Research Article
BibTex RIS Cite

EVALUATION OF TRIBOLOGICAL PROPERTIES OF CARBON FIBER FILLED POLYAMIDE 66 POLYMER COMPOSITES

Year 2023, Volume: 22 Issue: 44, 267 - 280, 31.12.2023
https://doi.org/10.55071/ticaretfbd.1337774

Abstract

In this study, the wear and friction performances of polyamide 66 (PA66) polymer and 10wt%, 20wt% and 30wt% carbon fibre (CF) reinforced polyamide 66 composites were investigated. Wear tests were carried out against a steel disc under dry ambient conditions. Carbon fibre reinforced PA66 composite was produced as granules in a twin screw extruder and then wear test specimens were molded in an injection molding machine. The wear tests were performed under 20-30-40N loads at sliding speeds of 0,4, 0,8 and 1,2 m/s. The tests were accomplished at ambient temperature using a pin-on-disc abrasion tester. At 0,8 m/s sliding speed and 30N load, 10%, 20% and 30% CF added to PA66 polymer reduced the coefficient of friction by 12,4%, 23,5% and 32,7%, and the wear rates by 19,9%, 38,9% and 82,0%. While the coefficient of friction and wear rate increased with the raise of the applied load and sliding speed. In general, the wear rates of PA66 and PA66/CF composites were obtained as 10-10 mm3/Nm. The correlation coefficient (R2) between wear rate and friction coefficient was obtained as 0,9686 for PA66 polymer and 0,775 for PA66/30CF composite. In the tribological test working conditions applied, it was determined that carbon fibre reinforced PA66 with 30 % carbon fibre reinforcement was 82% resistant on average than PA66 polymer.

