crystals 2020;10:1–21. [CrossRef]
  • [30] Hegyi A, Bulacu C, Szilagyi H, Lazarescu AV, Meita V, Vzureanu P, et al. Improving indoor air quality by using sheep wool thermal insulation. Mater (Basel) 2021;14:1–14. [CrossRef]
  • [31] Nguyen DM, Grillet AC, Diep TMH, Bui QB, Woloszyn M. Influence of thermo-pressing conditions on insulation materials from bamboo fibers and proteins based bone glue. Indust Crops Products 2018;111:834–845. [CrossRef]
  • [32] Wei K, Lv C, Chen M, Zhou X, Dai Z, Shen D. Development and performance evaluation of a new thermal insulation material from rice straw using high frequency hot-pressing. Energy Buildings 2015;87:116–122. [CrossRef]
  • [33] Zakriya GM, Ramakrishnan G. Insulation and mechanical properties of jute and hollow conjugated polyester reinforced nonwoven composite. Energy Buildings 2018;158:1544–1552. [CrossRef]
  • [34] Kosinski P, Brzyski P, Szewczyk A, Motacki W. Thermal properties of raw hemp fiber as a loose-fill insulation material. J Natural Fibers 2018;15:717–730. [CrossRef]

Towards the use of natural thermal insulation on the exterior of vertical building walls in desert regions: A case study in the city of Bechar, Algeria

Year 2024, Volume: 10 Issue: 2, 308 - 320, 22.03.2024
https://doi.org/10.18186/thermal.1448589

Abstract

The use of natural-based exterior thermal insulation systems constitutes a significant challenge for achieving energy efficiency of construction. The purpose of this article is to propose new exterior thermal insulation solutions based on natural materials such as wood wool, cellulose wadding, expanded cork, hemp fiber, and sheep’s wool, in order to minimize energy consumption, address durability concerns, maintain thermal comfort, and promote the use of natural materials in thermal insulation system designs. The methodology followed consists of presenting a comparative numerical study of different exterior insulation techniques (ETI) using a dynamic thermal simulator for desert regions. The study evaluated ETI systems for vertical walls attached to a concrete block wall, including one EPS system with coating (wet process) and six systems with cladding (dry process). The results show that applying exterior insulation to walls using the two cladding systems based on hemp fiber and sheep wool resulted in a total reduction in building energy consumption of 42.21% and 42.81%, respectively. These results confirm the effectiveness of natural materials in improving the energy performance of buildings, particularly the system based on sheep wool.

