Research Article
BibTex RIS Cite

CALIBRATION OF CHABOCHE KINEMATIC HARDENING MODEL PARAMETERS BY OPTIMISATION

Year 2024, , 354 - 372, 27.12.2024
https://doi.org/10.55071/ticaretfbd.1449025

Abstract

Drag links are used in the automotive industry mostly, and during painting, their ends are protected against paint by two types of cap productions. While one is machined, the other is cold formed. In this study, a finite element simulation for the deformation process of a drag link’s cap made from St52 alloy is performed. For the plasticity model, Chaboche’s nonlinear kinematic hardening rule is used with the associated flow rule and Von Mises yield criterion. Chaboche’s parameters are determined by low cycle fatigue test by applying curve fitting methods to one hysteresis loop. Furthermore, the Chaboche model parameters are calibrated by the optimization process. The final diameters of the cap measurements are compared with those obtained from the optimized model. Therefore, a comprehensive methodology is presented for the determination and calibration of Chaboche kinematic hardening model parameters. Chaboches calibrated parameters are YS=370,73 MPa, C=3513,5 MPa, and =47,958 while their initial values are YS=360 MPa, C=3500 MPa, and =90.

References

  • Akkuş, Ö. & Demir, E. (2016). İki düzeyli olasılık modellerinde klasik meta sezgisel optimizasyon tekniklerinin performansı üzerine bir çalışma. Istanbul Commerce University Journal of Science, 15(30), 107-131.
  • Armstrong, P.J. & C.O. Frederick, (1966). A mathematical representation of the multiaxial Bauschinger effect. CEGB Report, RD/B/N731, Berkeley Nuclear Laboratories.
  • Chaboche, J.L., (1986). Time-independent constitutive theories for cyclic plasticity. International Journal of Plasticity, 2(2);149-188.
  • Chaboche, J.L., (1989). Constitutive-equations for cyclic plasticity and cyclic viscoplasticity. International Journal of Plasticity, 5(3): p. 247-302.
  • Cruise R.B. and Gardner L. (2008). Strength enhancements induced during cold forming of stainless steel sections. Journal of Constructional Steel Research, 64(11), 1310-1316.
  • Ditas Corp., (2019). Drag link, Retrieved January 07, 2019 from http://www.ditas.com.tr/drag-link
  • Kacar, İ. (2023). Scientific Principles of Mechanical Design and Analysis. Akademisyen Puplishing House, Ankara, First ed., 36-40.
  • Kuhn, H. A. Lee P.W. & Erturk T. (1973) A fracture criterion for cold forming. Journal of Engineering Materials and Technology, 95(4): 213-218.
  • Prager W., (1949). Recent developments in the mathematical theory of plasticity. Journal of Applied Physics, 20(3): 235-241.
  • Sevenler K., Raghupathi P.S., & Altan T., (1987). Forming-sequence design for multistage cold forging, Journal of Mechanical Working Technology, 14 (2), 121-135.
  • Ziegler, H., (1959). A modification of Prager's hardening rule. Quarterly of Applied Mathematics. 17(1): 55-66.

CHABOCHE KİNEMATİK PEKLEŞME MODELİ PARAMETRELERİNİN OPTİMİZASYON İLE KALİBRE EDİLMESİ

Year 2024, , 354 - 372, 27.12.2024
https://doi.org/10.55071/ticaretfbd.1449025

Abstract

Rot kolu çoğunlukla otomotiv endüstrisinde kullanılmakta ve boyama sırasında uçları iki tip kapak üretim yöntemiyle boyaya karşı korunmaktadır. Bunlardan biri talaşlı imalat, diğeri ise soğuk şekillendirmedir. Bu çalışmada, St52 alaşımından yapılmış bir rot kolunun kapağının deformasyon işlemi için bir sonlu elemanlar simülasyonu gerçekleştirilmiştir. Plastisite modelini oluşturmak için Chaboche'nin doğrusal olmayan kinematik pekleşme kuralı, ilişkili akış kuralı ve Von Mises akma kriteri kullanılmıştır. Chaboche parametreleri, bir histerezis döngüsüne eğri uydurma yöntemleri uygulanarak düşük çevrimli yorulma testi ile belirlenmiştir. Ayrıca, Chaboche model parametreleri optimizasyon işlemi ile kalibre edilmiştir. Kapak ölçümlerinin nihai çapları, optimize edilmiş modelden elde edilenlerle karşılaştırılmıştır. Chaboche kinematik pekleşme modelinin parametrelerinin belirlenmesi ve kalibrasyonu için kapsamlı bir yöntem sunulmuştur. Kalibre edilen Chaboche parametreleri YS=370,73 MPa, C=3513,5 MPa ve =47,958 iken başlangıç değerleri YS=360 MPa, C=3500 MPa ve =90'dır.

Supporting Institution

Ditaş Doğan Yedek Parça Imalat ve Teknik A.Ş. We

Thanks

This work was supported by Ditaş Doğan Yedek Parça Imalat ve Teknik A.Ş. We would like to thank them for their support. We would like to thank Dr. Mehmet Seyhan, Ka-radeniz Technical University for providing the opportunity to use Ansys® software for simulations for educational purpos-es. We are very grateful to the reviewers for their valuable comments, which have been utilized to improve the quality of the paper.

References

  • Akkuş, Ö. & Demir, E. (2016). İki düzeyli olasılık modellerinde klasik meta sezgisel optimizasyon tekniklerinin performansı üzerine bir çalışma. Istanbul Commerce University Journal of Science, 15(30), 107-131.
  • Armstrong, P.J. & C.O. Frederick, (1966). A mathematical representation of the multiaxial Bauschinger effect. CEGB Report, RD/B/N731, Berkeley Nuclear Laboratories.
  • Chaboche, J.L., (1986). Time-independent constitutive theories for cyclic plasticity. International Journal of Plasticity, 2(2);149-188.
  • Chaboche, J.L., (1989). Constitutive-equations for cyclic plasticity and cyclic viscoplasticity. International Journal of Plasticity, 5(3): p. 247-302.
  • Cruise R.B. and Gardner L. (2008). Strength enhancements induced during cold forming of stainless steel sections. Journal of Constructional Steel Research, 64(11), 1310-1316.
  • Ditas Corp., (2019). Drag link, Retrieved January 07, 2019 from http://www.ditas.com.tr/drag-link
  • Kacar, İ. (2023). Scientific Principles of Mechanical Design and Analysis. Akademisyen Puplishing House, Ankara, First ed., 36-40.
  • Kuhn, H. A. Lee P.W. & Erturk T. (1973) A fracture criterion for cold forming. Journal of Engineering Materials and Technology, 95(4): 213-218.
  • Prager W., (1949). Recent developments in the mathematical theory of plasticity. Journal of Applied Physics, 20(3): 235-241.
  • Sevenler K., Raghupathi P.S., & Altan T., (1987). Forming-sequence design for multistage cold forging, Journal of Mechanical Working Technology, 14 (2), 121-135.
  • Ziegler, H., (1959). A modification of Prager's hardening rule. Quarterly of Applied Mathematics. 17(1): 55-66.
There are 11 citations in total.

Details

Primary Language English
Subjects Optimization Techniques in Mechanical Engineering, Material Production Technologies, Optimization in Manufacturing
Journal Section Research Article
Authors

Alişan Araslı 0000-0002-3724-5429

İlyas Kacar 0000-0002-5887-8807

Publication Date December 27, 2024
Submission Date March 8, 2024
Acceptance Date August 2, 2024
Published in Issue Year 2024

Cite

APA Araslı, A., & Kacar, İ. (2024). CALIBRATION OF CHABOCHE KINEMATIC HARDENING MODEL PARAMETERS BY OPTIMISATION. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 23(46), 354-372. https://doi.org/10.55071/ticaretfbd.1449025
AMA Araslı A, Kacar İ. CALIBRATION OF CHABOCHE KINEMATIC HARDENING MODEL PARAMETERS BY OPTIMISATION. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. December 2024;23(46):354-372. doi:10.55071/ticaretfbd.1449025
Chicago Araslı, Alişan, and İlyas Kacar. “CALIBRATION OF CHABOCHE KINEMATIC HARDENING MODEL PARAMETERS BY OPTIMISATION”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 23, no. 46 (December 2024): 354-72. https://doi.org/10.55071/ticaretfbd.1449025.
EndNote Araslı A, Kacar İ (December 1, 2024) CALIBRATION OF CHABOCHE KINEMATIC HARDENING MODEL PARAMETERS BY OPTIMISATION. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 23 46 354–372.
IEEE A. Araslı and İ. Kacar, “CALIBRATION OF CHABOCHE KINEMATIC HARDENING MODEL PARAMETERS BY OPTIMISATION”, İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, vol. 23, no. 46, pp. 354–372, 2024, doi: 10.55071/ticaretfbd.1449025.
ISNAD Araslı, Alişan - Kacar, İlyas. “CALIBRATION OF CHABOCHE KINEMATIC HARDENING MODEL PARAMETERS BY OPTIMISATION”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 23/46 (December 2024), 354-372. https://doi.org/10.55071/ticaretfbd.1449025.
JAMA Araslı A, Kacar İ. CALIBRATION OF CHABOCHE KINEMATIC HARDENING MODEL PARAMETERS BY OPTIMISATION. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. 2024;23:354–372.
MLA Araslı, Alişan and İlyas Kacar. “CALIBRATION OF CHABOCHE KINEMATIC HARDENING MODEL PARAMETERS BY OPTIMISATION”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, vol. 23, no. 46, 2024, pp. 354-72, doi:10.55071/ticaretfbd.1449025.
Vancouver Araslı A, Kacar İ. CALIBRATION OF CHABOCHE KINEMATIC HARDENING MODEL PARAMETERS BY OPTIMISATION. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. 2024;23(46):354-72.