References

  • Abdelbary, A. (2015). Wear of polymers and composites. Elsevier Ltd.
  • Autay R., Missaoui, S., Mars, J. & Dammak, F. (2019). Mechanical and tribological study of short glass fiber-reinforced PA 66. Polymers and Polymer Composites, 27(9), 587–596.
  • Baker, D.A. & Rials, T.G. (2013). Recent advances in low-cost carbon fiber manufacture from lignin. Journal of Applied Polymer Science, 130(2), 713–728.
  • Byett, J.H. & Allen, C. (1992). Dry sliding wear behavior of polyamide 66 and polycarbonate composites. Tribology International, 25, 237–246.
  • Cai, Z. & Wenxia, W. (2011). Friction and wear properties of polyamide 66 composites filled with carbon fiber under dry sliding and oil lubricated condition. Applied Mechanics and Materials, 148-149, 612-615.
  • Chang, L., Zhang, Z., Zhang, H. & Schlarb, A.K. (2006). On the sliding wear of nanoparticle filled polyamide 66 composites. Composites Science and Technology, 66, 3188–3198.
  • Chen, Z., Liu, X., Lu, R. & Li, T. (2006). Mechanical and tribological properties of PA66/PPS blend – III reinforced with glass fiber. Journal of Applied Polymer Science, 102, 523-529.
  • Chukov, D.I., Stepashkin, A.A., Maksimkin, A.V., Tcherdyntsev, V.V., Kaloshkin, S.D., Kuskov, K.V. & Bugakov, V.I. (2015). Investigation of structure, mechanical and tribological properties of short carbon fiber reinforced UHMWPE-Matrix composites. Composites Part B, 76, 79-88.
  • Essabir, H., Denis, R., Rachid, B. & Abou, K.Q. (2018). Effect of nylon 6 (PA6) addition on the properties glass fiber reinforced Acrylonitrile-Butadiene-Styrene. Polymer Composites, 14-21.
  • Gao, C., Fan, S., Zhang, S., Zhang, P. & Wang, Q. (2018). Enhancement of tribofilm formation from water lubricated PEEK composites by copper nanowires. Applied Surface Science, 444, 364–376.
  • Harrass, M., Friedrich, K. & Almajid, A.A. (2010). Tribological behavior of selected engineering polymers under rolling contact. Tribology International, 43, 635–646.
  • Ibrahim, G., Tayfun, U. & Atila, G.Ç. (2021). Tribological Properties of Fly Ash Blended Polymer Composites. Materia, 26(1), 12929.
  • Karabulut, F.Y. & Helvacı, C. (2017). Büyük şehirlerde ulaşım sistemleri ve sorunları: İzmir ili özelindeki sorunlara çözüm önerileri, TMMOB Şehir Plancıları Odası, 215-221.
  • Kausar, A. (2019). Advances in carbon fiber reinforced polyamide-based composite materials. Advances in Materials Science, 19(4), 62.
  • Kim, J.W., Jang, H. & Kim, J.W.O. (2014). Friction and wear of monolithic and glass-fiber reinforced PA66 in humid conditions. Wear, 309, 82–88.
  • Kukureka, S.N., Hooke, C.J., Rao, M., Liao, P. & Chen, Y.K. (1992). The effect of fibre reinforcement on the friction and wear of polyamide 66 under dry rolling-sliding contact. Tribology International, 32, 107-116.
  • Kumar, S. & Panneerselvam, K. (2018). Investigation on dry sliding wear behaviour of nylon-6 and GFR nylon-6 composites using Taguchi technique. Indian Journal of Enginering and Materials Science, 25, 89-97.
  • Takeshi, K., Yasuharu, N., Gaetan, B., Jean-Christophe, A., Vincent, F. & Philippe, K. (2021). Comparison of the tribological properties of carbon/glass fiber reinforced PA66-based composites in contact with steel, with and without grease lubrication. Wear, 477, 203899.
  • Kunishima, T., Nagai, Y., Kurokawa, T., Bouvard, G., Abry, J.-C., Fridrici, V. & Kapsa, P. (2020a). Tribological behavior of glass fiber reinforced-PA66 in contact with carbon steel under high contact pressure, sliding and grease lubricated conditions. Wear, 456–457, 203383.
  • Kunishima, T., Nagai, Y., Nagai, S., Kurokawa, T., Bouvard, G., Abry, J.-C., Fridrici, V. & Kapsa, P. (2020b). Effects of glass fiber properties and polymer molecular mass on the mechanical and tribological properties of a polyamide-66-based composite in contact with carbon steel under grease lubrication. Wear, 462–463, 203500.
  • Kunishima, T., Kurokawa, T., Arai, H., Fridrici, V. & Kapsa, P. (2020c). Reactive extrusion mechanism, mechanical and tribological behavior of fiber reinforced polyamide 66 with added carbodiimide. Materials and Design, 188, 108447.
  • Li, M., Wan, Y., Gao, Z., Xiong, G., Wang, X., Wan, C. & Luo, H. (2013). Preparation and properties of Polyamide 6 thermal conductive composites reinforced with fibers. Materials and Design, 51, 257–261.
  • Lingesh, B.V., Rudresh, B.M. & Ravikumar, B.N. (2014). Effect of short glass fibers on mechanical properties of Polyamide66 and Polypropylene (PA66/PP) thermoplastic blend composites. Procedia Materials Science, 5, 1231-1240.
  • Luo, W., Qi, L., Yi, L., Shengtai, Z., Huawei, Z. & Mei, L. (2016). Enhanced mechanical and tribological properties in Polyphenylene Sulfide/Polytetrafluoroethylene composites reinforced by short carbon fiber. Composites Part B, 91, 579-588.
  • Niyaraki, M.N., Faramarz,A.G., Ismail, G., & Sajjad, D. (2021). Predicting of ımpact strength and elastic modulus of polypropylene/EPDM/graphene/glass fiber nanocomposites by response surface methodology. Technıcal Journal, 15(2), 169-177.
  • Nuruzzaman, D.M., Iqbal Asif, A.K.M., Oumer, A.N., Ismail, N.M. & Basri, S. (2016). Experimental investigation on the mechanical properties of glass fiber reinforced nylon. IOP Conf. Series: Materials Science and Engineering, 114, 012118.
  • Raajeshkrishna, C.R., Pradeep, A.S. & Rishi Kumar, R.D. (2019). Influence of fiber content on mechanical, tribological properties of short basalt fiber-reinforced nylon 6 and polypropylene composites. Journal of Thermoplastic Composite Materials, 34(6), 1-19.
  • Sarita, B. & Senthilvelan, S. (2019). Effects of lubricant on the surface durability of an injection molded polyamide 66 spur gear paired with a steel gear. Tribology International, 137, 193–211.
  • Shaofeng, Z., Chaoqun, W., Lianhui, C. & Qiaoxin, Z. (2012). Effect of carbon fiber reinforcement on the mechanical and tribological properties of PA6/PPS composites. Advanced Materials Research, 476-478, 2323-2327.
  • Shelke, S.D. & Pawar, D.S. (2017). Tribological behavior of Polyamide 66 blend with CF & PTFE. International Journal for Scientific Research & Development, 5(5), 237-242.
  • Srinath, G. & Gnanamoorthy, R. (2005). Effect of short fiber reinforcement on the friction and wear behavior of nylon 66. Applied Composite Materials, 12, 369–383.
  • Suresha, B., Chandramohan, G., Samapthkumaran, P. & Seetharamu, S. (2007). Three-body abrasive wear behaviour of carbon and glass fiber reinforced epoxy composites. Materials Science and Engineering: A, 443(1), 285-291.
  • Suresha, B., Kumar, K.S., Seetharamu, S. & Kumaran, P.S. (2010). Friction and dry sliding wear behavior of carbon and glass fabric reinforced vinyl ester composites. Tribology International, 43, 602–609.
  • Tanaka, K. (1997). Friction and wear of glass and carbon fiber-filled thermoplastic polymers. Journal of Tribology, 99(4), 408-414.
  • Tavcar, J., Grkman, G. & Duhovnik, J. (2018). Accelerated lifetime testing of reinforced polymer gears. Journal of Advanced Mechanical Design, Systems and Manufacturing, 12, 1–13.
  • Tewari, U.S., Bijwe, J., Mathur, J.N. & Sharma, I. (1992). Studies on abrasive wear of carbon fibre (short) reinforced polyamide composites. Tribology International, 25, 53–60.
  • Wenhu, Z., Sier, D., Guoding, C. & Yongcun, C. (2017). Impact of lubricant traction coefficient on cage’s dynamic characteristics in high-speed angular contact ball bearing. Chinese Journal of Aeronautics. 30,–835.
  • Zhang, Y., Purssell, C., Mao, K. & Leigh, S. (2020). A physical investigation of wear and thermal characteristics of 3D printed nylon spur gears. Tribology International, 141, 105953.
  • Zhaobin, C., Xujun, L., Renguo, L. & Tongsheng, L. (2006). Mechanical and tribological properties of PA66/PPS blend. III. Reinforced with GF. Journal of Applied Polymer Science, 102, 523–529.
  • Zhou, S., Qiaoxin, Z., Chaoqun, W. & Jin, H. (2013). Effect of carbon fiber reinforcement on the mechanical and tribological properties of Polyamide6/Polyphenylene Sulfide composites. Materials and Design, 44, 493–499.

