Research Article
BibTex RIS Cite

BİR BOYUTLU PERİYODİK SINIR ŞARTLI HÜCRESEL DÖNÜŞÜMLERİN KARAKTERİZASYONU

Year 2023, , 352 - 358, 31.12.2023
https://doi.org/10.55071/ticaretfbd.1323022

Abstract

Bu çalışmada periyodik sınır şartı altında, bir boyutlu hücresel dönüşümleri inceliyoruz. Zp cismi üzerindeki hesaplamalar için matris cebirlerini kullanıyoruz. Hücresel dönüşümlerin tersini bulmak için bir formül elde ediyoruz. Son olarak, hücresel dönüşümlerin bazı önemli örneklerini veriyoruz.

References

  • Akın, H. (2021). Description of reversibility of 9-Cyclic 1D finite linear cellular automata with periodic boundary conditions, Journal of Cellular Automata, 16, 127–151.
  • Chang, C.C. & Yang Y. C. (2020). Characterization of reversible intermediate boundary cellular automata. Journal of Statistical Mechanics: Theory and Experiment, 1, 1-13.
  • Cinkir, Z., Akın, H. & Siap, İ. (2011). Reversibility of 1D cellular automata with periodic boundary over finite fields Z_{p}. Journal of Statistical Physics, 143(4), 807-823.
  • del Rey, A.M. & Rodriguez, S.G. (2011). Reversibility of linear cellular automata. Applied Mathematics and Computation, 217(21), 8360-8366.
  • Das, A.K. & Chaudhuri, P.P. (1993). Vector space theoretic analysis of additive cellular automata and its applications for pseudo exhaustive test pattern generation. IEEE Trans. on Computers, 42 (3), 340–35.
  • Khan, A.R., Choudhury, P.P., Dihidar, K. & Verma, R. (1999). Text compression using two dimensional cellular automata. Computers and Mathematics with Applications, 37, 115–127.
  • Neumann, J. V. (1966). The theory of self-reproducing automata. Univ. of Illinois Press, Urbana.
  • Wolfram, S., (1983). Statistical mechanics of cellular automata. Rev. Mod. Phys. 55 (3), 601-644.

CHARACTERIZATION OF ONE DIMENSIONAL PERIODIC BOUNDARY CELLULAR AUTOMATA

Year 2023, , 352 - 358, 31.12.2023
https://doi.org/10.55071/ticaretfbd.1323022

Abstract

In this paper, we investigate one dimensional cellular automata under periodic boundary conditions. We use matrix algebra for calculating over on Zp. We obtain a formula for finding the reversibility of cellular automata. Finally, we give some important examples of cellular automata.

References

  • Akın, H. (2021). Description of reversibility of 9-Cyclic 1D finite linear cellular automata with periodic boundary conditions, Journal of Cellular Automata, 16, 127–151.
  • Chang, C.C. & Yang Y. C. (2020). Characterization of reversible intermediate boundary cellular automata. Journal of Statistical Mechanics: Theory and Experiment, 1, 1-13.
  • Cinkir, Z., Akın, H. & Siap, İ. (2011). Reversibility of 1D cellular automata with periodic boundary over finite fields Z_{p}. Journal of Statistical Physics, 143(4), 807-823.
  • del Rey, A.M. & Rodriguez, S.G. (2011). Reversibility of linear cellular automata. Applied Mathematics and Computation, 217(21), 8360-8366.
  • Das, A.K. & Chaudhuri, P.P. (1993). Vector space theoretic analysis of additive cellular automata and its applications for pseudo exhaustive test pattern generation. IEEE Trans. on Computers, 42 (3), 340–35.
  • Khan, A.R., Choudhury, P.P., Dihidar, K. & Verma, R. (1999). Text compression using two dimensional cellular automata. Computers and Mathematics with Applications, 37, 115–127.
  • Neumann, J. V. (1966). The theory of self-reproducing automata. Univ. of Illinois Press, Urbana.
  • Wolfram, S., (1983). Statistical mechanics of cellular automata. Rev. Mod. Phys. 55 (3), 601-644.
There are 8 citations in total.

Details

Primary Language English
Subjects Combinatorics and Discrete Mathematics (Excl. Physical Combinatorics)
Journal Section Research Articles
Authors

Ferhat Şah 0000-0003-4847-9180

Early Pub Date December 12, 2023
Publication Date December 31, 2023
Submission Date July 5, 2023
Published in Issue Year 2023

Cite

APA Şah, F. (2023). CHARACTERIZATION OF ONE DIMENSIONAL PERIODIC BOUNDARY CELLULAR AUTOMATA. İstanbul Commerce University Journal of Science, 22(44), 352-358. https://doi.org/10.55071/ticaretfbd.1323022
AMA Şah F. CHARACTERIZATION OF ONE DIMENSIONAL PERIODIC BOUNDARY CELLULAR AUTOMATA. İstanbul Commerce University Journal of Science. December 2023;22(44):352-358. doi:10.55071/ticaretfbd.1323022
Chicago Şah, Ferhat. “CHARACTERIZATION OF ONE DIMENSIONAL PERIODIC BOUNDARY CELLULAR AUTOMATA”. İstanbul Commerce University Journal of Science 22, no. 44 (December 2023): 352-58. https://doi.org/10.55071/ticaretfbd.1323022.
EndNote Şah F (December 1, 2023) CHARACTERIZATION OF ONE DIMENSIONAL PERIODIC BOUNDARY CELLULAR AUTOMATA. İstanbul Commerce University Journal of Science 22 44 352–358.
IEEE F. Şah, “CHARACTERIZATION OF ONE DIMENSIONAL PERIODIC BOUNDARY CELLULAR AUTOMATA”, İstanbul Commerce University Journal of Science, vol. 22, no. 44, pp. 352–358, 2023, doi: 10.55071/ticaretfbd.1323022.
ISNAD Şah, Ferhat. “CHARACTERIZATION OF ONE DIMENSIONAL PERIODIC BOUNDARY CELLULAR AUTOMATA”. İstanbul Commerce University Journal of Science 22/44 (December 2023), 352-358. https://doi.org/10.55071/ticaretfbd.1323022.
JAMA Şah F. CHARACTERIZATION OF ONE DIMENSIONAL PERIODIC BOUNDARY CELLULAR AUTOMATA. İstanbul Commerce University Journal of Science. 2023;22:352–358.
MLA Şah, Ferhat. “CHARACTERIZATION OF ONE DIMENSIONAL PERIODIC BOUNDARY CELLULAR AUTOMATA”. İstanbul Commerce University Journal of Science, vol. 22, no. 44, 2023, pp. 352-8, doi:10.55071/ticaretfbd.1323022.
Vancouver Şah F. CHARACTERIZATION OF ONE DIMENSIONAL PERIODIC BOUNDARY CELLULAR AUTOMATA. İstanbul Commerce University Journal of Science. 2023;22(44):352-8.