Within the scope of the study, research on the use of silica fume (SF), nano silica (NS) and fly ash (FA) together or separately in the production of micro concrete is presented. It is aimed to examine the changes in mechanical properties because of water and air curing in mixtures produced using SF, FA, and NS. While cement dosage and water/binder ratio in the mixtures were chosen as 670 kg/m3 and 0.53 respectively, the amount of SF, FA and NS was limited to 150 kg/m3 in total. In the study, samples were produced using 40x40x160 mm prism molds. All samples were divided into two different groups after 7 days of water curing and water (1st group) and air (2nd group) were applied up to 56 days. Flexural and compressive strength tests were performed on the water and air cured specimens for 7-56 days and 28-56 days, respectively. In addition, the porosity and unit volume weight values of the samples were examined. The results show that both flexural and compressive strengths of micro concretes increased after 28 days thanks to water curing.
Al-Amoudi, O. S. B., Maslehuddin, M., & Abiola, T. O. (2004). Effect of type and dosage of silica fume on plastic shrinkage in concrete exposed to hot weather. Construction and Building Materials, 18(10), 737–743. https://doi.org/10.1016/j.conbuildmat.2004.04.031
Aldridge, W. W., & Breen, J. E. (1970). Useful techniques in direct modeling of reinforced concrete structures. American Concrete Institute, ACI Special Publication, SP-024, 125–140.
ASTM. (2009). Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency. ASTM International, 04, 3. https://www.astm.org/Standards/C305
ASTM C348-19. (2018). Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars. Annual Book of ASTM Standards, 03(Reapproved), 98–100.
ASTM C349-08. (2014). Standard test method for compressive strength of hydraulic-cement mortars (using portions of prisms broken in flexure). Annual Book of ASTM Standards, 1–4.
ASTM C642-13. (2014). Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. Annual Book of ASTM Standards.
Biricik, H., & Sarier, N. (2014). Comparative study of the characteristics of nano silica-, silica fume- and fly ash-incorporated cement mortars. Materials Research, 17(3), 570–582. https://doi.org/10.1590/S1516-14392014005000054
Dhir, R., & Roderick Jones. (1996). Concrete Repair, Rehabilitation and Protection. Concrete Repair, Rehabilitation and Protection. https://doi.org/10.4324/9780203476635
Fahmy, M., Abu El-Hassan, M., Kamh, G., & Bashandy, A. (2020). Investigation of Using Nano-silica, Silica Fume and Fly Ash in High Strength Concrete. ERJ. Engineering Research Journal, 43(3), 211–221. https://doi.org/10.21608/erjm.2020.95144
Felekoğlu, B. (2009). High Performance Micro Concrete Design.
Gaitero, J. J., Campillo, I., Mondal, P., & Shah, S. P. (2010). Small changes can make a great difference. Transportation Research Record, 2141, 1–5. https://doi.org/10.3141/2141-01
Garboczi, E. J. (2009). Concrete Nanoscience and Nanotechnology: Definitions and Applications. Nanotechnology in Construction 3, 81–88. https://doi.org/10.1007/978-3-642-00980-8_9
Hou, P. K., Kawashima, S., Wang, K. J., Corr, D. J., Qian, J. S., & Shah, S. P. (2013). Effects of colloidal nanosilica on rheological and mechanical properties of fly ash-cement mortar. Cement and Concrete Composites, 35(1), 12–22. https://doi.org/10.1016/j.cemconcomp.2012.08.027
Jalal, M., Pouladkhan, A., Harandi, O. F., & Jafari, D. (2015). Comparative study on effects of Class F fly ash, nano silica and silica fume on properties of high performance self compacting concrete. Construction and Building Materials, 94, 90–104. https://doi.org/10.1016/j.conbuildmat.2015.07.001
Jo, B. W., Kim, C. H., Tae, G. ho, & Park, J. Bin. (2007). Characteristics of cement mortar with nano-SiO2 particles. Construction and Building Materials, 21(6), 1351–1355. https://doi.org/10.1016/j.conbuildmat.2005.12.020
Jumaat, M., Kabir, M., & Obaydullah, M. (2006). A review of the repair of reinforced concrete beams. Journal of Applied Science Research, 2(6), 317–326. https://doi.org/10.1017/CBO9781107415324.004
Lee, J., Mahendra, S., & Alvarez, P. J. J. (2010). Nanomaterials in the construction industry: A review of their applications and environmental health and safety considerations. ACS Nano, 4(7), 3580–3590. https://doi.org/10.1021/nn100866w
Li, H., Xiao, H. gang, & Ou, J. ping. (2004). A study on mechanical and pressure-sensitive properties of cement mortar with nanophase materials. Cement and Concrete Research, 34(3), 435–438. https://doi.org/10.1016/j.cemconres.2003.08.025
Litle, W. A., & Paparoni, M. (1966). Size Effect in Small-Scale Models of Reinforced Concrete Beams. ACI Journal Proceedings, 63(11). https://doi.org/10.14359/7666
Mazloom, M., Ramezanianpour, A. A., & Brooks, J. J. (2004). Effect of silica fume on mechanical properties of high-strength concrete. Cement and Concrete Composites, 26(4), 347–357. https://doi.org/10.1016/S0958-9465(03)00017-9
Mukhopadhyay, A. K. (2011). Next-Generation Nano-based Concrete Construction Products: A Review. In Nanotechnology in Civil Infrastructure (pp. 207–223). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-16657-0_7
Nounu, G., & Chaudhary, Z. U. H. (1999). Reinforced concrete repairs in beams. Construction and Building Materials, 13(4), 195–212. https://doi.org/10.1016/S0950-0618(99)00014-8
Pacheco-Torgal, F., Miraldo, S., Ding, Y., & Labrincha, J. A. (2013). Targeting HPC with the help of nanoparticles: An overview. Construction and Building Materials, 38, 365–370. https://doi.org/10.1016/j.conbuildmat.2012.08.013
Palomo, A., Shi, C., & Jiménez, A. F. (2011). New cements for the 21st century: The pursuit of an alternative to Portland cement. Cement and Concrete Research, 41(7), 750–763. http://www.sciencedirect.com/science/article/pii/S0008884611000925
Said, A. M., Zeidan, M. S., Bassuoni, M. T., & Tian, Y. (2012). Properties of concrete incorporating nano-silica. Construction and Building Materials, 36, 838–844. https://doi.org/10.1016/j.conbuildmat.2012.06.044
Sanchez, F., & Sobolev, K. (2010). Nanotechnology in concrete - A review. Construction and Building Materials, 24(11), 2060–2071. https://doi.org/10.1016/j.conbuildmat.2010.03.014
Torres, M. L., & García-Ruiz, P. A. (2009). Lightweight pozzolanic materials used in mortars: Evaluation of their influence on density, mechanical strength and water absorption. Cement and Concrete Composites, 31(2), 114–119. https://doi.org/10.1016/j.cemconcomp.2008.11.003
Zhang, M. H., & Islam, J. (2012). Use of nano-silica to reduce setting time and increase early strength of concretes with high volumes of fly ash or slag. Construction and Building Materials, 29, 573–580. https://doi.org/10.1016/j.conbuildmat.2011.11.013
SİLİKA DUMANI, NANO-SİLİKA VE UÇUCU KÜL İÇEREN MİKRO BETON KARIŞIMLARI İÇİN KÜR SÜRESİNİN DEĞERLENDİRİLMESİ
Çalışma kapsamında mikro beton üretiminde silis dumanı (SD), nano silika (NS) ve uçucu külün (UK) birlikte veya ayrı ayrı kullanımına yönelik araştırmalar sunulmaktadır. SD, UK ve NS kullanılarak üretilen karışımlarda su ve hava kürlenmesi nedeniyle mekanik özelliklerde meydana gelen değişikliklerin incelenmesi amaçlanmaktadır. Karışımlarda çimento dozajı ve su/bağlayıcı oranı sırasıyla 670 kg/m3 ve 0.53 olarak seçilirken SD, UK ve NS miktarı toplamda 150 kg/m3 ile sınırlandırılmıştır. Çalışmada 40x40x160 mm prizma kalıpları kullanılarak numuneler üretilmiştir. Tüm numuneler 7 gün su küründen sonra iki farklı gruba ayrıldı ve 56 güne kadar su (1. grup) ve hava (2. grup) uygulandı. Su ve hava ile kürlenen numunelere sırasıyla 7-56 gün ve 28-56 gün boyunca eğilme ve basınç dayanımı testleri yapılmıştır. Ayrıca numunelerin gözeneklilik ve birim hacim ağırlık değerleri incelenmiştir. Sonuçlar, su kürü sayesinde mikro betonların hem eğilme hem de basınç dayanımlarının 28 gün sonra arttığını göstermektedir.