KARBON FİBER KATKILI POLİAMİT 66 POLİMER KOMPOZİTLERİN TRİBOLOJİK ÖZELLİKLERİNİN DEĞERLENDİRİLMESİ

Year 2023, Volume: 22 Issue: 44, 267 - 280, 31.12.2023
https://doi.org/10.55071/ticaretfbd.1337774

Abstract

Bu çalışmada, poliamit 66 (PA66) polimeri ile ağırlık olarak % 10, %20 ve %30 oranlarında karbon elyaf (KE) takviyeli poliamit 66 kompozitlerinin aşınma ve sürtünme davranışları incelenmiştir. Aşınma deneyleri çelik diske karşı kuru ortam şartları altında gerçekleştirilmiştir. Karbon elyaf katkılı PA66 kompozitleri çift vidalı ekstruderde granül olarak üretilmiş sonrasında enjeksiyon makinesi ile aşınma test numuneleri basılmıştır. Aşınma testleri 0,4, 0,8 ve 1,2 m/s kayma hızlarında, 20, 30 ve 40N yükler altında yapılmıştır. Deneyler, ortam sıcaklığında pim-disk aşınma cihazında gerçekleştirilmiştir. 0,8 m/s hız ve 30N yükte, PA66 polimerine ilave edilen %10, %20 ve %30 oralarındaki KE, sürtünme katsayısını %12,4, %23,5 ve %32,7 oranında, aşınma oranlarını ise %19,9, %38,9 ve %82,0 oranında azaltmıştır. Artan yük ve hız ile sürtünme katsayısı ve aşınma oranı artmıştır. Genel olarak, PA66 ve PA66/KE kompozitlerin aşınma oranları 10-10 mm3/Nm olarak elde edilmiştir. Aşınma oranı ve sürtünme katsayısı arasındaki korelasyon katsayısı (R2) PA66 polimeri için 0,9686, PA66/30KE kompozitin için ise 0,775 olarak elde edilmiştir. Uygulanan tribolojik test çalışma şartlarında % 30 oranında karbon elyaf takviyeli PA66 kompozitin katkısız PA66’ya göre ortalama %82 oranında dirençli olduğu belirlenmiştir.