References

  • [1] Hejri S, Malekshah EH. Cooling of an electronic processor based on numerical analysis on natural convection and entropy production over a dissipating fin equipped with copper oxide/water nanofluid with Koo-Kleinstreuer-Li model. Therm Sci Eng Prog 2021;23:100916. [CrossRef]
  • [2] Hejri S, Kamali D, Malekshah EH. An experimental/numerical hydrothermal-Second law analysis of a finned/tubular heat exchanger using Bhatnagar–Gross–Krook Lattice Boltzmann (BGKLBM) and rheological-thermal behavior of Fe2O3-water. Int J Numer Methods Heat Fluid Flow 2020;31:2308–2329. [CrossRef]
  • [3] Shariatifard A, Kamali D, Hejri S, Malekshah EH. Smoothed/profile lattice Boltzmann method for hydrothermal analysis of a corrugated parabolic-trough solar collector filled with nanofluid predicted by Koo–Kleinstreuer–Li model. Int J Numer Methods Heat Fluid Flow 2022;32:1421–1439. [CrossRef]
  • [4] Malekshah EH, Hussein AK, Kolsi L. Convective flow over heat dissipating fins for application of electronic package cooling using curved boundary scheme lattice Boltzmann method. Int J Numer Methods Heat Fluid Flow 2023;33:1184–1202. [CrossRef]
  • [5] Gullbrekken L, Grynning S, Gaarder JE. Thermal performance of insulated constructions-experimental studies. Buildings 2019;9. [CrossRef]
  • [6] Wahlström MH, Harsman B. Residential energy consumption and conservation. Energy Buildings 2015;102:58–66. [CrossRef]
  • [7] Benoudjafer Ib, Ghomari F, Mokhtari A. Etude comparative relative à l’efficacité énergétique de deux appartements situés à Béchar. Revue des Energies Renouvelables 2012;15:1–12. [CrossRef]
  • [8] Benoudjafer Ib, Zemmouri N, Benoudjafer I. Étude De L’Amelioration De La Performance Energétique De Bâtiments Résidentiels À Climat Sec Et Chaud. Courrier du Savoir 2018;26:245–258.
  • [9] Ben Amor R, Gueddich N. Amélioration de la performance énergétique des Bâtiments résidentiels en Tunisie entre le choix et l’exigence. Recherche Avancée en Science et Technologie 2020;7:1–11.
  • [10] Mansour SS. Evaluating the thermal performance of the external walls in the residential houses at the dry and hot areas. Arch Arts Magazine 2019;4:309–321.
  • [11] Necib H, Belakroum R, Belakroum K. Amélioration de l’isolation thermique des habitats dans les régions chaudes et arides. Applied Energetics and Pollution, Third International Conference of Energy, Materials. ICEMAEP2016, October30-31, 2016 Constantine, Algeria. 2016:964–971.
  • [12] TRNSYS. Version 16. Getting Started—a transient system simulation program user’s manual. Solar Energy Laboratory, University of Wisconsin, Madison, U.S.A. 2006.
  • [13] International Organization for Standardization (ISO). Ergonomics of the thermal environment - Analytical determination and interpretation of thermal comfort using calculation of the Predicted Mean Vote (PMV) and the Predicted Percentage of Dissatisfied (PPD) indices and local thermal comfort criteria. ISO 7730. Geneva: ISO. 1994.
  • [14] American Society of Heating, Refrigerating and Air-Conditioning Engineers. ASHRAE Handbook: Refrigeration. Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers. 2017.
  • [15] TRNSYS. Version 16. Multi-zone-Building—a transient system simulation program user’s manual. Solar Energy Laboratory, University of Wisconsin, Madison, U.S.A. 2006.
  • [16] Wikipedia [online]. Available from: https://Fr.wikipedia.org/wiki/Bechar.
  • [17] Trachte S, De Herde A. Elaboration d’un outil d’aide à la conception de maisons à très basse consommation d’énergie: choix des matériaux - écobilan de parois annexes 1. Louvain la neuve. 2010.
  • [18] Ministère de l’Habitat. Réglementation thermique des bâtiments d’habitation: règles de calcul des déperditions calorifiques DTR C 3-2. Doc. Tech. Règlementaire, Ministère de l’habitat, Algérie. 1997.
  • [19] Bilan THERMIQUE Economie d’énergie [online]. Available at: http://www.bilan-thermique-28.fr/coef_thermiques-1.html.
  • [20] 2-fascicule matériaux [online]. Available at: http://www.rt-batiment.fr/IMG/pdf/2-fascicule_materiaux.pdf.
  • [21] L. E. Reseau and E. Info. Guide des materiaux isolants. France. pp. 1-32.
  • [22] Hakki IU, Deveci I, Baysal E, Turkoglu T, Toker H, Peker H. Thermal analysis of oriental beech wood treated with some borates as fire retardants. Maderas Cienc Y Tecnol 2016;18:293–304.
  • [23] Lakatos Á, Kalmár F. Investigation of thickness and density dependence of thermal conductivity of expanded polystyrene insulation materials. Mater Struct 2013;46:1101–1105. [CrossRef]
  • [24] Sahu DK, Sen PK, Sahu G, Sharma R, Bohidar S. A review on thermal insulation and its optimum thickness to reduce heat loss. Int J Innov Res Sci Technol 2015;2:1–11.
  • [25] Asdrubali F, D’Alessandro F, Schiavoni S. A review of unconventional sustainable building insulation materials. Sustain Mater Technol 2015;4:1–17. [CrossRef]
  • [26] Zach J, Korjenic A, Petranek V, Hroudova J, Bednar T. Performance evaluation and research of alternative thermal insulations based on sheep wool. Energy Buildings 2012;49:246–253. [CrossRef]
  • [27] Asdrubali F, Bianchi F, Cotana F, D'Alessandro F, Pertosa M, Pisello AL, Schiavoni S. Experimental thermo-acoustic characterization of innovative common reed bio-based panels for building envelope. Building Environ 2016;102:217–229. [CrossRef]
  • [28] Ye Z, Wells CM, Carrington CG, Hewitt NJ. Thermal conductivity of wool and wool-hemp insulation. Int J Energy Res 2006;30:37–49. [CrossRef]
  • [29] Istoan R, Tamas-Gavrea DR, Manea DL. Experimental investigations on the performances of composite building materials based on industrial crops and volcanic rocks. Crystals 2020;10:1–21. [CrossRef]
  • [30] Hegyi A, Bulacu C, Szilagyi H, Lazarescu AV, Meita V, Vzureanu P, et al. Improving indoor air quality by using sheep wool thermal insulation. Mater (Basel) 2021;14:1–14. [CrossRef]
  • [31] Nguyen DM, Grillet AC, Diep TMH, Bui QB, Woloszyn M. Influence of thermo-pressing conditions on insulation materials from bamboo fibers and proteins based bone glue. Indust Crops Products 2018;111:834–845. [CrossRef]
  • [32] Wei K, Lv C, Chen M, Zhou X, Dai Z, Shen D. Development and performance evaluation of a new thermal insulation material from rice straw using high frequency hot-pressing. Energy Buildings 2015;87:116–122. [CrossRef]
  • [33] Zakriya GM, Ramakrishnan G. Insulation and mechanical properties of jute and hollow conjugated polyester reinforced nonwoven composite. Energy Buildings 2018;158:1544–1552. [CrossRef]
  • [34] Kosinski P, Brzyski P, Szewczyk A, Motacki W. Thermal properties of raw hemp fiber as a loose-fill insulation material. J Natural Fibers 2018;15:717–730. [CrossRef]
There are 34 citations in total.

