Research Article
BibTex RIS Cite
Year 2024, Volume: 10 Issue: 3, 585 - 598, 21.05.2024

Abstract

References

  • [1] Khan A, Rao AN, Baghel T, Perumal AK, Kumar R. Parametric study and scaling of Mach 1.5 jet manipulation using steady fluidic injection. Phys Fluids 2022;34:036107. [CrossRef]
  • [2] Das AK, Acharyya K, Mankodi TK, Saha UK. Fluidic thrust vector control of aerospace vehicles: State-of-the-art review and future prospects. J Fluids Eng 2023;145:080801. [CrossRef]
  • [3] Kumar PA, Rathakrishnan E. Truncated triangular tabs for supersonic-jet control. J Propuls Power 2013;29:50–65. [CrossRef]
  • [4] Arun Kumar P, Aileni M, Rathakrishnan E. Impact of tab location relative to the nozzle exit on the shock structure of a supersonic jet. Phys Fluids 2019;31:076104. [CrossRef]
  • [5] Maruthupandiyan K, Rathakrishnan E. Supersonic jet control with shifted tabs. Proc Inst Mech Eng Part G J Aerosp Eng 2018;232:433–447. [CrossRef]
  • [6] Hafsteinsson HE, Eriksson LE, Andersson N, Cuppoletti DR, Gutmark E. Noise control of supersonic jet with steady and flapping fluidic injection. AIAA J 2015;53:3251–3272. [CrossRef]
  • [7] Kumar PA, Kumar SMA, Mitra AS, Rathakrishnan E. Fluidic injectors for supersonic jet control. Phys Fluids 2018;30:126101. [CrossRef]
  • [8] Davis M. Variable control of jet decay. AIAA J 1982;20:606–609. [CrossRef]
  • [9] Kumar PA, Kumar SMA, Mitra AS, Rathakrishnan E. Empirical scaling analysis of supersonic jet control using steady fluidic injection. Phys Fluids 2019;31:056107. [CrossRef]
  • [10] Henderson B. Fifty years of fluidic injection for jet noise reduction. Int J Aeroacoustics 2010;9:91–122. [CrossRef]
  • [11] Semlitsch B, Mihăescu M. Fluidic Injection scenarios for shock pattern manipulation in exhausts. AIAA J 2018;56:4640–4644. [CrossRef]
  • [12] Chauvet N, Deck S, Jacquin L. Numerical study of mixing enhancement in a supersonic round jet. AIAA J 2007;45:1675–1687. [CrossRef]
  • [13] Perumal AK, Zhou Y. Axisymmetric jet manipulation using multiple unsteady minijets. Phys Fluids 2021;33:065124. [CrossRef]
  • [14] Yu S, Lim KS, Chao W, Goh XP . Mixing enhancement in subsonic jet flow using the air-tab technique. AIAA J 2008;46:2966–2969. [CrossRef]
  • [15] Green CJ, Foy McCullough JR. Liquid injection thrust vector control. AIAA J 1963;1:573–578. [CrossRef]
  • [16] Rizzetta DP. Numerical simulation of slot injection into a turbulent supersonic stream. AIAA J 1992;30:2434–2439. [CrossRef]
  • [17] Sekar TC, Jaswal K, Arora J, Sundararaj R, Kushari A, Acharya A. Nozzle performance maps for fluidic thrust vectoring. J Propuls Power 2021;37:314–325. [CrossRef]
  • [18] Kumar PA, Verma SB, Rathakrishnan E. Experimental study of subsonic and sonic jets controlled by air tabs. J Propuls Power 2015;31:1473–1481. [CrossRef]
  • [19] Wan C, Yu S. Investigation of air tab's effect in supersonic jets. J Propuls Power 2011;27:1157–1160. [CrossRef]
  • [20] Cuppoletti D, Perrino M, Gutmark E. Fluidic injection effects on acoustics of a supersonic jet at various mach numbers. 17th AIAA/CEAS Aeroacoustics Conference (32nd AIAA Aeroacoustics Conference), Portland, Oregon, 05-08 June 2011. [CrossRef]
  • [21] Chauvet N, Deck S, Jacquin L. Shock patterns in a slightly underexpanded sonic jet controlled by radial injections. Phys Fluids 2007;19:048104. [CrossRef]
  • [22] Rathakrishnan E. Applied gas dynamics. Hoboken, NJ: Wiley; 2010. p. 680.
  • [23] Tam CKW. Supersonic jet noise. Ann Rev Fluid Mech 1995;27:17–43. [CrossRef]
  • [24] Kailash G, Aravindh Kumar SM, Rathakrishnan E. Air-tab orientation effect on underexpanded sonic rectangular jet mixing. AIAA J 2022;60:6054–6061. [CrossRef]
  • [25] Dhinagaran R, Bose TK. Numerical simulation of two-dimensional transverse gas injection into supersonic external flows. AIAA J 1998;36:486–488. [CrossRef]
  • [26] Erdem E, Kontis K. Numerical and experimental investigation of transverse injection flows. Shock Waves 2010;20:103–118. [CrossRef]