References

  • Abdelbary, A. (2015). Wear of polymers and composites. Elsevier Ltd.
  • Autay R., Missaoui, S., Mars, J. & Dammak, F. (2019). Mechanical and tribological study of short glass fiber-reinforced PA 66. Polymers and Polymer Composites, 27(9), 587–596.
  • Baker, D.A. & Rials, T.G. (2013). Recent advances in low-cost carbon fiber manufacture from lignin. Journal of Applied Polymer Science, 130(2), 713–728.
  • Byett, J.H. & Allen, C. (1992). Dry sliding wear behavior of polyamide 66 and polycarbonate composites. Tribology International, 25, 237–246.
  • Cai, Z. & Wenxia, W. (2011). Friction and wear properties of polyamide 66 composites filled with carbon fiber under dry sliding and oil lubricated condition. Applied Mechanics and Materials, 148-149, 612-615.
  • Chang, L., Zhang, Z., Zhang, H. & Schlarb, A.K. (2006). On the sliding wear of nanoparticle filled polyamide 66 composites. Composites Science and Technology, 66, 3188–3198.
  • Chen, Z., Liu, X., Lu, R. & Li, T. (2006). Mechanical and tribological properties of PA66/PPS blend – III reinforced with glass fiber. Journal of Applied Polymer Science, 102, 523-529.
  • Chukov, D.I., Stepashkin, A.A., Maksimkin, A.V., Tcherdyntsev, V.V., Kaloshkin, S.D., Kuskov, K.V. & Bugakov, V.I. (2015). Investigation of structure, mechanical and tribological properties of short carbon fiber reinforced UHMWPE-Matrix composites. Composites Part B, 76, 79-88.
  • Essabir, H., Denis, R., Rachid, B. & Abou, K.Q. (2018). Effect of nylon 6 (PA6) addition on the properties glass fiber reinforced Acrylonitrile-Butadiene-Styrene. Polymer Composites, 14-21.
  • Gao, C., Fan, S., Zhang, S., Zhang, P. & Wang, Q. (2018). Enhancement of tribofilm formation from water lubricated PEEK composites by copper nanowires. Applied Surface Science, 444, 364–376.
  • Harrass, M., Friedrich, K. & Almajid, A.A. (2010). Tribological behavior of selected engineering polymers under rolling contact. Tribology International, 43, 635–646.
  • Ibrahim, G., Tayfun, U. & Atila, G.Ç. (2021). Tribological Properties of Fly Ash Blended Polymer Composites. Materia, 26(1), 12929.
  • Karabulut, F.Y. & Helvacı, C. (2017). Büyük şehirlerde ulaşım sistemleri ve sorunları: İzmir ili özelindeki sorunlara çözüm önerileri, TMMOB Şehir Plancıları Odası, 215-221.
  • Kausar, A. (2019). Advances in carbon fiber reinforced polyamide-based composite materials. Advances in Materials Science, 19(4), 62.
  • Kim, J.W., Jang, H. & Kim, J.W.O. (2014). Friction and wear of monolithic and glass-fiber reinforced PA66 in humid conditions. Wear, 309, 82–88.
  • Kukureka, S.N., Hooke, C.J., Rao, M., Liao, P. & Chen, Y.K. (1992). The effect of fibre reinforcement on the friction and wear of polyamide 66 under dry rolling-sliding contact. Tribology International, 32, 107-116.
  • Kumar, S. & Panneerselvam, K. (2018). Investigation on dry sliding wear behaviour of nylon-6 and GFR nylon-6 composites using Taguchi technique. Indian Journal of Enginering and Materials Science, 25, 89-97.
  • Takeshi, K., Yasuharu, N., Gaetan, B., Jean-Christophe, A., Vincent, F. & Philippe, K. (2021). Comparison of the tribological properties of carbon/glass fiber reinforced PA66-based composites in contact with steel, with and without grease lubrication. Wear, 477, 203899.
  • Kunishima, T., Nagai, Y., Kurokawa, T., Bouvard, G., Abry, J.-C., Fridrici, V. & Kapsa, P. (2020a). Tribological behavior of glass fiber reinforced-PA66 in contact with carbon steel under high contact pressure, sliding and grease lubricated conditions. Wear, 456–457, 203383.
  • Kunishima, T., Nagai, Y., Nagai, S., Kurokawa, T., Bouvard, G., Abry, J.-C., Fridrici, V. & Kapsa, P. (2020b). Effects of glass fiber properties and polymer molecular mass on the mechanical and tribological properties of a polyamide-66-based composite in contact with carbon steel under grease lubrication. Wear, 462–463, 203500.
  • Kunishima, T., Kurokawa, T., Arai, H., Fridrici, V. & Kapsa, P. (2020c). Reactive extrusion mechanism, mechanical and tribological behavior of fiber reinforced polyamide 66 with added carbodiimide. Materials and Design, 188, 108447.
  • Li, M., Wan, Y., Gao, Z., Xiong, G., Wang, X., Wan, C. & Luo, H. (2013). Preparation and properties of Polyamide 6 thermal conductive composites reinforced with fibers. Materials and Design, 51, 257–261.
  • Lingesh, B.V., Rudresh, B.M. & Ravikumar, B.N. (2014). Effect of short glass fibers on mechanical properties of Polyamide66 and Polypropylene (PA66/PP) thermoplastic blend composites. Procedia Materials Science, 5, 1231-1240.
  • Luo, W., Qi, L., Yi, L., Shengtai, Z., Huawei, Z. & Mei, L. (2016). Enhanced mechanical and tribological properties in Polyphenylene Sulfide/Polytetrafluoroethylene composites reinforced by short carbon fiber. Composites Part B, 91, 579-588.
  • Niyaraki, M.N., Faramarz,A.G., Ismail, G., & Sajjad, D. (2021). Predicting of ımpact strength and elastic modulus of polypropylene/EPDM/graphene/glass fiber nanocomposites by response surface methodology. Technıcal Journal, 15(2), 169-177.
  • Nuruzzaman, D.M., Iqbal Asif, A.K.M., Oumer, A.N., Ismail, N.M. & Basri, S. (2016). Experimental investigation on the mechanical properties of glass fiber reinforced nylon. IOP Conf. Series: Materials Science and Engineering, 114, 012118.
  • Raajeshkrishna, C.R., Pradeep, A.S. & Rishi Kumar, R.D. (2019). Influence of fiber content on mechanical, tribological properties of short basalt fiber-reinforced nylon 6 and polypropylene composites. Journal of Thermoplastic Composite Materials, 34(6), 1-19.
  • Sarita, B. & Senthilvelan, S. (2019). Effects of lubricant on the surface durability of an injection molded polyamide 66 spur gear paired with a steel gear. Tribology International, 137, 193–211.
  • Shaofeng, Z., Chaoqun, W., Lianhui, C. & Qiaoxin, Z. (2012). Effect of carbon fiber reinforcement on the mechanical and tribological properties of PA6/PPS composites. Advanced Materials Research, 476-478, 2323-2327.
  • Shelke, S.D. & Pawar, D.S. (2017). Tribological behavior of Polyamide 66 blend with CF & PTFE. International Journal for Scientific Research & Development, 5(5), 237-242.
  • Srinath, G. & Gnanamoorthy, R. (2005). Effect of short fiber reinforcement on the friction and wear behavior of nylon 66. Applied Composite Materials, 12, 369–383.
  • Suresha, B., Chandramohan, G., Samapthkumaran, P. & Seetharamu, S. (2007). Three-body abrasive wear behaviour of carbon and glass fiber reinforced epoxy composites. Materials Science and Engineering: A, 443(1), 285-291.
  • Suresha, B., Kumar, K.S., Seetharamu, S. & Kumaran, P.S. (2010). Friction and dry sliding wear behavior of carbon and glass fabric reinforced vinyl ester composites. Tribology International, 43, 602–609.
  • Tanaka, K. (1997). Friction and wear of glass and carbon fiber-filled thermoplastic polymers. Journal of Tribology, 99(4), 408-414.
  • Tavcar, J., Grkman, G. & Duhovnik, J. (2018). Accelerated lifetime testing of reinforced polymer gears. Journal of Advanced Mechanical Design, Systems and Manufacturing, 12, 1–13.
  • Tewari, U.S., Bijwe, J., Mathur, J.N. & Sharma, I. (1992). Studies on abrasive wear of carbon fibre (short) reinforced polyamide composites. Tribology International, 25, 53–60.
  • Wenhu, Z., Sier, D., Guoding, C. & Yongcun, C. (2017). Impact of lubricant traction coefficient on cage’s dynamic characteristics in high-speed angular contact ball bearing. Chinese Journal of Aeronautics. 30,–835.
  • Zhang, Y., Purssell, C., Mao, K. & Leigh, S. (2020). A physical investigation of wear and thermal characteristics of 3D printed nylon spur gears. Tribology International, 141, 105953.
  • Zhaobin, C., Xujun, L., Renguo, L. & Tongsheng, L. (2006). Mechanical and tribological properties of PA66/PPS blend. III. Reinforced with GF. Journal of Applied Polymer Science, 102, 523–529.
  • Zhou, S., Qiaoxin, Z., Chaoqun, W. & Jin, H. (2013). Effect of carbon fiber reinforcement on the mechanical and tribological properties of Polyamide6/Polyphenylene Sulfide composites. Materials and Design, 44, 493–499.
There are 40 citations in total.

Details

Primary Language Turkish
Subjects Materials Science and Technologies, Tribology
Journal Section Research Articles
Authors

Bilal Özsarıkaya 0000-0003-3065-6361

Salih Hakan Yetgin 0000-0002-6068-9204

Sinan Köse 0000-0002-6224-3388

Early Pub Date December 12, 2023
Publication Date December 31, 2023
Submission Date August 4, 2023
Published in Issue Year 2023 Volume: 22 Issue: 44

Cite

APA Özsarıkaya, B., Yetgin, S. H., & Köse, S. (2023). KARBON FİBER KATKILI POLİAMİT 66 POLİMER KOMPOZİTLERİN TRİBOLOJİK ÖZELLİKLERİNİN DEĞERLENDİRİLMESİ. İstanbul Commerce University Journal of Science, 22(44), 267-280. https://doi.org/10.55071/ticaretfbd.1337774
AMA Özsarıkaya B, Yetgin SH, Köse S. KARBON FİBER KATKILI POLİAMİT 66 POLİMER KOMPOZİTLERİN TRİBOLOJİK ÖZELLİKLERİNİN DEĞERLENDİRİLMESİ. İstanbul Commerce University Journal of Science. December 2023;22(44):267-280. doi:10.55071/ticaretfbd.1337774
Chicago Özsarıkaya, Bilal, Salih Hakan Yetgin, and Sinan Köse. “KARBON FİBER KATKILI POLİAMİT 66 POLİMER KOMPOZİTLERİN TRİBOLOJİK ÖZELLİKLERİNİN DEĞERLENDİRİLMESİ”. İstanbul Commerce University Journal of Science 22, no. 44 (December 2023): 267-80. https://doi.org/10.55071/ticaretfbd.1337774.
EndNote Özsarıkaya B, Yetgin SH, Köse S (December 1, 2023) KARBON FİBER KATKILI POLİAMİT 66 POLİMER KOMPOZİTLERİN TRİBOLOJİK ÖZELLİKLERİNİN DEĞERLENDİRİLMESİ. İstanbul Commerce University Journal of Science 22 44 267–280.
IEEE B. Özsarıkaya, S. H. Yetgin, and S. Köse, “KARBON FİBER KATKILI POLİAMİT 66 POLİMER KOMPOZİTLERİN TRİBOLOJİK ÖZELLİKLERİNİN DEĞERLENDİRİLMESİ”, İstanbul Commerce University Journal of Science, vol. 22, no. 44, pp. 267–280, 2023, doi: 10.55071/ticaretfbd.1337774.
ISNAD Özsarıkaya, Bilal et al. “KARBON FİBER KATKILI POLİAMİT 66 POLİMER KOMPOZİTLERİN TRİBOLOJİK ÖZELLİKLERİNİN DEĞERLENDİRİLMESİ”. İstanbul Commerce University Journal of Science 22/44 (December 2023), 267-280. https://doi.org/10.55071/ticaretfbd.1337774.
JAMA Özsarıkaya B, Yetgin SH, Köse S. KARBON FİBER KATKILI POLİAMİT 66 POLİMER KOMPOZİTLERİN TRİBOLOJİK ÖZELLİKLERİNİN DEĞERLENDİRİLMESİ. İstanbul Commerce University Journal of Science. 2023;22:267–280.
MLA Özsarıkaya, Bilal et al. “KARBON FİBER KATKILI POLİAMİT 66 POLİMER KOMPOZİTLERİN TRİBOLOJİK ÖZELLİKLERİNİN DEĞERLENDİRİLMESİ”. İstanbul Commerce University Journal of Science, vol. 22, no. 44, 2023, pp. 267-80, doi:10.55071/ticaretfbd.1337774.
Vancouver Özsarıkaya B, Yetgin SH, Köse S. KARBON FİBER KATKILI POLİAMİT 66 POLİMER KOMPOZİTLERİN TRİBOLOJİK ÖZELLİKLERİNİN DEĞERLENDİRİLMESİ. İstanbul Commerce University Journal of Science. 2023;22(44):267-80.