Research Article
BibTex RIS Cite

STUDYING THE ELECTROCHEMICAL BEHAVIORS OF ANODIZED METALLIC IMPLANTS FOR IMPROVED CORROSION RESISTANCE

Year 2022, , 117 - 135, 28.06.2022
https://doi.org/10.55071/ticaretfbd.1109393

Abstract

A study about long-term corrosion behavior of anodized and non-anodized Ti6Al4V and MgAZ31B biomaterials was conducted under controlled conditions. By applying 20V DC potential, MgAZ31B alloys was anodized in phosphoric acid and potassium hydroxide while Ti6Al4V alloys was anodized in phosphoric acid and oxalic acid. Long-term experiments were carried out by immersing them in deionized (DI) water, 3% NaCl and phosphate-buffered saline (PBS) solutions. The corrosion rate and pattern were measured by electrochemical analysis. Also, as a result of anodization, the natural oxide layer was observed on the material surface, thus the corrosion rate is reduced and the life of the biomaterial has been improved.

Supporting Institution

Wichita State University

Thanks

The authors greatly acknowledge Wichita State University for financial and technical support of this study.

References

  • Ahmad, Z. (2006). Principles of corrosion engineering and corrosion control. Elsevier.
  • Bandeira, R. M., Rêgo, G. C., Picone, C. A., van Drunen, J., Correr, W. R., et al. (2020). Alternating current oxidation of Ti–6Al–4V alloy in oxalic acid for corrosion-resistant surface finishing. SN Applied Sciences, 2(6), 1-14.
  • Barril, S., Debaud, N., Mischler, S. & Landolt, D. (2002). A tribo-electrochemical apparatus for in vitro investigation of fretting–corrosion of metallic implant materials. Wear, 252(9-10), 744-754.
  • Bidhendi, H.R.A. & Pouranvari, M. (2012). Corrosion study of metallic biomaterials in simulated body fluid. Metallurgical and Materials Engineering, 17(1), 13-22.
  • Biesiekierski, A. Wang, J., Gepreel, M. A. H., & Wen, C. (2012). A new look at biomedical Ti-based shape memory alloys. Acta Biomaterialia, 8(5), 1661-1669.
  • Burnat, B. Walkowiak-Przybyło, M., Błaszczyk, T., & Klimek, L. (2013). Corrosion behaviour of polished and sandblasted titanium alloys in PBS solution. Acta of Bioengineering and Biomechanics, 15(1), 87-95.
  • Callister, W. D. & Rethwisch, D. G. (2007). Materials science and engineering: an introduction 7, 665-715. John Wiley & Sons, New York.
  • Chatterjee, S. (2022). Titanate incorporated anodized coating on magnesium alloy for corrosion protection, antibacterial responses and osteogenic enhancement. Journal of Magnesium and Alloys, 10(4), 1109-1123.
  • De Oliveira, L.A. & Antunes, R. A. (2018). Influence of the electrolyte composition on the corrosion behavior of anodized AZ31B magnesium alloy. Metals - Open Access Metallurgy Journal, 11(10), 1573.
  • De Viteri, V.S. & Fuentes, E. (2013). Titanium and titanium alloys as biomaterials. Tribology-fundamentals and advancements, 5, 154-181.
  • Estrada-Cabrera, E., Torres-Ferrer, L. R., Aztatzi-Aguilar, O. G., De Vizcaya-Ruiz, A., Meraz-Rios, M. A., et al. (2019). Chitosan-bioglass coatings on partially nanostructured anodized Ti-6Al-4V alloy for biomedical applications. Surface and Coatings Technology, 375, 468-476.
  • Fattah-Alhosseini, A. & Joni, M. S. (2015). Effect of KOH Concentration on the Microstructure and Electrochemical Properties of MAO-Coated Mg Alloy AZ31B. Journal of Materials Engineering and Performance, 24(9), 3444-3452.
  • Feng, A. & Han, Y. (2010). The microstructure, mechanical and corrosion properties of calcium polyphosphate reinforced ZK60A magnesium alloy composites. Journal of Alloys and Compounds, 504(2), 585-593.
  • Ferreira, M. E., de Lourdes Pereira, M., e Costa, F. G., Sousa, J. P. & de Carvalho, G.S. (2003). Comparative study of metallic biomaterials toxicity: A histochemical and immunohistochemical demonstration in mouse spleen. Journal of Trace Elements in Medicine and Biology, 17(1), 45-49.
  • Hermawan, H., Ramdan, D. & Djuansjah, J.R. (2011). Metals for biomedical applications. Biomedical engineering-from theory to applications, 1, 411-430.
  • Hiromoto, S., Shishido, T., Yamamoto, A., Maruyama, N., Somekawa, H. & Mukai, T. (2008). Precipitation control of calcium phosphate on pure magnesium by anodization. Corrosion Science, 50(10), 2906-2913.
  • Hsiao, H.Y. & Tsai, W.T. (2005). Characterization of anodic films formed on AZ91D magnesium alloy. Surface and Coatings Technology, 190(2-3), 299-308.
  • Jones, D.A. (1996). Principles and prevention of corrosion prentice hall. Saddle River. New Jorsey.
  • Karambakhsh, A., Afshar, A. & Malekinejad, P. (2012). Corrosion resistance and color properties of anodized Ti-6Al-4V. Journal of Materials Engineering and Performance, 21(1), 121-127.
  • Khaselev, O. & Yahalom, J. (1998). The anodic behavior of binary Mg-Al alloys in KOH-aluminate solutions. Corrosion Science, 40(7), 1149-1160.
  • Komotori, J., Hisamori, N. & Ohmori, Y. (2007). The corrosion/wear mechanisms of Ti–6Al–4V alloy for different scratching rates. Wear, 263(1-6), 412-418.
  • Kumar, N., Langer, R. S. & Domb, A. J. (2002). Polyanhydrides: an overview. Advanced Drug Delivery Reviews, 54(7), 889-910.
  • Leinenbach, C. & Eifler, D. (2006). Fatigue and cyclic deformation behaviour of surface-modified titanium alloys in simulated physiological media. Biomaterials, 27(8), 1200-1208.
  • Li, L. L., Cheng, Y. L., Wang, H. M. & Zhang, Z. (2008). Anodization of AZ91 magnesium alloy in alkaline solution containing silicate and corrosion properties of anodized films. Transactions of Nonferrous Metals Society of China, 18(3), 722-727.
  • Lim, S.G. & Choe, H. C. (2019). Bioactive apatite formation on PEO-treated Ti-6Al-4V alloy after 3rd anodic titanium oxidation. Applied Surface Science, 484, 365-373.
  • Maradit-Kremers, H., Crowson, C. S., Larson, D., Jiranek, W. A. & Berry, D.J. (2014). Prevalence of total hip (THA) and total knee (TKA) arthroplasty in the United States. In Abstract presented at: AAOS Annual Meeting.
  • Manivasagam, G., Dhinasekaran, D. & Rajamanickam, A. (2010). Biomedical implants: corrosion and its prevention-a review. Recent Patents on Corrosion Science. 2, 40-54
  • McCord, C. P. (1942). Chemical gas gangrene from metallic magnesium. Indust Med, 11, 71-78.
  • Mizutani, Y., Kim, S. J., Ichino, R. & Okido, M. (2003). Anodizing of Mg alloys in alkaline solutions. Surface and Coatings Technology, 169, 143-146.
  • Marcus, P. (Ed.). (2011). Corrosion mechanisms in theory and practice. CRC press. Florida.
  • Nasab, M. B., Hassan, M. R. & Sahari, B. B. (2010). Metallic biomaterials of knee and hip-a review. Trends Biomater. Artif. Organs, 24(1), 69-82.
  • Narayanan, R. & Seshadri, S. K. (2007). Phosphoric acid anodization of Ti–6Al–4V–Structural and corrosion aspects. Corrosion Science, 49(2), 542-558.
  • Nishinaka, K., Salman, S. A., Kuroda, K. & Okido, M. (2018). Characterization and Structure Analysis of the Anodic Film Formed on AZ31 Mg Alloy in KOH Alkaline Solution with Various Additives. In Key Engineering Materials, 786, 159-164.
  • Okazaki, Y. (2002). Effect of friction on anodic polarization properties of metallic biomaterials. Biomaterials, 23(9), 2071-2077.
  • Okazaki, Y. & Gotoh, E. (2002). Implant applications of highly corrosion-resistant Ti-15Zr-4Nb-4Ta alloy. Materials Transactions, 43(12), 2943-2948.
  • Ono, S., Miyake, M. & Asoh, H. (2004). Effects of formation voltage and electrolyte ions concentration on the structure and passivity of anodic films on magnesium. Journal of Japan Institute of Light Metals, 54(11), 544-550.
  • Park, I. S., Jang, Y. S., Kim, Y. K., Lee, M. H., Yoon, J. M. & Bae, T. S. (2008). Surface characteristics of AZ91D alloy anodized with various conditions. Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of Surfaces, Interfaces and Thin Films, 40(9), 1270-1277.
  • Park, Y. J., Shin, K. H. & Song, H. J. (2007). Effects of anodizing conditions on bond strength of anodically oxidized film to titanium substrate. Applied Surface Science, 253(14), 6013-6018.
  • Pietak, A., Mahoney, P., Dias, G. J. & Staiger, M. P. (2008). Bone-like matrix formation on magnesium and magnesium alloys. Journal of Materials Science: Materials in Medicine, 19(1), 407-415.
  • Poinern, G. E. J., Brundavanam, S. & Fawcett, D. (2012). Biomedical magnesium alloys: A review of material properties, surface modifications and potential as a biodegradable orthopaedic implant. American Journal of Biomedical Engineering, 2(6), 218-240.
  • Rivera-Denizard, O., Diffoot-Carlo, N., Navas, V. & Sundaram, P. A. (2008). Biocompatibility studies of human fetal osteoblast cells cultured on gamma titanium aluminide. Journal of Materials Science: Materials in Medicine, 19(1), 153-158.
  • Razavi, M., Fathi, M. H. & Meratian, M. (2010). Microstructure, mechanical properties and bio-corrosion evaluation of biodegradable AZ91-FA nanocomposites for biomedical applications. Materials Science and Engineering, A, 527(26), 6938-6944.
  • Reifenrath, J., Bormann, D. & Meyer-Lindenberg, A. (2011). Magnesium alloys as promising degradable implant materials in orthopaedic research. Magnesium alloys—corrosion and surface treatments, 94-108.
  • Revie, R. W. (2008). Corrosion and corrosion control: An introduction to corrosion science and engineering. John Wiley & Sons. New York.
  • Schutze, M. (2000). Corrosion and environmental degradation. Wiley-Vch. Weinheim.
  • Shahba, R. A., Ghannem, W. A., El-Shenawy, A. E. S., Ahmed, A. S. & Tantawy, S. M. (2011). Corrosion and inhibition of Ti-6Al-4V alloy in NaCl solution. Int. J. Electrochem. Sci, 6(11), 5499-5509.
  • Sul, Y. T., Johansson, C. B., Jeong, Y. & Albrektsson, T. (2001). The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes. Medical Engineering & Physics, 23(5), 329-346.
  • Tan, Y. M. & Revie, R. W. (2012). Heterogeneous electrode processes and localized corrosion 13. John Wiley & Sons. New York.
  • Topcu, İ. (2020). Investigation of wear behavior of particle reinforced AL/B4C composites under different sintering conditions. Tehnički glasnik, 14(1), 7-14.
  • Topcu, İ., Gulsoy, H. O. & Gulluoglu, A. N. (2019). Evaluation of Multi-Walled CNT particulate reinforced Ti6Al4V alloy based composites creep behavior of materials under static loads. Gazi University Journal of Science, 32(1), 286-298.
  • Uchi, H., Kanno, T. & Alwitt, R. S. (2001). Structural features of crystalline anodic alumina films. Journal of the Electrochemical Society, 148(1), B17-B23.
  • Üner, İ. & Koçak, E.D. (2012). Poli (laktik asit)’in kullanım alanları ve nano lif üretimdeki uygulamaları. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 11(22), 79-88.
  • Warranty, Nobelbiocarecom, (2016). Retrieved April 21, 2016 from https://www.nobelbiocare.com/us/en/footer/warranty.html
  • Wang, Y., Zhao, S., Li, G., Zhang, S., Zhao, R., Dong, A. & Zhang, R. (2020). Preparation and in vitro antibacterial properties of anodic coatings co-doped with Cu, Zn, and P on a Ti–6Al–4V alloy. Materials Chemistry and Physics, 241, 122360.
  • Wen, C. E., Mabuchi, M., Yamada, Y., Shimojima, K., Chino, Y. & Asahina, T. (2001). Processing of biocompatible porous Ti and Mg. Scripta Materialia, 45(10), 1147-1153.
  • Willert, H. G., Brobäck, L. G., Buchhorn, G. H., Jensen, P. H., Köster, G., Lang, I., Ochsner P. & Schenk, R. (1996). Crevice corrosion of cemented titanium alloy stems in total hip replacements. Clinical Orthopaedics and Related Research, 333, 51-75.
  • Witte, F., Hort, N., Vogt, C., Cohen, S., Kainer, K. U., Willumeit, R. & Feyerabend, F. (2008). Degradable biomaterials based on magnesium corrosion. Current Opinion in Solid State and Materials Science, 12(5-6), 63-72.
  • Wu, S., Liu, X., Yeung, K. W., Guo, H., Li, P., Hu, T., Chung, C.Y. & Chu, P. K. (2013). Surface nano-architectures and their effects on the mechanical properties and corrosion behavior of Ti-based orthopedic implants. Surface and Coatings Technology, 233, 13-26.
  • Yerokhin, A. L., Nie, X., Leyland, A., Matthews, A. & Dowey, S. J. (1999). Plasma electrolysis for surface engineering. Surface and Coatings Technology, 122(2-3), 73-93.
  • Yilmaz, E. B., Topcu, I. & Ceylan, M., (2020). Experimental investigation on mechanical properties of Multi Wall Carbon Nanotubes (MWCNT) reinforced aluminium metal matrix composites. Journal of Ceramic Processing Research, 21(5), 596-601.
  • Yun, Y., Dong, Z., Lee, N., Liu, Y., Xue, D., Guo, X. & Sundaramurthy, S. (2009). Revolutionizing biodegradable metals. Materials Today, 12(10), 22-32.
  • Zaffora, A., Di Franco, F., Virtù, D., Carfì Pavia, F., Ghersi, G., Virtanen, S. & Santamaria, M. (2021). Tuning of the Mg Alloy AZ31 Anodizing Process for Biodegradable Implants. ACS applied materials & interfaces, 13(11), 12866–12876.
  • Zeng, R., Dietzel, W., Witte, F., Hort, N. & Blawert, C. (2008). Progress and challenge for magnesium alloys as biomaterials. Advanced Engineering Materials, 10(8), B3-B14.
  • Zhang, E., Yin, D., Xu, L., Yang, L. & Yang, K. (2009). Microstructure, mechanical and corrosion properties and biocompatibility of Mg–Zn–Mn alloys for biomedical application. Materials Science and Engineering: C, 29(3), 987-993.

GELİŞMİŞ KOROZYON DİRENCİ İÇİN ELOKSALLI METALİK İMPLANTLARIN ELEKTROKİMYASAL DAVRANIŞLARININ İNCELENMESİ

Year 2022, , 117 - 135, 28.06.2022
https://doi.org/10.55071/ticaretfbd.1109393

Abstract

Eloksallı ve anodize edilmemiş Ti6Al4V ve Mg AZ31B biyomalzemelerinin korozyon davranışına ilişkin uzun vadeli bir araştırma, kontrollü koşullar altında gerçekleştirilmiştir. Ti6Al4V fosforik asit ve oksalik asit içinde anodize edilirken, Mg AZ31B fosforik asit ve potasyum hidroksit içinde 20V DC potansiyel uygulanarak anodize edilmiştir. %3 NaCl, fosfat tamponlu salin (PBS) ve deiyonize (DI) su çözeltilerine daldırılarak uzun süreli deneyler yapıldı. Korozyon hızı ve deseni elektrokimyasal analiz ile ölçülmüş ve anotlamanın malzeme yüzeyindeki doğal oksit tabakasını arttırdığı, korozyon hızını azalttığı ve biyomalzemenin ömrünü uzattığı gözlemlenmiştir.

References

  • Ahmad, Z. (2006). Principles of corrosion engineering and corrosion control. Elsevier.
  • Bandeira, R. M., Rêgo, G. C., Picone, C. A., van Drunen, J., Correr, W. R., et al. (2020). Alternating current oxidation of Ti–6Al–4V alloy in oxalic acid for corrosion-resistant surface finishing. SN Applied Sciences, 2(6), 1-14.
  • Barril, S., Debaud, N., Mischler, S. & Landolt, D. (2002). A tribo-electrochemical apparatus for in vitro investigation of fretting–corrosion of metallic implant materials. Wear, 252(9-10), 744-754.
  • Bidhendi, H.R.A. & Pouranvari, M. (2012). Corrosion study of metallic biomaterials in simulated body fluid. Metallurgical and Materials Engineering, 17(1), 13-22.
  • Biesiekierski, A. Wang, J., Gepreel, M. A. H., & Wen, C. (2012). A new look at biomedical Ti-based shape memory alloys. Acta Biomaterialia, 8(5), 1661-1669.
  • Burnat, B. Walkowiak-Przybyło, M., Błaszczyk, T., & Klimek, L. (2013). Corrosion behaviour of polished and sandblasted titanium alloys in PBS solution. Acta of Bioengineering and Biomechanics, 15(1), 87-95.
  • Callister, W. D. & Rethwisch, D. G. (2007). Materials science and engineering: an introduction 7, 665-715. John Wiley & Sons, New York.
  • Chatterjee, S. (2022). Titanate incorporated anodized coating on magnesium alloy for corrosion protection, antibacterial responses and osteogenic enhancement. Journal of Magnesium and Alloys, 10(4), 1109-1123.
  • De Oliveira, L.A. & Antunes, R. A. (2018). Influence of the electrolyte composition on the corrosion behavior of anodized AZ31B magnesium alloy. Metals - Open Access Metallurgy Journal, 11(10), 1573.
  • De Viteri, V.S. & Fuentes, E. (2013). Titanium and titanium alloys as biomaterials. Tribology-fundamentals and advancements, 5, 154-181.
  • Estrada-Cabrera, E., Torres-Ferrer, L. R., Aztatzi-Aguilar, O. G., De Vizcaya-Ruiz, A., Meraz-Rios, M. A., et al. (2019). Chitosan-bioglass coatings on partially nanostructured anodized Ti-6Al-4V alloy for biomedical applications. Surface and Coatings Technology, 375, 468-476.
  • Fattah-Alhosseini, A. & Joni, M. S. (2015). Effect of KOH Concentration on the Microstructure and Electrochemical Properties of MAO-Coated Mg Alloy AZ31B. Journal of Materials Engineering and Performance, 24(9), 3444-3452.
  • Feng, A. & Han, Y. (2010). The microstructure, mechanical and corrosion properties of calcium polyphosphate reinforced ZK60A magnesium alloy composites. Journal of Alloys and Compounds, 504(2), 585-593.
  • Ferreira, M. E., de Lourdes Pereira, M., e Costa, F. G., Sousa, J. P. & de Carvalho, G.S. (2003). Comparative study of metallic biomaterials toxicity: A histochemical and immunohistochemical demonstration in mouse spleen. Journal of Trace Elements in Medicine and Biology, 17(1), 45-49.
  • Hermawan, H., Ramdan, D. & Djuansjah, J.R. (2011). Metals for biomedical applications. Biomedical engineering-from theory to applications, 1, 411-430.
  • Hiromoto, S., Shishido, T., Yamamoto, A., Maruyama, N., Somekawa, H. & Mukai, T. (2008). Precipitation control of calcium phosphate on pure magnesium by anodization. Corrosion Science, 50(10), 2906-2913.
  • Hsiao, H.Y. & Tsai, W.T. (2005). Characterization of anodic films formed on AZ91D magnesium alloy. Surface and Coatings Technology, 190(2-3), 299-308.
  • Jones, D.A. (1996). Principles and prevention of corrosion prentice hall. Saddle River. New Jorsey.
  • Karambakhsh, A., Afshar, A. & Malekinejad, P. (2012). Corrosion resistance and color properties of anodized Ti-6Al-4V. Journal of Materials Engineering and Performance, 21(1), 121-127.
  • Khaselev, O. & Yahalom, J. (1998). The anodic behavior of binary Mg-Al alloys in KOH-aluminate solutions. Corrosion Science, 40(7), 1149-1160.
  • Komotori, J., Hisamori, N. & Ohmori, Y. (2007). The corrosion/wear mechanisms of Ti–6Al–4V alloy for different scratching rates. Wear, 263(1-6), 412-418.
  • Kumar, N., Langer, R. S. & Domb, A. J. (2002). Polyanhydrides: an overview. Advanced Drug Delivery Reviews, 54(7), 889-910.
  • Leinenbach, C. & Eifler, D. (2006). Fatigue and cyclic deformation behaviour of surface-modified titanium alloys in simulated physiological media. Biomaterials, 27(8), 1200-1208.
  • Li, L. L., Cheng, Y. L., Wang, H. M. & Zhang, Z. (2008). Anodization of AZ91 magnesium alloy in alkaline solution containing silicate and corrosion properties of anodized films. Transactions of Nonferrous Metals Society of China, 18(3), 722-727.
  • Lim, S.G. & Choe, H. C. (2019). Bioactive apatite formation on PEO-treated Ti-6Al-4V alloy after 3rd anodic titanium oxidation. Applied Surface Science, 484, 365-373.
  • Maradit-Kremers, H., Crowson, C. S., Larson, D., Jiranek, W. A. & Berry, D.J. (2014). Prevalence of total hip (THA) and total knee (TKA) arthroplasty in the United States. In Abstract presented at: AAOS Annual Meeting.
  • Manivasagam, G., Dhinasekaran, D. & Rajamanickam, A. (2010). Biomedical implants: corrosion and its prevention-a review. Recent Patents on Corrosion Science. 2, 40-54
  • McCord, C. P. (1942). Chemical gas gangrene from metallic magnesium. Indust Med, 11, 71-78.
  • Mizutani, Y., Kim, S. J., Ichino, R. & Okido, M. (2003). Anodizing of Mg alloys in alkaline solutions. Surface and Coatings Technology, 169, 143-146.
  • Marcus, P. (Ed.). (2011). Corrosion mechanisms in theory and practice. CRC press. Florida.
  • Nasab, M. B., Hassan, M. R. & Sahari, B. B. (2010). Metallic biomaterials of knee and hip-a review. Trends Biomater. Artif. Organs, 24(1), 69-82.
  • Narayanan, R. & Seshadri, S. K. (2007). Phosphoric acid anodization of Ti–6Al–4V–Structural and corrosion aspects. Corrosion Science, 49(2), 542-558.
  • Nishinaka, K., Salman, S. A., Kuroda, K. & Okido, M. (2018). Characterization and Structure Analysis of the Anodic Film Formed on AZ31 Mg Alloy in KOH Alkaline Solution with Various Additives. In Key Engineering Materials, 786, 159-164.
  • Okazaki, Y. (2002). Effect of friction on anodic polarization properties of metallic biomaterials. Biomaterials, 23(9), 2071-2077.
  • Okazaki, Y. & Gotoh, E. (2002). Implant applications of highly corrosion-resistant Ti-15Zr-4Nb-4Ta alloy. Materials Transactions, 43(12), 2943-2948.
  • Ono, S., Miyake, M. & Asoh, H. (2004). Effects of formation voltage and electrolyte ions concentration on the structure and passivity of anodic films on magnesium. Journal of Japan Institute of Light Metals, 54(11), 544-550.
  • Park, I. S., Jang, Y. S., Kim, Y. K., Lee, M. H., Yoon, J. M. & Bae, T. S. (2008). Surface characteristics of AZ91D alloy anodized with various conditions. Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of Surfaces, Interfaces and Thin Films, 40(9), 1270-1277.
  • Park, Y. J., Shin, K. H. & Song, H. J. (2007). Effects of anodizing conditions on bond strength of anodically oxidized film to titanium substrate. Applied Surface Science, 253(14), 6013-6018.
  • Pietak, A., Mahoney, P., Dias, G. J. & Staiger, M. P. (2008). Bone-like matrix formation on magnesium and magnesium alloys. Journal of Materials Science: Materials in Medicine, 19(1), 407-415.
  • Poinern, G. E. J., Brundavanam, S. & Fawcett, D. (2012). Biomedical magnesium alloys: A review of material properties, surface modifications and potential as a biodegradable orthopaedic implant. American Journal of Biomedical Engineering, 2(6), 218-240.
  • Rivera-Denizard, O., Diffoot-Carlo, N., Navas, V. & Sundaram, P. A. (2008). Biocompatibility studies of human fetal osteoblast cells cultured on gamma titanium aluminide. Journal of Materials Science: Materials in Medicine, 19(1), 153-158.
  • Razavi, M., Fathi, M. H. & Meratian, M. (2010). Microstructure, mechanical properties and bio-corrosion evaluation of biodegradable AZ91-FA nanocomposites for biomedical applications. Materials Science and Engineering, A, 527(26), 6938-6944.
  • Reifenrath, J., Bormann, D. & Meyer-Lindenberg, A. (2011). Magnesium alloys as promising degradable implant materials in orthopaedic research. Magnesium alloys—corrosion and surface treatments, 94-108.
  • Revie, R. W. (2008). Corrosion and corrosion control: An introduction to corrosion science and engineering. John Wiley & Sons. New York.
  • Schutze, M. (2000). Corrosion and environmental degradation. Wiley-Vch. Weinheim.
  • Shahba, R. A., Ghannem, W. A., El-Shenawy, A. E. S., Ahmed, A. S. & Tantawy, S. M. (2011). Corrosion and inhibition of Ti-6Al-4V alloy in NaCl solution. Int. J. Electrochem. Sci, 6(11), 5499-5509.
  • Sul, Y. T., Johansson, C. B., Jeong, Y. & Albrektsson, T. (2001). The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes. Medical Engineering & Physics, 23(5), 329-346.
  • Tan, Y. M. & Revie, R. W. (2012). Heterogeneous electrode processes and localized corrosion 13. John Wiley & Sons. New York.
  • Topcu, İ. (2020). Investigation of wear behavior of particle reinforced AL/B4C composites under different sintering conditions. Tehnički glasnik, 14(1), 7-14.
  • Topcu, İ., Gulsoy, H. O. & Gulluoglu, A. N. (2019). Evaluation of Multi-Walled CNT particulate reinforced Ti6Al4V alloy based composites creep behavior of materials under static loads. Gazi University Journal of Science, 32(1), 286-298.
  • Uchi, H., Kanno, T. & Alwitt, R. S. (2001). Structural features of crystalline anodic alumina films. Journal of the Electrochemical Society, 148(1), B17-B23.
  • Üner, İ. & Koçak, E.D. (2012). Poli (laktik asit)’in kullanım alanları ve nano lif üretimdeki uygulamaları. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 11(22), 79-88.
  • Warranty, Nobelbiocarecom, (2016). Retrieved April 21, 2016 from https://www.nobelbiocare.com/us/en/footer/warranty.html
  • Wang, Y., Zhao, S., Li, G., Zhang, S., Zhao, R., Dong, A. & Zhang, R. (2020). Preparation and in vitro antibacterial properties of anodic coatings co-doped with Cu, Zn, and P on a Ti–6Al–4V alloy. Materials Chemistry and Physics, 241, 122360.
  • Wen, C. E., Mabuchi, M., Yamada, Y., Shimojima, K., Chino, Y. & Asahina, T. (2001). Processing of biocompatible porous Ti and Mg. Scripta Materialia, 45(10), 1147-1153.
  • Willert, H. G., Brobäck, L. G., Buchhorn, G. H., Jensen, P. H., Köster, G., Lang, I., Ochsner P. & Schenk, R. (1996). Crevice corrosion of cemented titanium alloy stems in total hip replacements. Clinical Orthopaedics and Related Research, 333, 51-75.
  • Witte, F., Hort, N., Vogt, C., Cohen, S., Kainer, K. U., Willumeit, R. & Feyerabend, F. (2008). Degradable biomaterials based on magnesium corrosion. Current Opinion in Solid State and Materials Science, 12(5-6), 63-72.
  • Wu, S., Liu, X., Yeung, K. W., Guo, H., Li, P., Hu, T., Chung, C.Y. & Chu, P. K. (2013). Surface nano-architectures and their effects on the mechanical properties and corrosion behavior of Ti-based orthopedic implants. Surface and Coatings Technology, 233, 13-26.
  • Yerokhin, A. L., Nie, X., Leyland, A., Matthews, A. & Dowey, S. J. (1999). Plasma electrolysis for surface engineering. Surface and Coatings Technology, 122(2-3), 73-93.
  • Yilmaz, E. B., Topcu, I. & Ceylan, M., (2020). Experimental investigation on mechanical properties of Multi Wall Carbon Nanotubes (MWCNT) reinforced aluminium metal matrix composites. Journal of Ceramic Processing Research, 21(5), 596-601.
  • Yun, Y., Dong, Z., Lee, N., Liu, Y., Xue, D., Guo, X. & Sundaramurthy, S. (2009). Revolutionizing biodegradable metals. Materials Today, 12(10), 22-32.
  • Zaffora, A., Di Franco, F., Virtù, D., Carfì Pavia, F., Ghersi, G., Virtanen, S. & Santamaria, M. (2021). Tuning of the Mg Alloy AZ31 Anodizing Process for Biodegradable Implants. ACS applied materials & interfaces, 13(11), 12866–12876.
  • Zeng, R., Dietzel, W., Witte, F., Hort, N. & Blawert, C. (2008). Progress and challenge for magnesium alloys as biomaterials. Advanced Engineering Materials, 10(8), B3-B14.
  • Zhang, E., Yin, D., Xu, L., Yang, L. & Yang, K. (2009). Microstructure, mechanical and corrosion properties and biocompatibility of Mg–Zn–Mn alloys for biomedical application. Materials Science and Engineering: C, 29(3), 987-993.
There are 64 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Md. Shafinur Murad 0000-0002-5680-9859

Aybala Usta 0000-0002-6895-3540

Ramazan Asmatulu 0000-0001-8104-2285

Muhammet Ceylan 0000-0001-6933-2917

Publication Date June 28, 2022
Submission Date April 26, 2022
Published in Issue Year 2022

Cite

APA Murad, M. S., Usta, A., Asmatulu, R., Ceylan, M. (2022). STUDYING THE ELECTROCHEMICAL BEHAVIORS OF ANODIZED METALLIC IMPLANTS FOR IMPROVED CORROSION RESISTANCE. İstanbul Commerce University Journal of Science, 21(41), 117-135. https://doi.org/10.55071/ticaretfbd.1109393
AMA Murad MS, Usta A, Asmatulu R, Ceylan M. STUDYING THE ELECTROCHEMICAL BEHAVIORS OF ANODIZED METALLIC IMPLANTS FOR IMPROVED CORROSION RESISTANCE. İstanbul Commerce University Journal of Science. June 2022;21(41):117-135. doi:10.55071/ticaretfbd.1109393
Chicago Murad, Md. Shafinur, Aybala Usta, Ramazan Asmatulu, and Muhammet Ceylan. “STUDYING THE ELECTROCHEMICAL BEHAVIORS OF ANODIZED METALLIC IMPLANTS FOR IMPROVED CORROSION RESISTANCE”. İstanbul Commerce University Journal of Science 21, no. 41 (June 2022): 117-35. https://doi.org/10.55071/ticaretfbd.1109393.
EndNote Murad MS, Usta A, Asmatulu R, Ceylan M (June 1, 2022) STUDYING THE ELECTROCHEMICAL BEHAVIORS OF ANODIZED METALLIC IMPLANTS FOR IMPROVED CORROSION RESISTANCE. İstanbul Commerce University Journal of Science 21 41 117–135.
IEEE M. S. Murad, A. Usta, R. Asmatulu, and M. Ceylan, “STUDYING THE ELECTROCHEMICAL BEHAVIORS OF ANODIZED METALLIC IMPLANTS FOR IMPROVED CORROSION RESISTANCE”, İstanbul Commerce University Journal of Science, vol. 21, no. 41, pp. 117–135, 2022, doi: 10.55071/ticaretfbd.1109393.
ISNAD Murad, Md. Shafinur et al. “STUDYING THE ELECTROCHEMICAL BEHAVIORS OF ANODIZED METALLIC IMPLANTS FOR IMPROVED CORROSION RESISTANCE”. İstanbul Commerce University Journal of Science 21/41 (June 2022), 117-135. https://doi.org/10.55071/ticaretfbd.1109393.
JAMA Murad MS, Usta A, Asmatulu R, Ceylan M. STUDYING THE ELECTROCHEMICAL BEHAVIORS OF ANODIZED METALLIC IMPLANTS FOR IMPROVED CORROSION RESISTANCE. İstanbul Commerce University Journal of Science. 2022;21:117–135.
MLA Murad, Md. Shafinur et al. “STUDYING THE ELECTROCHEMICAL BEHAVIORS OF ANODIZED METALLIC IMPLANTS FOR IMPROVED CORROSION RESISTANCE”. İstanbul Commerce University Journal of Science, vol. 21, no. 41, 2022, pp. 117-35, doi:10.55071/ticaretfbd.1109393.
Vancouver Murad MS, Usta A, Asmatulu R, Ceylan M. STUDYING THE ELECTROCHEMICAL BEHAVIORS OF ANODIZED METALLIC IMPLANTS FOR IMPROVED CORROSION RESISTANCE. İstanbul Commerce University Journal of Science. 2022;21(41):117-35.