Al-Amoudi, O. S. B., Maslehuddin, M., & Abiola, T. O. (2004). Effect of type and dosage of silica fume on plastic shrinkage in concrete exposed to hot weather. Construction and Building Materials, 18(10), 737–743. https://doi.org/10.1016/j.conbuildmat.2004.04.031
Aldridge, W. W., & Breen, J. E. (1970). Useful techniques in direct modeling of reinforced concrete structures. American Concrete Institute, ACI Special Publication, SP-024, 125–140.
ASTM. (2009). Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency. ASTM International, 04, 3. https://www.astm.org/Standards/C305
ASTM C348-19. (2018). Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars. Annual Book of ASTM Standards, 03(Reapproved), 98–100.
ASTM C349-08. (2014). Standard test method for compressive strength of hydraulic-cement mortars (using portions of prisms broken in flexure). Annual Book of ASTM Standards, 1–4.
ASTM C642-13. (2014). Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. Annual Book of ASTM Standards.
Biricik, H., & Sarier, N. (2014). Comparative study of the characteristics of nano silica-, silica fume- and fly ash-incorporated cement mortars. Materials Research, 17(3), 570–582. https://doi.org/10.1590/S1516-14392014005000054
Dhir, R., & Roderick Jones. (1996). Concrete Repair, Rehabilitation and Protection. Concrete Repair, Rehabilitation and Protection. https://doi.org/10.4324/9780203476635
Fahmy, M., Abu El-Hassan, M., Kamh, G., & Bashandy, A. (2020). Investigation of Using Nano-silica, Silica Fume and Fly Ash in High Strength Concrete. ERJ. Engineering Research Journal, 43(3), 211–221. https://doi.org/10.21608/erjm.2020.95144
Felekoğlu, B. (2009). High Performance Micro Concrete Design.
Gaitero, J. J., Campillo, I., Mondal, P., & Shah, S. P. (2010). Small changes can make a great difference. Transportation Research Record, 2141, 1–5. https://doi.org/10.3141/2141-01
Garboczi, E. J. (2009). Concrete Nanoscience and Nanotechnology: Definitions and Applications. Nanotechnology in Construction 3, 81–88. https://doi.org/10.1007/978-3-642-00980-8_9
Hou, P. K., Kawashima, S., Wang, K. J., Corr, D. J., Qian, J. S., & Shah, S. P. (2013). Effects of colloidal nanosilica on rheological and mechanical properties of fly ash-cement mortar. Cement and Concrete Composites, 35(1), 12–22. https://doi.org/10.1016/j.cemconcomp.2012.08.027
Jalal, M., Pouladkhan, A., Harandi, O. F., & Jafari, D. (2015). Comparative study on effects of Class F fly ash, nano silica and silica fume on properties of high performance self compacting concrete. Construction and Building Materials, 94, 90–104. https://doi.org/10.1016/j.conbuildmat.2015.07.001
Jo, B. W., Kim, C. H., Tae, G. ho, & Park, J. Bin. (2007). Characteristics of cement mortar with nano-SiO2 particles. Construction and Building Materials, 21(6), 1351–1355. https://doi.org/10.1016/j.conbuildmat.2005.12.020
Jumaat, M., Kabir, M., & Obaydullah, M. (2006). A review of the repair of reinforced concrete beams. Journal of Applied Science Research, 2(6), 317–326. https://doi.org/10.1017/CBO9781107415324.004
Lee, J., Mahendra, S., & Alvarez, P. J. J. (2010). Nanomaterials in the construction industry: A review of their applications and environmental health and safety considerations. ACS Nano, 4(7), 3580–3590. https://doi.org/10.1021/nn100866w
Li, H., Xiao, H. gang, & Ou, J. ping. (2004). A study on mechanical and pressure-sensitive properties of cement mortar with nanophase materials. Cement and Concrete Research, 34(3), 435–438. https://doi.org/10.1016/j.cemconres.2003.08.025
Litle, W. A., & Paparoni, M. (1966). Size Effect in Small-Scale Models of Reinforced Concrete Beams. ACI Journal Proceedings, 63(11). https://doi.org/10.14359/7666
Mazloom, M., Ramezanianpour, A. A., & Brooks, J. J. (2004). Effect of silica fume on mechanical properties of high-strength concrete. Cement and Concrete Composites, 26(4), 347–357. https://doi.org/10.1016/S0958-9465(03)00017-9
Mukhopadhyay, A. K. (2011). Next-Generation Nano-based Concrete Construction Products: A Review. In Nanotechnology in Civil Infrastructure (pp. 207–223). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-16657-0_7
Nounu, G., & Chaudhary, Z. U. H. (1999). Reinforced concrete repairs in beams. Construction and Building Materials, 13(4), 195–212. https://doi.org/10.1016/S0950-0618(99)00014-8
Pacheco-Torgal, F., Miraldo, S., Ding, Y., & Labrincha, J. A. (2013). Targeting HPC with the help of nanoparticles: An overview. Construction and Building Materials, 38, 365–370. https://doi.org/10.1016/j.conbuildmat.2012.08.013
Palomo, A., Shi, C., & Jiménez, A. F. (2011). New cements for the 21st century: The pursuit of an alternative to Portland cement. Cement and Concrete Research, 41(7), 750–763. http://www.sciencedirect.com/science/article/pii/S0008884611000925
Said, A. M., Zeidan, M. S., Bassuoni, M. T., & Tian, Y. (2012). Properties of concrete incorporating nano-silica. Construction and Building Materials, 36, 838–844. https://doi.org/10.1016/j.conbuildmat.2012.06.044
Sanchez, F., & Sobolev, K. (2010). Nanotechnology in concrete - A review. Construction and Building Materials, 24(11), 2060–2071. https://doi.org/10.1016/j.conbuildmat.2010.03.014
Torres, M. L., & García-Ruiz, P. A. (2009). Lightweight pozzolanic materials used in mortars: Evaluation of their influence on density, mechanical strength and water absorption. Cement and Concrete Composites, 31(2), 114–119. https://doi.org/10.1016/j.cemconcomp.2008.11.003
Zhang, M. H., & Islam, J. (2012). Use of nano-silica to reduce setting time and increase early strength of concretes with high volumes of fly ash or slag. Construction and Building Materials, 29, 573–580. https://doi.org/10.1016/j.conbuildmat.2011.11.013
Etli, S. (2022). EVALUATION OF CURING TIME FOR MICRO CONCRETE MIXES CONTAINING SILICA FUME, NANO-SILICA AND FLY ASH. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 21(42), 304-316. https://doi.org/10.55071/ticaretfbd.1093891
AMA
Etli S. EVALUATION OF CURING TIME FOR MICRO CONCRETE MIXES CONTAINING SILICA FUME, NANO-SILICA AND FLY ASH. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. December 2022;21(42):304-316. doi:10.55071/ticaretfbd.1093891
Chicago
Etli, Serkan. “EVALUATION OF CURING TIME FOR MICRO CONCRETE MIXES CONTAINING SILICA FUME, NANO-SILICA AND FLY ASH”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 21, no. 42 (December 2022): 304-16. https://doi.org/10.55071/ticaretfbd.1093891.
EndNote
Etli S (December 1, 2022) EVALUATION OF CURING TIME FOR MICRO CONCRETE MIXES CONTAINING SILICA FUME, NANO-SILICA AND FLY ASH. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 21 42 304–316.
IEEE
S. Etli, “EVALUATION OF CURING TIME FOR MICRO CONCRETE MIXES CONTAINING SILICA FUME, NANO-SILICA AND FLY ASH”, İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, vol. 21, no. 42, pp. 304–316, 2022, doi: 10.55071/ticaretfbd.1093891.
ISNAD
Etli, Serkan. “EVALUATION OF CURING TIME FOR MICRO CONCRETE MIXES CONTAINING SILICA FUME, NANO-SILICA AND FLY ASH”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 21/42 (December 2022), 304-316. https://doi.org/10.55071/ticaretfbd.1093891.
JAMA
Etli S. EVALUATION OF CURING TIME FOR MICRO CONCRETE MIXES CONTAINING SILICA FUME, NANO-SILICA AND FLY ASH. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. 2022;21:304–316.
MLA
Etli, Serkan. “EVALUATION OF CURING TIME FOR MICRO CONCRETE MIXES CONTAINING SILICA FUME, NANO-SILICA AND FLY ASH”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, vol. 21, no. 42, 2022, pp. 304-16, doi:10.55071/ticaretfbd.1093891.
Vancouver
Etli S. EVALUATION OF CURING TIME FOR MICRO CONCRETE MIXES CONTAINING SILICA FUME, NANO-SILICA AND FLY ASH. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. 2022;21(42):304-16.