An experimental study on supersonic jet control using shifted air tabs

Year 2024, Volume: 10 Issue: 3, 585 - 598, 21.05.2024

Abstract

This experimental study investigates the impact of two diametrically positioned sonic air tabs on the mixing characteristics of a Mach 2.1 circular jet. Positioned at an axial distance of 0.25D from the convergent-divergent nozzle exit, the air tabs’ injection pressure ratio was systematically varied from 3 to 6, while maintaining nozzle pressure ratios of 3, 4, 5, and 6. Through Pitot pressure measurements and flow visualization, the study reveals that the sonic air tabs effectively reduce the core length of the Mach 2.1 jet across all nozzle pressure ratios. The accelerated mixing of the Mach 2.1 jet with the ambient fluid, facilitated by the air tabs, results in shorter core lengths. Importantly, the mixing enhancement by air tabs intensifies with increasing injection pressure ratio for all nozzle pressure ratios, with the maximum reduction in core length consistently occurring at an injection pressure ratio of 6. The observed maximum reductions in core length for nozzle pressure ratios 3, 4, 5, and 6 at an injection pressure ratio of 6 are 41.3%, 60.8%, 43.7%, and 43.5%, respectively. Visualization results confirm the air tabs’ effectiveness in attenuating waves within the jet core, with the weakening of waves increasing with higher injection pressure ratios. These findings contribute valuable insights into optimizing supersonic jet performance through fluidic control techniques.

References

  • [1] Khan A, Rao AN, Baghel T, Perumal AK, Kumar R. Parametric study and scaling of Mach 1.5 jet manipulation using steady fluidic injection. Phys Fluids 2022;34:036107. [CrossRef]
  • [2] Das AK, Acharyya K, Mankodi TK, Saha UK. Fluidic thrust vector control of aerospace vehicles: State-of-the-art review and future prospects. J Fluids Eng 2023;145:080801. [CrossRef]
  • [3] Kumar PA, Rathakrishnan E. Truncated triangular tabs for supersonic-jet control. J Propuls Power 2013;29:50–65. [CrossRef]
  • [4] Arun Kumar P, Aileni M, Rathakrishnan E. Impact of tab location relative to the nozzle exit on the shock structure of a supersonic jet. Phys Fluids 2019;31:076104. [CrossRef]
  • [5] Maruthupandiyan K, Rathakrishnan E. Supersonic jet control with shifted tabs. Proc Inst Mech Eng Part G J Aerosp Eng 2018;232:433–447. [CrossRef]
  • [6] Hafsteinsson HE, Eriksson LE, Andersson N, Cuppoletti DR, Gutmark E. Noise control of supersonic jet with steady and flapping fluidic injection. AIAA J 2015;53:3251–3272. [CrossRef]
  • [7] Kumar PA, Kumar SMA, Mitra AS, Rathakrishnan E. Fluidic injectors for supersonic jet control. Phys Fluids 2018;30:126101. [CrossRef]
  • [8] Davis M. Variable control of jet decay. AIAA J 1982;20:606–609. [CrossRef]
  • [9] Kumar PA, Kumar SMA, Mitra AS, Rathakrishnan E. Empirical scaling analysis of supersonic jet control using steady fluidic injection. Phys Fluids 2019;31:056107. [CrossRef]
  • [10] Henderson B. Fifty years of fluidic injection for jet noise reduction. Int J Aeroacoustics 2010;9:91–122. [CrossRef]
  • [11] Semlitsch B, Mihăescu M. Fluidic Injection scenarios for shock pattern manipulation in exhausts. AIAA J 2018;56:4640–4644. [CrossRef]
  • [12] Chauvet N, Deck S, Jacquin L. Numerical study of mixing enhancement in a supersonic round jet. AIAA J 2007;45:1675–1687. [CrossRef]
  • [13] Perumal AK, Zhou Y. Axisymmetric jet manipulation using multiple unsteady minijets. Phys Fluids 2021;33:065124. [CrossRef]
  • [14] Yu S, Lim KS, Chao W, Goh XP . Mixing enhancement in subsonic jet flow using the air-tab technique. AIAA J 2008;46:2966–2969. [CrossRef]
  • [15] Green CJ, Foy McCullough JR. Liquid injection thrust vector control. AIAA J 1963;1:573–578. [CrossRef]
  • [16] Rizzetta DP. Numerical simulation of slot injection into a turbulent supersonic stream. AIAA J 1992;30:2434–2439. [CrossRef]
  • [17] Sekar TC, Jaswal K, Arora J, Sundararaj R, Kushari A, Acharya A. Nozzle performance maps for fluidic thrust vectoring. J Propuls Power 2021;37:314–325. [CrossRef]
  • [18] Kumar PA, Verma SB, Rathakrishnan E. Experimental study of subsonic and sonic jets controlled by air tabs. J Propuls Power 2015;31:1473–1481. [CrossRef]
  • [19] Wan C, Yu S. Investigation of air tab's effect in supersonic jets. J Propuls Power 2011;27:1157–1160. [CrossRef]
  • [20] Cuppoletti D, Perrino M, Gutmark E. Fluidic injection effects on acoustics of a supersonic jet at various mach numbers. 17th AIAA/CEAS Aeroacoustics Conference (32nd AIAA Aeroacoustics Conference), Portland, Oregon, 05-08 June 2011. [CrossRef]
  • [21] Chauvet N, Deck S, Jacquin L. Shock patterns in a slightly underexpanded sonic jet controlled by radial injections. Phys Fluids 2007;19:048104. [CrossRef]
  • [22] Rathakrishnan E. Applied gas dynamics. Hoboken, NJ: Wiley; 2010. p. 680.
  • [23] Tam CKW. Supersonic jet noise. Ann Rev Fluid Mech 1995;27:17–43. [CrossRef]
  • [24] Kailash G, Aravindh Kumar SM, Rathakrishnan E. Air-tab orientation effect on underexpanded sonic rectangular jet mixing. AIAA J 2022;60:6054–6061. [CrossRef]
  • [25] Dhinagaran R, Bose TK. Numerical simulation of two-dimensional transverse gas injection into supersonic external flows. AIAA J 1998;36:486–488. [CrossRef]
  • [26] Erdem E, Kontis K. Numerical and experimental investigation of transverse injection flows. Shock Waves 2010;20:103–118. [CrossRef]
There are 26 citations in total.

Details

Primary Language English
Subjects Thermodynamics and Statistical Physics
Journal Section Articles
Authors

Mahendra Perumal Govindan This is me 0000-0003-0181-9635

Aravindh Kumar S. M. This is me 0000-0002-1807-3801

Elangovan S. This is me 0009-0006-9371-7415

Sundararaj M. This is me 0000-0001-7196-8818

Publication Date May 21, 2024
Submission Date November 16, 2023
Acceptance Date January 24, 2024
Published in Issue Year 2024 Volume: 10 Issue: 3

Cite

APA Govindan, M. P., S. M., A. K., S., E., M., S. (2024). An experimental study on supersonic jet control using shifted air tabs. Journal of Thermal Engineering, 10(3), 585-598.
AMA Govindan MP, S. M. AK, S. E, M. S. An experimental study on supersonic jet control using shifted air tabs. Journal of Thermal Engineering. May 2024;10(3):585-598.
Chicago Govindan, Mahendra Perumal, Aravindh Kumar S. M., Elangovan S., and Sundararaj M. “An Experimental Study on Supersonic Jet Control Using Shifted Air Tabs”. Journal of Thermal Engineering 10, no. 3 (May 2024): 585-98.
EndNote Govindan MP, S. M. AK, S. E, M. S (May 1, 2024) An experimental study on supersonic jet control using shifted air tabs. Journal of Thermal Engineering 10 3 585–598.
IEEE M. P. Govindan, A. K. S. M., E. S., and S. M., “An experimental study on supersonic jet control using shifted air tabs”, Journal of Thermal Engineering, vol. 10, no. 3, pp. 585–598, 2024.
ISNAD Govindan, Mahendra Perumal et al. “An Experimental Study on Supersonic Jet Control Using Shifted Air Tabs”. Journal of Thermal Engineering 10/3 (May 2024), 585-598.
JAMA Govindan MP, S. M. AK, S. E, M. S. An experimental study on supersonic jet control using shifted air tabs. Journal of Thermal Engineering. 2024;10:585–598.
MLA Govindan, Mahendra Perumal et al. “An Experimental Study on Supersonic Jet Control Using Shifted Air Tabs”. Journal of Thermal Engineering, vol. 10, no. 3, 2024, pp. 585-98.
Vancouver Govindan MP, S. M. AK, S. E, M. S. An experimental study on supersonic jet control using shifted air tabs. Journal of Thermal Engineering. 2024;10(3):585-98.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering