BibTex RIS Cite

Computer Aided Detection Of Mammographic Masses On Digital Mammograms

Year 2005, Volume: 4 Issue: 8, 87 - 97, 01.12.2005

Abstract

References

  • Baines C. J., McFarlane D. V., and Miller A. B., (1990), “The Role of the Reference Radiologist: Estimates of Interobserver Agreement and Potential Delay in Cancer Detection in the National Screening Study”, Investiga Radiology, 25, 971-976.
  • Bird R. E., (1990), “Professional Quality Assurance for Mammography Screening Programs”, Radiology, 175, 587.
  • Brenner R. J., (1991), “Medicolegal Aspects of Breast Imaging: Variable Standards of Care Relating to Different Types of Practice”, AJR, 156, 719-723.
  • Cheng H. D., Lui Y. M., and Freimanis R. I., (1998), “A Novel Approach to Microcalcification Detection Using Fuzzy Logic Technique”, IEEE Trans Med Imaging, 17, 442-450.
  • Kalman B. L., Reinus W. R., Kwasny S. C., Laine A., and Kotner L., (1997), “Prescreening Entire Mammograms for Masses with Artificial Neural Networks: Preliminary Results”, Acad Radiol, 4, 405-414.
  • Kupinski M. A. and Giger M. L., (1997), “Investigation of Regularized Neural Networks for the Computerized Detection of Mass Lesions in Digital Mammograms”, Proc IEEE Eng Medicine & Biology Conference, 1336-1339.
  • Manohar M. and Ramapriyan H. K., (1989), “Connected Component Labeling of Binary Images on a Mesh Connected Massively Parallel Processor,” Computer Vision, Graphics, and Image Processing, 45, 133-149.
  • Nagel R. H., Nishikawa R. M., and Doi K., (1998), “Analysis of Methods for Reducing False Positives in the Automated Detection of Clustered Microcalcifications in Mammograms”, Med Phys, 25, 1502-1506.
  • Nishikawa R. M., Giger M. L., Doi K., Vyborny C. J., and Schmidt R. A., (1995), “Computer-Aided Detection of Clustered Microcalcifications on Digital Mammograms”, Medical and Biological Engineering and Computing, 33, 174-178.
  • Polakowski W. E., Cournoyer D. A., Rogers S. K., DeSimio M. P., Ruck D. W., Hoffmeister J. W., and Raines R. A., (1997), “Computer-Aided Breast Cancer Detection and Diagnosis of Masses Using Difference of Gaussians and Derivative- Based Feature Saliency”, IEEE Trans Med Imaging, 811-819.
  • Ronse C. and Devijver P. A., (1984), Connected Components in Binary Images: the Detection Problem, Research Studies Press, NY, Wiley.
  • Stefano L. D. and Bulgarelli A., (1999), “A Simple and Efficient Connected Components Labeling Algorithm”, Proceedings of International Conference on Image Analysis and Processing, 322-327.
  • Suckling J., Parker J., Dance D., Astley S., Hutt I., and Boggis C., (1994), “The Mammographic Images Analysis Society Digital Mammogram Database”, Exerpta Medica, 1069, 375–8
  • Thurfjell E. L., Lernevall K. A., and Taube A. A., (1994), “Benefit of Independent Double Reading in a Population-Based Mammography Screening Program”, Radiology, 191, 241-244.
  • Vyborny C. J. and Giger M. L., (1994), “Computer Vision and Artificial Intelligence in Mammography”, AJR, 162, 699-708.
  • Wallis M., Walsh M., and Lee J., (1991), “A Review of False Negative Mammography in a Symptomatic Population", Clinical Radiology, 44, 13-15.

Computer Aided Detection Of Mammographic Masses On Digital Mammograms

Year 2005, Volume: 4 Issue: 8, 87 - 97, 01.12.2005

Abstract

Bu çalışmada, mammogram görüntülerindeki kitlelerin otomatik olarak tesbit edilebilmesi için bir sistem geliştirilmiştir. Önerilen yöntem iki basamaklıdır: a. ilgi alanlarının belirlenmesi, b. ilgi alanlarının kural tabanlı sınıflandırılması. İlk aşamada görüntü kesitlerindeki piksellerin yoğunluk değerleri hesaplanmış ve her piksel için 8 yönlü tarama işlemi gerçekleştirilmiştir. Bu tarama işlemi sırasında çeşitli eşik değerleri kullanılarak, ilgi alanları belirlenmiştir. İkinci aşamada, tüm ilgi alanları bağlantılı bileşen etiketleme (BBE) yöntemiyle tanımlanmış ve iki kural kullanılarak ilgi alanları sınıflandırılmıştır. Bu kurallar ilgi alanlarının öklid uzaklıkları ve biçim değerlerini sorgulamaktadır. Sistemin performansı Mammogram Görüntü Analizi Topluluğu veritabanına uygulanarak ölçülmüştür. Sistemin duyarlılığı görüntü başına 0.292 yanlış pozitif değeriyle %88.37’ye ulaşmaktadır

References

  • Baines C. J., McFarlane D. V., and Miller A. B., (1990), “The Role of the Reference Radiologist: Estimates of Interobserver Agreement and Potential Delay in Cancer Detection in the National Screening Study”, Investiga Radiology, 25, 971-976.
  • Bird R. E., (1990), “Professional Quality Assurance for Mammography Screening Programs”, Radiology, 175, 587.
  • Brenner R. J., (1991), “Medicolegal Aspects of Breast Imaging: Variable Standards of Care Relating to Different Types of Practice”, AJR, 156, 719-723.
  • Cheng H. D., Lui Y. M., and Freimanis R. I., (1998), “A Novel Approach to Microcalcification Detection Using Fuzzy Logic Technique”, IEEE Trans Med Imaging, 17, 442-450.
  • Kalman B. L., Reinus W. R., Kwasny S. C., Laine A., and Kotner L., (1997), “Prescreening Entire Mammograms for Masses with Artificial Neural Networks: Preliminary Results”, Acad Radiol, 4, 405-414.
  • Kupinski M. A. and Giger M. L., (1997), “Investigation of Regularized Neural Networks for the Computerized Detection of Mass Lesions in Digital Mammograms”, Proc IEEE Eng Medicine & Biology Conference, 1336-1339.
  • Manohar M. and Ramapriyan H. K., (1989), “Connected Component Labeling of Binary Images on a Mesh Connected Massively Parallel Processor,” Computer Vision, Graphics, and Image Processing, 45, 133-149.
  • Nagel R. H., Nishikawa R. M., and Doi K., (1998), “Analysis of Methods for Reducing False Positives in the Automated Detection of Clustered Microcalcifications in Mammograms”, Med Phys, 25, 1502-1506.
  • Nishikawa R. M., Giger M. L., Doi K., Vyborny C. J., and Schmidt R. A., (1995), “Computer-Aided Detection of Clustered Microcalcifications on Digital Mammograms”, Medical and Biological Engineering and Computing, 33, 174-178.
  • Polakowski W. E., Cournoyer D. A., Rogers S. K., DeSimio M. P., Ruck D. W., Hoffmeister J. W., and Raines R. A., (1997), “Computer-Aided Breast Cancer Detection and Diagnosis of Masses Using Difference of Gaussians and Derivative- Based Feature Saliency”, IEEE Trans Med Imaging, 811-819.
  • Ronse C. and Devijver P. A., (1984), Connected Components in Binary Images: the Detection Problem, Research Studies Press, NY, Wiley.
  • Stefano L. D. and Bulgarelli A., (1999), “A Simple and Efficient Connected Components Labeling Algorithm”, Proceedings of International Conference on Image Analysis and Processing, 322-327.
  • Suckling J., Parker J., Dance D., Astley S., Hutt I., and Boggis C., (1994), “The Mammographic Images Analysis Society Digital Mammogram Database”, Exerpta Medica, 1069, 375–8
  • Thurfjell E. L., Lernevall K. A., and Taube A. A., (1994), “Benefit of Independent Double Reading in a Population-Based Mammography Screening Program”, Radiology, 191, 241-244.
  • Vyborny C. J. and Giger M. L., (1994), “Computer Vision and Artificial Intelligence in Mammography”, AJR, 162, 699-708.
  • Wallis M., Walsh M., and Lee J., (1991), “A Review of False Negative Mammography in a Symptomatic Population", Clinical Radiology, 44, 13-15.
There are 16 citations in total.

Details

Primary Language Turkish
Journal Section Research Articles
Authors

Serhat Özekes This is me

A.Yılmaz Çamurcu This is me

Publication Date December 1, 2005
Submission Date August 10, 2015
Published in Issue Year 2005 Volume: 4 Issue: 8

Cite

APA Özekes, S., & Çamurcu, A. (2005). Computer Aided Detection Of Mammographic Masses On Digital Mammograms. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 4(8), 87-97.
AMA Özekes S, Çamurcu A. Computer Aided Detection Of Mammographic Masses On Digital Mammograms. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. December 2005;4(8):87-97.
Chicago Özekes, Serhat, and A.Yılmaz Çamurcu. “Computer Aided Detection Of Mammographic Masses On Digital Mammograms”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 4, no. 8 (December 2005): 87-97.
EndNote Özekes S, Çamurcu A (December 1, 2005) Computer Aided Detection Of Mammographic Masses On Digital Mammograms. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 4 8 87–97.
IEEE S. Özekes and A. Çamurcu, “Computer Aided Detection Of Mammographic Masses On Digital Mammograms”, İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, vol. 4, no. 8, pp. 87–97, 2005.
ISNAD Özekes, Serhat - Çamurcu, A.Yılmaz. “Computer Aided Detection Of Mammographic Masses On Digital Mammograms”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 4/8 (December 2005), 87-97.
JAMA Özekes S, Çamurcu A. Computer Aided Detection Of Mammographic Masses On Digital Mammograms. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. 2005;4:87–97.
MLA Özekes, Serhat and A.Yılmaz Çamurcu. “Computer Aided Detection Of Mammographic Masses On Digital Mammograms”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, vol. 4, no. 8, 2005, pp. 87-97.
Vancouver Özekes S, Çamurcu A. Computer Aided Detection Of Mammographic Masses On Digital Mammograms. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. 2005;4(8):87-9.