Review
BibTex RIS Cite
Year 2024, Volume: 10 Issue: 4, 1044 - 1067, 29.07.2024

Abstract

References

  • REFERENCES [1] Kim DS, Infante Ferreira CA. Solar refrigeration options - a state-of-the-art review. Int J Refrig 2008;31:3−15. [CrossRef]
  • [2] Gado MG, Ookawara S, Nada S, El-Sharkawy II. Hybrid sorption-vapor compression cooling sys- tems: A comprehensive overview. Renew Sustain Energy Rev 2021;143:110912. [CrossRef]
  • [3] Aliane A, Abboudi S, Seladji C, Guendouz B. An illustrated review on solar absorption cooling experimental studies. Renew Sustain Energy Rev 2016;65:443−458. [CrossRef]
  • [4] Corrada P, Bell J, Guan L, Motta N. Optimizing solar collector tilt angle to improve energy har- vesting in a solar cooling system. Energy Procedia 2014;48:806−812. [CrossRef]
  • [5] Rossetti A, Armanasco F. Performance evaluation of a medium-temperature solar cooling plant. Energy Procedia 2015;81:1198−1211. [CrossRef]
  • [6] Almasri RA, Abu-Hamdeh NH, Esmaeil KK, Suyambazhahan S. Thermal solar sorption cooling systems - A review of principle, technology, and appli- cations. Alexandria Eng J 2022;61:367−402. [CrossRef]
  • [7] Mustafa AA, Noranai Z, Imran AA. Solar absorp- tion cooling systems: a review. J Therm Eng 2021;7:970−983. [CrossRef]
  • [8] Choudhury B, Saha BB, Chatterjee PK, Sarkar JP. An overview of developments in adsorption refrigera- tion systems towards a sustainable way of cooling. Appl Energy 2013;104:554−567. [CrossRef]
  • [9] Henning HM. Solar assisted air condition- ing of buildings - an overview. Appl Therm Eng 2007;27:1734−1749. [CrossRef]
  • [10] Kaynakli O, Kilic M. Theoretical study on the effect of operating conditions on performance of absorp- tion refrigeration system. Energy Convers Manag 2007;48:599−607. [CrossRef]
  • [11] Hamza A, Ali H, Noeres P, Pollerberg C. Performance assessment of an integrated free cooling and solar powered single-effect lithium bromide-water absorp- tion chiller. Sol Energy 2008;82:1021−1030. [CrossRef]
  • [12] Gomri R. Investigation of the potential of appli- cation of single effect and multiple effect absorp- tion cooling systems. Energy Convers Manag 2010;51:1629−1636. [CrossRef]
  • [13] Collier RK. The analysis and simulation of an open cycle absorption refrigeration system. Sol Energy 1979;23:357−366. [CrossRef]
  • [14] Said SAM, El-Shaarawi MAI, Siddiqui MU. Alternative designs for a 24-h operating solar-pow- ered absorption refrigeration technology. Int J Refrig 2012;35:1967−1977. [CrossRef]
  • [15] Srikhirin P, Aphornratana S, Chungpaibulpatana S. A review of absorption refrigeration technologies. Renew Sustain Energy Rev 2001;5:343−372. [CrossRef]
  • [16] Zhai XQ, Qu M, Li Y, Wang RZ. A review for research and new design options of solar absorp- tion cooling systems. Renew Sustain Energy Rev 2011;15:4416−4423. [CrossRef]
  • [17] Chen X, Omer S, Worall M, Riffat S. Recent develop- ments in ejector refrigeration technologies. Renew Sustain Energy Rev 2013;19:629−651. [CrossRef]
  • [18] Sözen A, Özalp M, Arcaklioğlu E. Prospects for utili- sation of solar driven ejector-absorption cooling sys- tem in Turkey. Appl Therm Eng 2004;24:1019−1035. [CrossRef]
  • [19] Sözen A, Özalp M. Solar-driven ejector-absorp- tion cooling system. Appl Energy 2005;80:97−113. [CrossRef]
  • [20] Agyenim F, Knight I, Rhodes M. Design and exper- imental testing of the performance of an outdoor LiBr/H2O solar thermal absorption cooling sys- tem with a cold store. Sol Energy 2010;84:735−744. [CrossRef]
  • [21] Pongtornkulpanich A, Thepa S, Amornkitbamrung M, Butcher C. Experience with fully operational solar-driven 10-ton LiBr/H2O single-effect absorp- tion cooling system in Thailand. Renew Energy 2008;33:943−949. [CrossRef]
  • [22] Mazloumi M, Naghashzadegan M, Javaherdeh K. Simulation of solar lithium bromide-water absorp- tion cooling system with parabolic trough collector. Energy Convers Manag 2008;49:2820−2832. [CrossRef]
  • [23] Verma A, Kaushik SC, Tyagi SK. Energy and exergy analysis of a novel ejector-absorption combined refrigeration cycle using natural refrigerants. Int J Exergy 2022;39:142. [CrossRef]
  • [24] Helm M, Keil C, Hiebler S, Mehling H, Schweigler C. Solar heating and cooling system with absorp- tion chiller and low temperature latent heat storage: Energetic performance and operational experience. Int J Refrig 2009;32:596−606. [CrossRef]
  • [25] Gomri R. Second law comparison of single effect and double effect vapour absorption refrigeration sys- tems. Energy Convers Manag 2009;50:1279−1287. [CrossRef]
  • [26] Onan C, Ozkan DB, Erdem S. Exergy analy- sis of a solar assisted absorption cooling system on an hourly basis in villa applications. Energy 2010;35:5277−5285. [CrossRef]