Details

Primary Language English
Subjects Thermodynamics and Statistical Physics
Journal Section Articles
Authors

Slimane Zıad This is me 0000-0002-3618-6797

Imane Benoudjafer This is me 0000-0002-5134-3391

Ibtissam Benoudjafer This is me 0000-0001-7334-9164

Publication Date March 22, 2024
Submission Date November 15, 2022
Published in Issue Year 2024 Volume: 10 Issue: 2

Cite

APA Zıad, S., Benoudjafer, I., & Benoudjafer, I. (2024). Towards the use of natural thermal insulation on the exterior of vertical building walls in desert regions: A case study in the city of Bechar, Algeria. Journal of Thermal Engineering, 10(2), 308-320. https://doi.org/10.18186/thermal.1448589
AMA Zıad S, Benoudjafer I, Benoudjafer I. Towards the use of natural thermal insulation on the exterior of vertical building walls in desert regions: A case study in the city of Bechar, Algeria. Journal of Thermal Engineering. March 2024;10(2):308-320. doi:10.18186/thermal.1448589
Chicago Zıad, Slimane, Imane Benoudjafer, and Ibtissam Benoudjafer. “Towards the Use of Natural Thermal Insulation on the Exterior of Vertical Building Walls in Desert Regions: A Case Study in the City of Bechar, Algeria”. Journal of Thermal Engineering 10, no. 2 (March 2024): 308-20. https://doi.org/10.18186/thermal.1448589.
EndNote Zıad S, Benoudjafer I, Benoudjafer I (March 1, 2024) Towards the use of natural thermal insulation on the exterior of vertical building walls in desert regions: A case study in the city of Bechar, Algeria. Journal of Thermal Engineering 10 2 308–320.
IEEE S. Zıad, I. Benoudjafer, and I. Benoudjafer, “Towards the use of natural thermal insulation on the exterior of vertical building walls in desert regions: A case study in the city of Bechar, Algeria”, Journal of Thermal Engineering, vol. 10, no. 2, pp. 308–320, 2024, doi: 10.18186/thermal.1448589.
ISNAD Zıad, Slimane et al. “Towards the Use of Natural Thermal Insulation on the Exterior of Vertical Building Walls in Desert Regions: A Case Study in the City of Bechar, Algeria”. Journal of Thermal Engineering 10/2 (March 2024), 308-320. https://doi.org/10.18186/thermal.1448589.
JAMA Zıad S, Benoudjafer I, Benoudjafer I. Towards the use of natural thermal insulation on the exterior of vertical building walls in desert regions: A case study in the city of Bechar, Algeria. Journal of Thermal Engineering. 2024;10:308–320.
MLA Zıad, Slimane et al. “Towards the Use of Natural Thermal Insulation on the Exterior of Vertical Building Walls in Desert Regions: A Case Study in the City of Bechar, Algeria”. Journal of Thermal Engineering, vol. 10, no. 2, 2024, pp. 308-20, doi:10.18186/thermal.1448589.
Vancouver Zıad S, Benoudjafer I, Benoudjafer I. Towards the use of natural thermal insulation on the exterior of vertical building walls in desert regions: A case study in the city of Bechar, Algeria. Journal of Thermal Engineering. 2024;10(2):308-20.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering