Research Article
BibTex RIS Cite

ANALYSIS OF LARGE-SCALE PATH LOSS MODEL AT 33 GHZ IN INDOOR LABORATORY ENVIRONMENT

Year 2022, , 1 - 9, 28.06.2022
https://doi.org/10.55071/ticaretfbd.954475

Abstract

In this study, two important large-scale path loss models, which are Close-In (CI) model with free space reference distance and Float Intercept (FI) model, were compared in indoor laboratory scenario for fifth-generation (5G) radio systems. Comparisons are conducted using a ray-tracing-based simulation environment at ten different measurement points, at 33 GHz center frequency, and distances between 1,5 to 9 m. According to the results obtained, the one-parameter CI model is simpler and more consistent than the two-parameter FI model. CI model offers better simulation accuracy, greater simplicity, and better iterability between experiments, besides better adaptation to both line-of-sight and non-line-of-sight conditions. In addition, the CI model exhibit high stability at wide frequency ranges.

References

  • Agubor, C.K., Akwukwuegbu, I., Olubiwe, M., Nosiri, C.O., Ehinomen, A., Olukunle, A.A., Okozi, S.O., Ezema, L. & Okeke, B.C. (2019). A comprehensive review on the feasibility and challenges of millimeter wave in emerging 5G mobile communication. Advances in Science, Technology and Engineering Systems, 4(3), 138-144. https://doi.org/10.25046/aj040318.
  • Al-samman, A.M., Azmi, M.H., Al-gumaei, Y.A., Al-hadhrami, T., Abd Rahman, T., Fazea, Y. & Al-mqdashi, A. (2020). Millimeter wave propagation measurements and characteristics for 5G system. Applied Sciences (Switzerland), 10(1), 1-17. https://doi.org/10.3390/app10010335.
  • Al-Samman, A.M., Abd Rahman, T., Al-Hadhrami, T., Daho, A., Hindia, MHD.N., Azmi, M.H., Dimyati, K. & Alazab, M. (2019). Comparative study of indoor propagation model below and above 6 GHZ for 5G wireless networks. Electronics (Switzerland), 8(1), 1-16. https://doi.org/10.3390/electronics8010044.
  • Bechta, K., Rybakowski, M. & Du, J. (2019, March 31 - April 5). Efficiency of antenna array tapering in real propagation environment of millimeter wave system. 13th European Conference on Antennas and Propagation, EuCAP, Krakow, Poland.
  • Boccardi, F., Heath, R., Lozano, A., Marzetta, T.L. & Popovski, P. (2014). Five disruptive technology directions for 5G. IEEE Communications Magazine. https://doi.org/10.1109/MCOM.2014.6736746.
  • Dahlman, E., Parkvall, S. & Sköld, J. (2021). What Is 5G? In 5G NR. Elsevier. https://doi.org/10.1016/b978-0-12-822320-8.00001-5.
  • Dupleich, D., Müeller, R., Landmann, M., Shinwasusin, E.A., Saito, K., Takada, J.I., Luo, J., Thomä, R. & Del Galdo, G. (2019). Multi-Band propagation and radio channel characterization in street canyon scenarios for 5G and beyond. IEEE Access. https://doi.org/10.1109/ACCESS.2019.2948869.
  • Faruk, N., Abdulrasheed, I.Y., Surajudeen-Bakinde, N.T., Adetiba, E., Oloyede, A.A., Abdulkarim, A., Sowande, O., Ifijeh, A.H. & Atayero, A.A. (2021). Large-Scale radio propagation path loss measurements and predictions in the VHF and UHF bands. Heliyon. 7(6), 1-15. https://doi.org/10.1016/j.heliyon.2021.e07298.
  • Güneşer, M. T. & Şeker, C. (2019). Compact microstrip antenna design for 5G communication in millimeter wave at 28 GHz. Erzincan University Journal of Science and Technology, 12 (2), 679-686. https://doi.org/10.18185/erzifbed.477293.
  • Haneda, K., Zhang, J., Tan, L., Liu, G., Zheng, Y., Asplund, H., Jian Li, et al. (2016, May, 15-18). 5G 3GPP-like channel models for outdoor urban microcellular and macrocellular environments. IEEE Vehicular Technology Conference, Nanjing, China, 1-7. https://doi.org/10.1109/VTCSpring.2016.7503971.
  • Hemadeh, I.A., Satyanarayana, K., El-Hajjar, M. & Hanzo, L. (2018). Millimeter-wave communications: Physical channel models, design considerations, antenna constructions, and link-budget. IEEE Communications Surveys and Tutorials. 20(2) 870-913. https://doi.org/10.1109/COMST.2017.2783541.
  • Hong, W., Jiang, Z.H., Yu, C.. Zhou, J., Chen, P., Yu, Z., Zhang, H., et al. (2017). Multibeam antenna technologies for 5G wireless communications. IEEE Transactions on Antennas and Propagation, 65, 6231-6249. https://doi.org/10.1109/TAP.2017.2712819.
  • Kyrö, M., Kolmonen, V.M. & Vainikainen, P. (2012). Experimental propagation channel characterization of Mm-wave radio links in urban scenarios. IEEE Antennas and Wireless Propagation Letters, 11, 865-868. https://doi.org/10.1109/LAWP.2012.2210532.
  • Løvnes, G., Reis, J. J. & Raekken, R. H. (1994). Channel sounding measurements at 59 GHz in city streets. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC. https://doi.org/10.1109/WNCMF.1994.529139.
  • Maccartney, G.R., Samimi, M.K. & Rappaport, T.S. (2014). Omnidirectional path loss models in New York City at 28 GHz and 73 GHz. In IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC, 227-231. https://doi.org/10.1109/PIMRC.2014.7136165.
  • Rappaport, T.S., Gutierrez, F., Ben-Dor, E., Murdock, J.N., Qiao, Y. & Tamir, J.I. (2013). Broadband millimeter-wave propagation measurements and models using adaptive-beam antennas for outdoor urban cellular communications.” IEEE Transactions on Antennas and Propagation, 61(4), 1850-1859. https://doi.org/10.1109/TAP.2012.2235056.
  • Rappaport, T.S., MacCartney, G.R., Samimi, M.K. & Sun, S. (2015). Wideband millimeter-wave propagation measurements and channel models for future wireless communication system design. IEEE Transactions on Communications. 63(9), 3029–3056. https://doi.org/10.1109/TCOMM.2015.2434384.
  • Remcom. (2020). Wireless InSite reference manual. State College, PA 16801.
  • Sun, S., Rappaport, T.S., Shafi, M., Tang, P., Zhang, J. & Smith, P.J. (2018). Propagation models and performance evaluation for 5G millimeter-wave bands. IEEE Transactions on Vehicular Technology, 67(9), 8422-8439. https://doi.org/10.1109/TVT.2018.2848208.
  • Svensson, T., Werner, M., Legouable, R., Frank, T. & Costa, E. (2007). “D1.1.2 WINNER II channel models: Part I channel models.” Projects. Celtic-Initiative.Org.
  • Violette, E.J., Espeland, R.H., Debolt, R.O. Schwering, F. (1988). Millimeter-wave propagation at street level in an urban environment. IEEE Transactions on Geoscience and Remote Sensing, 26(3), 368-380. https://doi.org/10.1109/36.3038.
  • Xing, Y., Rappaport, T.S. & Ghosh, A. (2021). Millimeter wave and sub-THz indoor radio propagation channel measurements, models, and comparisons in an office environment. IEEE Communications Letters, 25(10), 3151-3155. https://doi.org/10.1109/lcomm.2021.3088264.

BİNA-İÇİ LABORATUVAR ORTAMINDA 33 GHZ'DE BÜYÜK ÖLÇEKLİ YOL KAYBI ANALİZİ

Year 2022, , 1 - 9, 28.06.2022
https://doi.org/10.55071/ticaretfbd.954475

Abstract

Bu çalışmada, beşinci nesil (5G) radyo sistemleri için bina-içi laboratuvar ortamında iki önemli geniş ölçekli yol kaybı modeli karşılaştırılmıştır. Bu modeller, yakın mesafe (YM) referans modeli ve kayan kesme (KK) modelidir. Ölçümler ışın izleme temelli bir simülasyon programı ile 10 farklı noktada, 33 GHz merkez frekansında yapılmıştır. Verici ile alıcı arasındaki mesafe 1,5 ila 9 m arasında değişmektedir. Elde edilen sonuçlar göstermektedir ki, bir parametreli YM modeli, iki parametreli KK modelinden daha basit ve daha tutarlıdır. YM modeli, verici ile alıcı arasında görüş hattı olan ve olmayan koşullara daha iyi adaptasyon sağlayabilmektedir. Ayrıca ölçümler sırasında daha iyi simülasyon doğruluğu, daha fazla basitlik ve tekrarlanabilirlik sağlamaktadır. Bunların yanı sıra YM modeli geniş frekans aralıklarında yüksek kararlılık sergileyebilmektedir.

References

  • Agubor, C.K., Akwukwuegbu, I., Olubiwe, M., Nosiri, C.O., Ehinomen, A., Olukunle, A.A., Okozi, S.O., Ezema, L. & Okeke, B.C. (2019). A comprehensive review on the feasibility and challenges of millimeter wave in emerging 5G mobile communication. Advances in Science, Technology and Engineering Systems, 4(3), 138-144. https://doi.org/10.25046/aj040318.
  • Al-samman, A.M., Azmi, M.H., Al-gumaei, Y.A., Al-hadhrami, T., Abd Rahman, T., Fazea, Y. & Al-mqdashi, A. (2020). Millimeter wave propagation measurements and characteristics for 5G system. Applied Sciences (Switzerland), 10(1), 1-17. https://doi.org/10.3390/app10010335.
  • Al-Samman, A.M., Abd Rahman, T., Al-Hadhrami, T., Daho, A., Hindia, MHD.N., Azmi, M.H., Dimyati, K. & Alazab, M. (2019). Comparative study of indoor propagation model below and above 6 GHZ for 5G wireless networks. Electronics (Switzerland), 8(1), 1-16. https://doi.org/10.3390/electronics8010044.
  • Bechta, K., Rybakowski, M. & Du, J. (2019, March 31 - April 5). Efficiency of antenna array tapering in real propagation environment of millimeter wave system. 13th European Conference on Antennas and Propagation, EuCAP, Krakow, Poland.
  • Boccardi, F., Heath, R., Lozano, A., Marzetta, T.L. & Popovski, P. (2014). Five disruptive technology directions for 5G. IEEE Communications Magazine. https://doi.org/10.1109/MCOM.2014.6736746.
  • Dahlman, E., Parkvall, S. & Sköld, J. (2021). What Is 5G? In 5G NR. Elsevier. https://doi.org/10.1016/b978-0-12-822320-8.00001-5.
  • Dupleich, D., Müeller, R., Landmann, M., Shinwasusin, E.A., Saito, K., Takada, J.I., Luo, J., Thomä, R. & Del Galdo, G. (2019). Multi-Band propagation and radio channel characterization in street canyon scenarios for 5G and beyond. IEEE Access. https://doi.org/10.1109/ACCESS.2019.2948869.
  • Faruk, N., Abdulrasheed, I.Y., Surajudeen-Bakinde, N.T., Adetiba, E., Oloyede, A.A., Abdulkarim, A., Sowande, O., Ifijeh, A.H. & Atayero, A.A. (2021). Large-Scale radio propagation path loss measurements and predictions in the VHF and UHF bands. Heliyon. 7(6), 1-15. https://doi.org/10.1016/j.heliyon.2021.e07298.
  • Güneşer, M. T. & Şeker, C. (2019). Compact microstrip antenna design for 5G communication in millimeter wave at 28 GHz. Erzincan University Journal of Science and Technology, 12 (2), 679-686. https://doi.org/10.18185/erzifbed.477293.
  • Haneda, K., Zhang, J., Tan, L., Liu, G., Zheng, Y., Asplund, H., Jian Li, et al. (2016, May, 15-18). 5G 3GPP-like channel models for outdoor urban microcellular and macrocellular environments. IEEE Vehicular Technology Conference, Nanjing, China, 1-7. https://doi.org/10.1109/VTCSpring.2016.7503971.
  • Hemadeh, I.A., Satyanarayana, K., El-Hajjar, M. & Hanzo, L. (2018). Millimeter-wave communications: Physical channel models, design considerations, antenna constructions, and link-budget. IEEE Communications Surveys and Tutorials. 20(2) 870-913. https://doi.org/10.1109/COMST.2017.2783541.
  • Hong, W., Jiang, Z.H., Yu, C.. Zhou, J., Chen, P., Yu, Z., Zhang, H., et al. (2017). Multibeam antenna technologies for 5G wireless communications. IEEE Transactions on Antennas and Propagation, 65, 6231-6249. https://doi.org/10.1109/TAP.2017.2712819.
  • Kyrö, M., Kolmonen, V.M. & Vainikainen, P. (2012). Experimental propagation channel characterization of Mm-wave radio links in urban scenarios. IEEE Antennas and Wireless Propagation Letters, 11, 865-868. https://doi.org/10.1109/LAWP.2012.2210532.
  • Løvnes, G., Reis, J. J. & Raekken, R. H. (1994). Channel sounding measurements at 59 GHz in city streets. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC. https://doi.org/10.1109/WNCMF.1994.529139.
  • Maccartney, G.R., Samimi, M.K. & Rappaport, T.S. (2014). Omnidirectional path loss models in New York City at 28 GHz and 73 GHz. In IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC, 227-231. https://doi.org/10.1109/PIMRC.2014.7136165.
  • Rappaport, T.S., Gutierrez, F., Ben-Dor, E., Murdock, J.N., Qiao, Y. & Tamir, J.I. (2013). Broadband millimeter-wave propagation measurements and models using adaptive-beam antennas for outdoor urban cellular communications.” IEEE Transactions on Antennas and Propagation, 61(4), 1850-1859. https://doi.org/10.1109/TAP.2012.2235056.
  • Rappaport, T.S., MacCartney, G.R., Samimi, M.K. & Sun, S. (2015). Wideband millimeter-wave propagation measurements and channel models for future wireless communication system design. IEEE Transactions on Communications. 63(9), 3029–3056. https://doi.org/10.1109/TCOMM.2015.2434384.
  • Remcom. (2020). Wireless InSite reference manual. State College, PA 16801.
  • Sun, S., Rappaport, T.S., Shafi, M., Tang, P., Zhang, J. & Smith, P.J. (2018). Propagation models and performance evaluation for 5G millimeter-wave bands. IEEE Transactions on Vehicular Technology, 67(9), 8422-8439. https://doi.org/10.1109/TVT.2018.2848208.
  • Svensson, T., Werner, M., Legouable, R., Frank, T. & Costa, E. (2007). “D1.1.2 WINNER II channel models: Part I channel models.” Projects. Celtic-Initiative.Org.
  • Violette, E.J., Espeland, R.H., Debolt, R.O. Schwering, F. (1988). Millimeter-wave propagation at street level in an urban environment. IEEE Transactions on Geoscience and Remote Sensing, 26(3), 368-380. https://doi.org/10.1109/36.3038.
  • Xing, Y., Rappaport, T.S. & Ghosh, A. (2021). Millimeter wave and sub-THz indoor radio propagation channel measurements, models, and comparisons in an office environment. IEEE Communications Letters, 25(10), 3151-3155. https://doi.org/10.1109/lcomm.2021.3088264.
There are 22 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Cihat Şeker 0000-0002-9680-4622

Muhammet Tahir Guneser 0000-0003-3502-2034

Publication Date June 28, 2022
Submission Date June 18, 2021
Published in Issue Year 2022

Cite

APA Şeker, C., & Guneser, M. T. (2022). ANALYSIS OF LARGE-SCALE PATH LOSS MODEL AT 33 GHZ IN INDOOR LABORATORY ENVIRONMENT. İstanbul Commerce University Journal of Science, 21(41), 1-9. https://doi.org/10.55071/ticaretfbd.954475
AMA Şeker C, Guneser MT. ANALYSIS OF LARGE-SCALE PATH LOSS MODEL AT 33 GHZ IN INDOOR LABORATORY ENVIRONMENT. İstanbul Commerce University Journal of Science. June 2022;21(41):1-9. doi:10.55071/ticaretfbd.954475
Chicago Şeker, Cihat, and Muhammet Tahir Guneser. “ANALYSIS OF LARGE-SCALE PATH LOSS MODEL AT 33 GHZ IN INDOOR LABORATORY ENVIRONMENT”. İstanbul Commerce University Journal of Science 21, no. 41 (June 2022): 1-9. https://doi.org/10.55071/ticaretfbd.954475.
EndNote Şeker C, Guneser MT (June 1, 2022) ANALYSIS OF LARGE-SCALE PATH LOSS MODEL AT 33 GHZ IN INDOOR LABORATORY ENVIRONMENT. İstanbul Commerce University Journal of Science 21 41 1–9.
IEEE C. Şeker and M. T. Guneser, “ANALYSIS OF LARGE-SCALE PATH LOSS MODEL AT 33 GHZ IN INDOOR LABORATORY ENVIRONMENT”, İstanbul Commerce University Journal of Science, vol. 21, no. 41, pp. 1–9, 2022, doi: 10.55071/ticaretfbd.954475.
ISNAD Şeker, Cihat - Guneser, Muhammet Tahir. “ANALYSIS OF LARGE-SCALE PATH LOSS MODEL AT 33 GHZ IN INDOOR LABORATORY ENVIRONMENT”. İstanbul Commerce University Journal of Science 21/41 (June 2022), 1-9. https://doi.org/10.55071/ticaretfbd.954475.
JAMA Şeker C, Guneser MT. ANALYSIS OF LARGE-SCALE PATH LOSS MODEL AT 33 GHZ IN INDOOR LABORATORY ENVIRONMENT. İstanbul Commerce University Journal of Science. 2022;21:1–9.
MLA Şeker, Cihat and Muhammet Tahir Guneser. “ANALYSIS OF LARGE-SCALE PATH LOSS MODEL AT 33 GHZ IN INDOOR LABORATORY ENVIRONMENT”. İstanbul Commerce University Journal of Science, vol. 21, no. 41, 2022, pp. 1-9, doi:10.55071/ticaretfbd.954475.
Vancouver Şeker C, Guneser MT. ANALYSIS OF LARGE-SCALE PATH LOSS MODEL AT 33 GHZ IN INDOOR LABORATORY ENVIRONMENT. İstanbul Commerce University Journal of Science. 2022;21(41):1-9.