  • [27] Somers C, Mortazavi A, Hwang Y, Radermacher R, Rodgers P, Al-Hashimi S. Modeling water/lithium bromide absorption chillers in ASPEN Plus. Appl Energy 2011;88:4197−4205. [CrossRef]
  • [28] Balghouthi M, Chahbani MH, Guizani A. Feasibility of solar absorption air conditioning in Tunisia. Build Environ 2008;43:1459−1470. [CrossRef]
  • [29] Balghouthi M, Chahbani MH, Guizani A. Solar Powered air conditioning as a solution to reduce environmental pollution in Tunisia. Desalination 2005;185:105−110. [CrossRef]
  • [30] Kaushik SC, Arora A. Energy and exergy analysis of single effect and series flow double effect water-lith- ium bromide absorption refrigeration systems. Int J Refrig 2009;32:1247−1258. [CrossRef]
  • [31] Kilic M, Kaynakli O. Second law-based thermody- namic analysis of water-lithium bromide absorption refrigeration system. Energy 2007;32:1505−1512. [CrossRef]
  • [32] Darwish NA, Al-Hashimi SH, Al-Mansoori AS. Performance analysis and evaluation of a commercial absorption-refrigeration water-ammonia (ARWA) system. Int J Refrig 2008;31:1214−1223. [CrossRef]
  • [33] Chua HT, Toh HK, Ng KC. Thermodynamic mod- eling of an ammonia-water absorption chiller. Int J Refrig 2002;25:896−906. [CrossRef]
  • [34] Kim B, Park J. Dynamic simulation of a single-ef- fect ammonia-water absorption chiller. Int J Refrig 2007;30:535−545. [CrossRef]
  • [35] Lin P, Wang RZ, Xia ZZ. Numerical investigation of a two-stage air-cooled absorption refrigera- tion system for solar cooling: Cycle analysis and absorption cooling performances. Renew Energy 2011;36:1401−1412. [CrossRef]
  • [36] Rosiek S, Batlles FJ. Integration of the solar thermal energy in the construction: Analysis of the solar-as- sisted air-conditioning system installed in CIESOL building. Renew Energy 2009;34:1423−1431. [CrossRef]
  • [37] Izquierdo M, González-Gil A, Palacios E. Solar- powered single-and double-effect directly air-cooled LiBr-H2O absorption prototype built as a single unit. Appl Energy 2014;130:7−19. [CrossRef]
  • [38] Li M, Xu C, Hassanien RHE, Xu Y, Zhuang B. Experimental investigation on the performance of a solar powered lithium bromide-water absorption cooling system. Int J Refrig 2016;71:46−59. [CrossRef]
  • [39] Elzahzby AM, Kabeel AE, Bassuoni MM, Abdelgaied M. A mathematical model for predicting the perfor- mance of the solar energy assisted hybrid air con- ditioning system, with one-rotor six-stage rotary desiccant cooling system. Energy Convers Manag 2014;77:129−142. [CrossRef]
  • [40] Dai YJ, Wang RZ, Xu YX. Study of a solar powered solid adsorption-desiccant cooling system used for grain storage. Renew Energy 2002;25:417−430. [CrossRef]
  • [41] AKM - EAW Energieanlagenbau GmbH Westenfeld. Absorber AKM. Available at: https://www.eaw-en- ergieanlagenbau.de/absorber-akm.html. Accessed October 29, 2021.
  • [42] Yazaki Energy Systems, Inc. Water Fired Specifications. Available at: http://yazakienergy. com/waterfiredspecifications.htm. Accessed October 29, 2021.
  • [43] Product catalogue A25s Solar Cooling systems. Available at: http://www.purix.com/wp-content/ uploads/2017/10/PURIX-Catalogue-A25s-EN.pdf Accessed October 29, 2021. [44] Mugnier D, Sire R. SONNENKLIMA package solu- tion description. 2009. Available at: http://www.sol- arcombiplus.eu. Accessed October 29, 2021.
  • [45] 16LJ - 16LJ-F - Absorption chiller. Carrier heat- ing, ventilation and air conditioning. Available at: https://www.carrier.com/commercial/en/pl/prod- ucts/air- conditioning/absorption-chillers/16lj- 16lj-f/. Accessed October 29, 2021.
  • [46] AGO Congelo absorption chiller. Available at: https://www.ago-energie.de/en/ago-thermal-tech- nology/ago-congelo-absorption-chiller/. Accessed October 29, 2021.
  • [47] chillii® Cooling Kit WFCx [hot water fired] - Solar Next AG. Available at: https://solarnext.de/en/prod- uct-list/chillii-cooling-kit-wfcx/?portfolioCats=199% 2C201%2C200%2C202%2C256. Accessed October 29, 2021.
  • [48] chillii® Cooling Kit PSCx [hot water fired] - Solar Next AG. Available at: https://solarnext.de/en/ product-list/chillii-cooling-kit-pscx/?portfolioCat s=199%2C201%2C200%2C202%2C256. Accessed October 29, 2021.
  • [49] Operating Instructions / Documentation PinkChiller PC19. Available at: https://eif-wiki. feit.uts.edu.au/_media/technical:renewables:pink_ chiller_specs.pdf Accessed October 29, 2021.
  • [50] Vapor absorption chiller | L5 Series. Available at: https://www.thermaxglobal.com/tripple-ef- fect-chiller-2-2-3-2-2/. Accessed October 29, 2021.
  • [51] Berdasco M, Vallès M, Coronas A. Thermodynamic analysis of an ammonia/water absorption-resorption refrigeration system. Int J Refrig 2019;103:51−60. [CrossRef]
  • [52] Hussein AK. Applications of nanotechnology in renewable energies-A comprehensive overview and understanding. Renew Sustain Energy Rev 2015;42:460−476. [CrossRef]
  • [53] Hussein AK. Applications of nanotechnology to improve the performance of solar collectors - Recent advances and overview. Renew Sustain Energy Rev 2016;62:767−792. [CrossRef]
  • [54] Hussein AK, Walunj AA. Applications of nano- technology to enhance the performance of the direct absorption solar collectors. J Therm Eng 2016;2:529−540. [CrossRef]
  • [55] Otanicar TP, Golden JS. Comparative environ- mental and economic analysis of conventional and nanofluid solar hot water technologies. Environ Sci Technol 2009;43:6082−6087. [CrossRef]
  • [56] Liu C, Wu Y, Li D, Ma T, Hussein AK, Zhou Y. Investigation of thermal and optical performance of a phase change material-filled double-glazing unit. J Build Phys 2018;42:99−119. [CrossRef]
  • [57] Li D, Li Z, Zheng Y, Liu C, Hussein AK, Liu X. Thermal performance of a PCM-filled double-glaz- ing unit with different thermophysical parameters of PCM. Sol Energy 2016;133:207−220. [CrossRef]
  • [58] Han D, Meng Z, Wu D, Zhang C, Zhu H. Thermal properties of carbon black aqueous nanofluids for solar absorption. Nanoscale Res Lett 2011;6:1−7. [CrossRef]
  • [59] Benabderrahmane A, Benazza A, Hussein AK. Heat transfer enhancement analysis of tube receiver for parabolic trough solar collector with central corru- gated insert. J Heat Transf 2020;142. [CrossRef]
  • [60] Rostami S, Sepehrirad M, Dezfulizadeh A, Hussein AK, Goldanlou AS, Shadloo MS. Exergy optimiza- tion of a solar collector in flat plate shape equipped with elliptical pipes filled with turbulent nano- fluid flow: a study for thermal management. Water 2020;12:2294. [CrossRef]
  • [61] Ghodbane M, Boumeddane B, Hussein AK. Performance analysis of a solar-driven ejector air conditioning system under El-OUED climatic condi- tions, Algeria. J Therm Eng 2021;7:172−189. [CrossRef]
  • [62] Hussein AK, Li D, Kolsi L, Kata S, Sahoo B. A Review of nano fluid role to improve the performance of the heat pipe solar collectors. Energy Procedia 2017;109:417−424. [CrossRef]
  • [63] Nikbakhti R, Iranmanesh A. Potential application of a novel integrated adsorption-absorption refrigera- tion system powered with solar energy in Australia. Appl Therm Eng 2021;194:117114. [CrossRef]
  • [64] Fitó J, Coronas A, Mauran S, Mazet N, Stitou D. Definition and performance simulations of a novel solar-driven hybrid absorption-thermochemi- cal refrigeration system. Energy Convers Manag 2018;175:298−312. [CrossRef]
  • [65] Al-Nimr MA, Mugdadi B. A hybrid absorption/ thermo-electric cooling system driven by a concen- trated photovoltaic/thermal unit. Sustain Energy Technol Assess 2020;40:100769. [CrossRef]
  • [66] Xu Y, Li Z, Chen H, Lv S. Assessment and optimi- zation of solar absorption-subcooled compression hybrid cooling system for cold storage. Appl Therm Eng 2020;180:115886. [CrossRef]
  • [67] Jing Y, Li Z, Chen H, Lu S, Lv S. Exergoeconomic design criterion of solar absorption-subcooled com- pression hybrid cooling system based on the vari- able working conditions. Energy Convers Manag 2019;180:889−903. [CrossRef]
  • [68] Arabkoohsar A, Sadi M. Technical comparison of different solar-powered absorption chiller designs for co-supply of heat and cold networks. Energy Convers Manag 2020;206:112343. [CrossRef]
  • [69] Bellos E, Tzivanidis C, Symeou C, Antonopoulos KA. Energetic, exergetic and financial evaluation of a solar driven absorption chiller - A dynamic approach. Energy Convers Manag 2017;137:34−48. [CrossRef]
  • [70] Bellos E, Tzivanidis C. Parametric analysis and opti- mization of a cooling system with ejector-absorption chiller powered by solar parabolic trough collectors. Energy Convers Manag 2018;168:329−342. [CrossRef]
  • [71] Prasartkaew B, Kumar S. A low carbon cooling sys- tem using renewable energy resources and technol- ogies. Energy Build 2010;42:1453-1462. [CrossRef]
  • [72] International Institute of Refrigeration. 40th infor- matory note on refrigeration technologies. Int Inst Refrig 2020:17.
  • [73] Vasta S, Palomba V, Frazzica A, Di Bella G, Freni A. Techno-economic analysis of solar cooling systems for residential buildings in Italy. J Sol Energy Eng Trans ASME 2016;138:1−11. [CrossRef]
  • [74] Gabbrielli R, Castrataro P, Del Medico F. Performance and economic comparison of solar cooling configurations. Energy Procedia 2016;91:759−766. [CrossRef]
  • [75] Eicker U, Pietruschka D, Haag M, Schmitt A. Energy and economic performance of solar cooling systems world wide. Energy Procedia 2014;57:2581−2589. [CrossRef]
  • [76] Eicker U, Pietruschka D. Optimization and econom- ics of solar cooling systems. Adv Build Energy Res 2009;3:45−81. [CrossRef]
  • [77] Mahesh A, Kaushik SC. Solar adsorption cool- ing system: An overview. J Renew Sustain Energy 2012;4. [CrossRef]

Advances in solar absorption cooling systems: An overview

Year 2024, Volume: 10 Issue: 4, 1044 - 1067, 29.07.2024

Abstract

The need for refrigeration and air conditioning plays a crucial role in energy consumption. It is one of the important aspects which plays a crucial role in the food, human comfort, and energy problems of any country. Rapid consumption of energy and fossil fuels depletion results in the onset of energy crises thus, the research on absorption refrigeration systems has been widely promoted because the input energy supply for the systems can be a low-grade heat available from solar, geothermal, and/or waste heat from Industries. Solar refrigeration and air conditioning is an attractive and promising applications of solar energy because the cooling demand and the availability of solar energy are in phase and solar cooling can be made cost-effective. The present work includes the solar energy option and the potential for cooling with various range of parameters such as availability of solar radiation, environmental effects, types of collectors, types of solar cooling systems in general, and closed/open/continuous/ multistage/hybrid and advanced absorption refrigeration cycles in particular. A literature survey has been carried out for possible improvements in the performance of solar absorption cooling systems and different solar collection and storage options. The most suitable solar cooling option viz. absorption refrigeration with the solar operation, historical developments, and commercial products. Advanced absorption cycles and novel cooling systems have also been presented and discussed.

References

  • REFERENCES [1] Kim DS, Infante Ferreira CA. Solar refrigeration options - a state-of-the-art review. Int J Refrig 2008;31:3−15. [CrossRef]
  • [2] Gado MG, Ookawara S, Nada S, El-Sharkawy II. Hybrid sorption-vapor compression cooling sys- tems: A comprehensive overview. Renew Sustain Energy Rev 2021;143:110912. [CrossRef]
  • [3] Aliane A, Abboudi S, Seladji C, Guendouz B. An illustrated review on solar absorption cooling experimental studies. Renew Sustain Energy Rev 2016;65:443−458. [CrossRef]
  • [4] Corrada P, Bell J, Guan L, Motta N. Optimizing solar collector tilt angle to improve energy har- vesting in a solar cooling system. Energy Procedia 2014;48:806−812. [CrossRef]
  • [5] Rossetti A, Armanasco F. Performance evaluation of a medium-temperature solar cooling plant. Energy Procedia 2015;81:1198−1211. [CrossRef]
  • [6] Almasri RA, Abu-Hamdeh NH, Esmaeil KK, Suyambazhahan S. Thermal solar sorption cooling systems - A review of principle, technology, and appli- cations. Alexandria Eng J 2022;61:367−402. [CrossRef]
  • [7] Mustafa AA, Noranai Z, Imran AA. Solar absorp- tion cooling systems: a review. J Therm Eng 2021;7:970−983. [CrossRef]
  • [8] Choudhury B, Saha BB, Chatterjee PK, Sarkar JP. An overview of developments in adsorption refrigera- tion systems towards a sustainable way of cooling. Appl Energy 2013;104:554−567. [CrossRef]
  • [9] Henning HM. Solar assisted air condition- ing of buildings - an overview. Appl Therm Eng 2007;27:1734−1749. [CrossRef]
  • [10] Kaynakli O, Kilic M. Theoretical study on the effect of operating conditions on performance of absorp- tion refrigeration system. Energy Convers Manag 2007;48:599−607. [CrossRef]
  • [11] Hamza A, Ali H, Noeres P, Pollerberg C. Performance assessment of an integrated free cooling and solar powered single-effect lithium bromide-water absorp- tion chiller. Sol Energy 2008;82:1021−1030. [CrossRef]
  • [12] Gomri R. Investigation of the potential of appli- cation of single effect and multiple effect absorp- tion cooling systems. Energy Convers Manag 2010;51:1629−1636. [CrossRef]
  • [13] Collier RK. The analysis and simulation of an open cycle absorption refrigeration system. Sol Energy 1979;23:357−366. [CrossRef]
  • [14] Said SAM, El-Shaarawi MAI, Siddiqui MU. Alternative designs for a 24-h operating solar-pow- ered absorption refrigeration technology. Int J Refrig 2012;35:1967−1977. [CrossRef]
  • [15] Srikhirin P, Aphornratana S, Chungpaibulpatana S. A review of absorption refrigeration technologies. Renew Sustain Energy Rev 2001;5:343−372. [CrossRef]
  • [16] Zhai XQ, Qu M, Li Y, Wang RZ. A review for research and new design options of solar absorp- tion cooling systems. Renew Sustain Energy Rev 2011;15:4416−4423. [CrossRef]
  • [17] Chen X, Omer S, Worall M, Riffat S. Recent develop- ments in ejector refrigeration technologies. Renew Sustain Energy Rev 2013;19:629−651. [CrossRef]
  • [18] Sözen A, Özalp M, Arcaklioğlu E. Prospects for utili- sation of solar driven ejector-absorption cooling sys- tem in Turkey. Appl Therm Eng 2004;24:1019−1035. [CrossRef]
  • [19] Sözen A, Özalp M. Solar-driven ejector-absorp- tion cooling system. Appl Energy 2005;80:97−113. [CrossRef]
  • [20] Agyenim F, Knight I, Rhodes M. Design and exper- imental testing of the performance of an outdoor LiBr/H2O solar thermal absorption cooling sys- tem with a cold store. Sol Energy 2010;84:735−744. [CrossRef]
  • [21] Pongtornkulpanich A, Thepa S, Amornkitbamrung M, Butcher C. Experience with fully operational solar-driven 10-ton LiBr/H2O single-effect absorp- tion cooling system in Thailand. Renew Energy 2008;33:943−949. [CrossRef]
  • [22] Mazloumi M, Naghashzadegan M, Javaherdeh K. Simulation of solar lithium bromide-water absorp- tion cooling system with parabolic trough collector. Energy Convers Manag 2008;49:2820−2832. [CrossRef]
  • [23] Verma A, Kaushik SC, Tyagi SK. Energy and exergy analysis of a novel ejector-absorption combined refrigeration cycle using natural refrigerants. Int J Exergy 2022;39:142. [CrossRef]
  • [24] Helm M, Keil C, Hiebler S, Mehling H, Schweigler C. Solar heating and cooling system with absorp- tion chiller and low temperature latent heat storage: Energetic performance and operational experience. Int J Refrig 2009;32:596−606. [CrossRef]
  • [25] Gomri R. Second law comparison of single effect and double effect vapour absorption refrigeration sys- tems. Energy Convers Manag 2009;50:1279−1287. [CrossRef]
  • [26] Onan C, Ozkan DB, Erdem S. Exergy analy- sis of a solar assisted absorption cooling system on an hourly basis in villa applications. Energy 2010;35:5277−5285. [CrossRef]
  • [27] Somers C, Mortazavi A, Hwang Y, Radermacher R, Rodgers P, Al-Hashimi S. Modeling water/lithium bromide absorption chillers in ASPEN Plus. Appl Energy 2011;88:4197−4205. [CrossRef]
  • [28] Balghouthi M, Chahbani MH, Guizani A. Feasibility of solar absorption air conditioning in Tunisia. Build Environ 2008;43:1459−1470. [CrossRef]
  • [29] Balghouthi M, Chahbani MH, Guizani A. Solar Powered air conditioning as a solution to reduce environmental pollution in Tunisia. Desalination 2005;185:105−110. [CrossRef]
  • [30] Kaushik SC, Arora A. Energy and exergy analysis of single effect and series flow double effect water-lith- ium bromide absorption refrigeration systems. Int J Refrig 2009;32:1247−1258. [CrossRef]
  • [31] Kilic M, Kaynakli O. Second law-based thermody- namic analysis of water-lithium bromide absorption refrigeration system. Energy 2007;32:1505−1512. [CrossRef]
  • [32] Darwish NA, Al-Hashimi SH, Al-Mansoori AS. Performance analysis and evaluation of a commercial absorption-refrigeration water-ammonia (ARWA) system. Int J Refrig 2008;31:1214−1223. [CrossRef]
  • [33] Chua HT, Toh HK, Ng KC. Thermodynamic mod- eling of an ammonia-water absorption chiller. Int J Refrig 2002;25:896−906. [CrossRef]
  • [34] Kim B, Park J. Dynamic simulation of a single-ef- fect ammonia-water absorption chiller. Int J Refrig 2007;30:535−545. [CrossRef]
  • [35] Lin P, Wang RZ, Xia ZZ. Numerical investigation of a two-stage air-cooled absorption refrigera- tion system for solar cooling: Cycle analysis and absorption cooling performances. Renew Energy 2011;36:1401−1412. [CrossRef]
  • [36] Rosiek S, Batlles FJ. Integration of the solar thermal energy in the construction: Analysis of the solar-as- sisted air-conditioning system installed in CIESOL building. Renew Energy 2009;34:1423−1431. [CrossRef]
  • [37] Izquierdo M, González-Gil A, Palacios E. Solar- powered single-and double-effect directly air-cooled LiBr-H2O absorption prototype built as a single unit. Appl Energy 2014;130:7−19. [CrossRef]
  • [38] Li M, Xu C, Hassanien RHE, Xu Y, Zhuang B. Experimental investigation on the performance of a solar powered lithium bromide-water absorption cooling system. Int J Refrig 2016;71:46−59. [CrossRef]
  • [39] Elzahzby AM, Kabeel AE, Bassuoni MM, Abdelgaied M. A mathematical model for predicting the perfor- mance of the solar energy assisted hybrid air con- ditioning system, with one-rotor six-stage rotary desiccant cooling system. Energy Convers Manag 2014;77:129−142. [CrossRef]
  • [40] Dai YJ, Wang RZ, Xu YX. Study of a solar powered solid adsorption-desiccant cooling system used for grain storage. Renew Energy 2002;25:417−430. [CrossRef]
  • [41] AKM - EAW Energieanlagenbau GmbH Westenfeld. Absorber AKM. Available at: https://www.eaw-en- ergieanlagenbau.de/absorber-akm.html. Accessed October 29, 2021.
  • [42] Yazaki Energy Systems, Inc. Water Fired Specifications. Available at: http://yazakienergy. com/waterfiredspecifications.htm. Accessed October 29, 2021.
  • [43] Product catalogue A25s Solar Cooling systems. Available at: http://www.purix.com/wp-content/ uploads/2017/10/PURIX-Catalogue-A25s-EN.pdf Accessed October 29, 2021. [44] Mugnier D, Sire R. SONNENKLIMA package solu- tion description. 2009. Available at: http://www.sol- arcombiplus.eu. Accessed October 29, 2021.
  • [45] 16LJ - 16LJ-F - Absorption chiller. Carrier heat- ing, ventilation and air conditioning. Available at: https://www.carrier.com/commercial/en/pl/prod- ucts/air- conditioning/absorption-chillers/16lj- 16lj-f/. Accessed October 29, 2021.
  • [46] AGO Congelo absorption chiller. Available at: https://www.ago-energie.de/en/ago-thermal-tech- nology/ago-congelo-absorption-chiller/. Accessed October 29, 2021.
  • [47] chillii® Cooling Kit WFCx [hot water fired] - Solar Next AG. Available at: https://solarnext.de/en/prod- uct-list/chillii-cooling-kit-wfcx/?portfolioCats=199% 2C201%2C200%2C202%2C256. Accessed October 29, 2021.
  • [48] chillii® Cooling Kit PSCx [hot water fired] - Solar Next AG. Available at: https://solarnext.de/en/ product-list/chillii-cooling-kit-pscx/?portfolioCat s=199%2C201%2C200%2C202%2C256. Accessed October 29, 2021.
  • [49] Operating Instructions / Documentation PinkChiller PC19. Available at: https://eif-wiki. feit.uts.edu.au/_media/technical:renewables:pink_ chiller_specs.pdf Accessed October 29, 2021.
  • [50] Vapor absorption chiller | L5 Series. Available at: https://www.thermaxglobal.com/tripple-ef- fect-chiller-2-2-3-2-2/. Accessed October 29, 2021.
  • [51] Berdasco M, Vallès M, Coronas A. Thermodynamic analysis of an ammonia/water absorption-resorption refrigeration system. Int J Refrig 2019;103:51−60. [CrossRef]
  • [52] Hussein AK. Applications of nanotechnology in renewable energies-A comprehensive overview and understanding. Renew Sustain Energy Rev 2015;42:460−476. [CrossRef]
  • [53] Hussein AK. Applications of nanotechnology to improve the performance of solar collectors - Recent advances and overview. Renew Sustain Energy Rev 2016;62:767−792. [CrossRef]
  • [54] Hussein AK, Walunj AA. Applications of nano- technology to enhance the performance of the direct absorption solar collectors. J Therm Eng 2016;2:529−540. [CrossRef]
  • [55] Otanicar TP, Golden JS. Comparative environ- mental and economic analysis of conventional and nanofluid solar hot water technologies. Environ Sci Technol 2009;43:6082−6087. [CrossRef]
  • [56] Liu C, Wu Y, Li D, Ma T, Hussein AK, Zhou Y. Investigation of thermal and optical performance of a phase change material-filled double-glazing unit. J Build Phys 2018;42:99−119. [CrossRef]
  • [57] Li D, Li Z, Zheng Y, Liu C, Hussein AK, Liu X. Thermal performance of a PCM-filled double-glaz- ing unit with different thermophysical parameters of PCM. Sol Energy 2016;133:207−220. [CrossRef]
  • [58] Han D, Meng Z, Wu D, Zhang C, Zhu H. Thermal properties of carbon black aqueous nanofluids for solar absorption. Nanoscale Res Lett 2011;6:1−7. [CrossRef]
  • [59] Benabderrahmane A, Benazza A, Hussein AK. Heat transfer enhancement analysis of tube receiver for parabolic trough solar collector with central corru- gated insert. J Heat Transf 2020;142. [CrossRef]
  • [60] Rostami S, Sepehrirad M, Dezfulizadeh A, Hussein AK, Goldanlou AS, Shadloo MS. Exergy optimiza- tion of a solar collector in flat plate shape equipped with elliptical pipes filled with turbulent nano- fluid flow: a study for thermal management. Water 2020;12:2294. [CrossRef]
  • [61] Ghodbane M, Boumeddane B, Hussein AK. Performance analysis of a solar-driven ejector air conditioning system under El-OUED climatic condi- tions, Algeria. J Therm Eng 2021;7:172−189. [CrossRef]
  • [62] Hussein AK, Li D, Kolsi L, Kata S, Sahoo B. A Review of nano fluid role to improve the performance of the heat pipe solar collectors. Energy Procedia 2017;109:417−424. [CrossRef]
  • [63] Nikbakhti R, Iranmanesh A. Potential application of a novel integrated adsorption-absorption refrigera- tion system powered with solar energy in Australia. Appl Therm Eng 2021;194:117114. [CrossRef]
  • [64] Fitó J, Coronas A, Mauran S, Mazet N, Stitou D. Definition and performance simulations of a novel solar-driven hybrid absorption-thermochemi- cal refrigeration system. Energy Convers Manag 2018;175:298−312. [CrossRef]
  • [65] Al-Nimr MA, Mugdadi B. A hybrid absorption/ thermo-electric cooling system driven by a concen- trated photovoltaic/thermal unit. Sustain Energy Technol Assess 2020;40:100769. [CrossRef]
  • [66] Xu Y, Li Z, Chen H, Lv S. Assessment and optimi- zation of solar absorption-subcooled compression hybrid cooling system for cold storage. Appl Therm Eng 2020;180:115886. [CrossRef]
  • [67] Jing Y, Li Z, Chen H, Lu S, Lv S. Exergoeconomic design criterion of solar absorption-subcooled com- pression hybrid cooling system based on the vari- able working conditions. Energy Convers Manag 2019;180:889−903. [CrossRef]
  • [68] Arabkoohsar A, Sadi M. Technical comparison of different solar-powered absorption chiller designs for co-supply of heat and cold networks. Energy Convers Manag 2020;206:112343. [CrossRef]
  • [69] Bellos E, Tzivanidis C, Symeou C, Antonopoulos KA. Energetic, exergetic and financial evaluation of a solar driven absorption chiller - A dynamic approach. Energy Convers Manag 2017;137:34−48. [CrossRef]
  • [70] Bellos E, Tzivanidis C. Parametric analysis and opti- mization of a cooling system with ejector-absorption chiller powered by solar parabolic trough collectors. Energy Convers Manag 2018;168:329−342. [CrossRef]
  • [71] Prasartkaew B, Kumar S. A low carbon cooling sys- tem using renewable energy resources and technol- ogies. Energy Build 2010;42:1453-1462. [CrossRef]
  • [72] International Institute of Refrigeration. 40th infor- matory note on refrigeration technologies. Int Inst Refrig 2020:17.
  • [73] Vasta S, Palomba V, Frazzica A, Di Bella G, Freni A. Techno-economic analysis of solar cooling systems for residential buildings in Italy. J Sol Energy Eng Trans ASME 2016;138:1−11. [CrossRef]
  • [74] Gabbrielli R, Castrataro P, Del Medico F. Performance and economic comparison of solar cooling configurations. Energy Procedia 2016;91:759−766. [CrossRef]
  • [75] Eicker U, Pietruschka D, Haag M, Schmitt A. Energy and economic performance of solar cooling systems world wide. Energy Procedia 2014;57:2581−2589. [CrossRef]
  • [76] Eicker U, Pietruschka D. Optimization and econom- ics of solar cooling systems. Adv Build Energy Res 2009;3:45−81. [CrossRef]
  • [77] Mahesh A, Kaushik SC. Solar adsorption cool- ing system: An overview. J Renew Sustain Energy 2012;4. [CrossRef]
There are 76 citations in total.

Details

Primary Language English
Subjects Thermodynamics and Statistical Physics
Journal Section Reviews
Authors

S. C. Kaushik This is me 0000-0001-5879-186X

Abhishek Verma

S. K. Tyagi This is me 0000-0002-3103-7100

Publication Date July 29, 2024
Submission Date May 10, 2022
Published in Issue Year 2024 Volume: 10 Issue: 4

Cite

APA Kaushik, S. C., Verma, A., & Tyagi, S. K. (2024). Advances in solar absorption cooling systems: An overview. Journal of Thermal Engineering, 10(4), 1044-1067.
AMA Kaushik SC, Verma A, Tyagi SK. Advances in solar absorption cooling systems: An overview. Journal of Thermal Engineering. July 2024;10(4):1044-1067.
Chicago Kaushik, S. C., Abhishek Verma, and S. K. Tyagi. “Advances in Solar Absorption Cooling Systems: An Overview”. Journal of Thermal Engineering 10, no. 4 (July 2024): 1044-67.
EndNote Kaushik SC, Verma A, Tyagi SK (July 1, 2024) Advances in solar absorption cooling systems: An overview. Journal of Thermal Engineering 10 4 1044–1067.
IEEE S. C. Kaushik, A. Verma, and S. K. Tyagi, “Advances in solar absorption cooling systems: An overview”, Journal of Thermal Engineering, vol. 10, no. 4, pp. 1044–1067, 2024.
ISNAD Kaushik, S. C. et al. “Advances in Solar Absorption Cooling Systems: An Overview”. Journal of Thermal Engineering 10/4 (July 2024), 1044-1067.
JAMA Kaushik SC, Verma A, Tyagi SK. Advances in solar absorption cooling systems: An overview. Journal of Thermal Engineering. 2024;10:1044–1067.
MLA Kaushik, S. C. et al. “Advances in Solar Absorption Cooling Systems: An Overview”. Journal of Thermal Engineering, vol. 10, no. 4, 2024, pp. 1044-67.
Vancouver Kaushik SC, Verma A, Tyagi SK. Advances in solar absorption cooling systems: An overview. Journal of Thermal Engineering. 2024;10(4):1044-67.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering