Research Article
BibTex RIS Cite

BASKETBOLDA MAÇ İÇİ İSTATİSTİKLERİNİN MARKOV ZİNCİRLERİ İLE ANALİZİ: STEPHEN CURRY ÖRNEĞİ

Year 2025, Volume: 24 Issue: 48, 509 - 533
https://doi.org/10.55071/ticaretfbd.1643592

Abstract

Basketbol, sürekli evrilen ve dinamikleri hızla değişen bir spor dalıdır. Bu değişimlerin anlaşılması ve oyuncuların performanslarının değerlendirilmesi, modern spor bilimlerinde önemli bir yer tutar. Basketbol istatistikleri, oyuncuların maç içindeki performanslarını çeşitli parametreler üzerinden değerlendirmek için kullanılır. Bu parametreler arasında atış başarısı, ribaund sayısı, asist miktarı ve diğer önemli performans göstergeleri bulunur. Bu tür detaylı istatistikler, oyuncuların güçlü ve zayıf yönlerini belirlemeye ve takım stratejilerini şekillendirmeye yardımcı olur. Markov zinciri analizi, bu istatistiksel verilerin modellemesinde kullanılan güçlü bir matematiksel araçtır. Bir Markov zinciri, bir sonraki durumun yalnızca mevcut duruma bağlı olduğu ve geçmiş tüm durumlardan bağımsız olduğu stokastik bir süreçtir. Basketbol gibi dinamik bir ortamda, Markov zincirleri, oyuncu performansının zaman içindeki değişimlerini ve olası gelecek senaryolarını tahmin etmek için idealdir. Özellikle, oyuncuların maç içi performans değişiklikleri gibi sürekli değişen koşullar altında, Markov zincirleri bu değişkenliği modelleyerek, daha bilinçli kararlar alınmasına imkan tanır. Bu çalışmada NBA yıldızı Stephen Curry'nin performansı üzerine analizler yapılmıştır. Bu analizde Stephen Curry’nin 2015-2016, 2016-2017, 2017-2018 yıllarındaki üçlük sayısı, üçlük yüzdesi, ribaund, asist ve toplam sayı değişkenleri kullanılarak Markov Zinciri analizi ile tahminleri yapılmıştır. Markov zinciri kullanılarak onun üçlük atışları, asistler ve diğer önemli istatistiklerinin nasıl değişebileceği öngörülmüştür. Bu tür analizler, Curry gibi oyuncuların oyun içi etkilerini daha iyi anlaşılmasına ve onların performansının takım başarısı üzerindeki etkilerini değerlendirmemize olanak sağlayacağı düşünülmektedir.

References

  • ApSimon, H. G. (1957). 2697. Squash Chances. The Mathematical Gazette, 41(336), 136-137.
  • Attard, P., Suda, D., & Sammut, F. (2023). Bayesian hierarchical modelling of basketball team performance: an NBA regular season case study.
  • Bellman, R. (1977). Dynamic programming and Markovian decision processes with application to baseball. Optimal strategies in sports.
  • Briz-Redón, Á. (2024). A doubly self-exciting poisson model for describing scoring levels in nba basketball. Journal of the Royal Statistical Society Series C: Applied Statistics, 73(3), 735-754.
  • Bunker, R. P., & Thabtah, F. (2019). A machine learning framework for sport result prediction. Applied computing and informatics, 15(1), 27-33.
  • Calvo, G., Armero, C., & Spezia, L. (2023). A Bayesian hidden Markov model for assessing the hot hand phenomenon in basketball shooting performance. arXiv preprint arXiv:2303.17863.
  • Clarke, S. R. (1979). Tie point strategy in American and international squash and badminton. Research Quarterly. American Alliance for Health, Physical Education, Recreation and Dance, 50(4), 729-734.
  • Clarke, S. R., & Norman, J. M. (1979). Comparison of North American and international squash scoring systems—analytical results. Research Quarterly. American Alliance for Health, Physical Education, Recreation and Dance, 50(4), 723-728.
  • Clarke, S. R., & Norman, J. M. (1998). Dynamic programming in cricket: protecting the weaker batsman. Asia Pacific Journal of Operational Research, 15, 93-108.
  • Croucher, J. S. (1982). The effect of the tennis tie-breaker. Research Quarterly for Exercise and Sport, 53(4), 336-339.
  • Croucher, J. S. (1986). The conditional probability of winning games of tennis. Research Quarterly for Exercise and Sport, 57(1), 23-26.
  • Çinlar, E. (1977). Shock and wear models and Markov additive processes. In The theory and applications of reliability with emphasis on Bayesian and nonparametric methods (pp. 193-214). Academic Press.
  • Flatz, A., Loper, M. C., & Weyer, L. (2025). First is the worst, second is the best? A Markov chain analysis of the basketball game knockout. arXiv preprint arXiv:2505.16842.
  • Hernández Moreno, J. (1987). Estudio sobre el análisis de la acción de juego en los deportes de equipo: Su aplicación al baloncesto.
  • Heuer, A., & Rubner, O. (2012). How does the past of a soccer match influence its future? Concepts and statistical analysis. PloS one, 7(11), e47678.
  • Hirotsu, N., & Wright, M. (2003). A Markov chain approach to optimal pinch hitting strategies in a designated hitter rule baseball game. Journal of the Operations Research Society of Japan, 46(3), 353-371.
  • Kayran, A. H., Yücel, M. N., Çölkesen, R., & Uğurkaya, C. (2014). Olasılık teorisi ve stokastik süreçler. Papatya Yayıncılık.
  • Kolias, P., Stavropoulos, N., Papadopoulou, A., & Kostakidis, T. (2022). Evaluating basketball player’s rotation line-ups performance via statistical markov chain modelling. International Journal of Sports Science & Coaching, 17(1), 178-188.
  • Lapham, A. C., & Bartlett, R. M. (1995). The use of artificial intelligence in the analysis of sports performance: A review of applications in human gait analysis and future directions for sports biomechanics. Journal of Sports Sciences, 13(3), 229-237.
  • Lees, A. (2002). Technique analysis in sports: a critical review. Journal of sports sciences, 20(10), 813-828.
  • McGarry, T., Anderson, D. I., Wallace, S. A., Hughes, M. D., & Franks, I. M. (2002). Sport competition as a dynamical self-organizing system. Journal of sports sciences, 20(10), 771-781.
  • McGarry, T., & Franks, I. M. (1994). A stochastic approach to predicting competition squash match‐play. Journal of sports sciences, 12(6), 573-584.
  • McGarry, T., & Franks, I. M. (1996a). In search of invariant athletic behaviour in sport: An example from championship squash match‐play. Journal of sports sciences, 14(5), 445-456.
  • McGarry, T., & Franks, I. M. (1996). Development, application, and limitation of a stochastic Markov model in explaining championship squash performance. Research quarterly for exercise and sport, 67(4), 406-415.
  • Morris, C. (1977). The most important points in tennis. Optimal strategies in sport, 131-140.
  • Norman, J. M. (1999). Markov process applications in sport. In IFORS conference. Beijing, China (Vol. 50, pp. 536-545).
  • Ouyang, Y., Li, X., Zhou, W., Hong, W., Zheng, W., Qi, F., & Peng, L. (2024). Integration of machine learning XGBoost and SHAP models for NBA game outcome prediction and quantitative analysis methodology. Plos one, 19(7), e0307478.
  • Özel Kadılar, G. (2023). Stokastik Süreçler ve R Uygulamaları.
  • Papageorgiou, G., Sarlis, V., & Tjortjis, C. (2025). An innovative method for accurate NBA player performance forecasting and line-up optimization in daily fantasy sports. International Journal of Data Science and Analytics, 20(2), 1215-1238.
  • Pfeifer, P. E., & Deutsch, S. J. (1981). A probabilistic model for evaluation of volleyball scoring systems. Research quarterly for exercise and sport, 52(3), 330-338.
  • Pollard, G. H. (1985). A statistical investigation of squash. Research Quarterly for Exercise and Sport, 56(2), 144-150.
  • Pollard, G. H. (1987). A new tennis scoring system. Research Quarterly for Exercise and Sport, 58(3), 229-233.
  • Prais, S. J. (1955). Measuring social mobility. Journal of the Royal Statistical Society. Series A (General), 118(1), 56-66.
  • Reis, M., & Dutal, H. (2016). Determining hydrological drought probability in future using markov chain model for Kahramanmaras city.
  • Renick, J. (1977). Tie point strategy in badminton and international squash. Research Quarterly. American Alliance for Health, Physical Education and Recreation, 48(2), 492-498.
  • Sandholtz, N., & Bornn, L. (2020). Markov decision processes with dynamic transition probabilities: An analysis of shooting strategies in basketball.
  • Sandri, M., Zuccolotto, P., & Manisera, M. (2020). Markov switching modelling of shooting performance variability and teammate interactions in basketball. Journal of the Royal Statistical Society Series C: Applied Statistics, 69(5), 1337-1356.
  • Schutz, R. W. (1970). A mathematical model for evaluating scoring systems with specific reference to tennis. Research Quarterly. American Association for Health, Physical Education and Recreation, 41(4), 552-561.
  • Schutz, R. W., & Kinsey, W. J. (1977). Comparison of North American and international squash scoring systems—a computer simulation. Research Quarterly. American Alliance for Health, Physical Education and Recreation, 48(1), 248-251.
  • Simon, H. A. (1951). 2226. The luck of the toss in squash rackets. The Mathematical Gazette, 35(313), 193-194.
  • Trninić, S., Karalejić, M., Jakovljević, S., & Jelaska, I. (2010a). Structural analysis of knowledge based on principal attributes of the game of basketball. Fizička kultura, 64(1), 5-25.
  • Trninić, S., Karalejić, M., Jakovljević, S., & Jelaska, I. (2010b). Structural analysis of knowledge based on specific attributes of the game of basketball. Fizička kultura, 64(2), 22-41.
  • Trninić, S., Milanović, D., Blašković, M., Birkić, Ž., & Dizdar, D. (1995). The influence of defensive and offensive rebounds on the final score in a basketball game. Kinesiology, 27(2), 44-49.
  • Trninić, S., Perica, A., & Pavičić, L. (1994). Analysis of states in basketball game. Kinesiology, 26(1-2), 27-32.
  • Trueman, R. E. (1977). Analysis of baseball as a Markov process. Optimal Strategies in Sports.
  • Wright, M. B. (1988). Probabilities and decision rules for the game of squash rackets. Journal of the Operational Research Society, 39, 91-99.

ANALYSIS OF IN-MATCH STATISTICS IN BASKETBALL WITH MARKOV CHAINS: THE STEPHEN CURRY EXAMPLE

Year 2025, Volume: 24 Issue: 48, 509 - 533
https://doi.org/10.55071/ticaretfbd.1643592

Abstract

Basketball is a constantly evolving sport with rapidly changing dynamics. Understanding these changes and evaluating player performance hold significant importance in modern sports sciences. Basketball statistics are used to assess players' in-game performance across various parameters, including shooting success, rebound numbers, assist amounts, and other critical performance indicators. Such detailed statistics help identify players' strengths and weaknesses and aid in shaping team strategies. Markov chain analysis is a powerful mathematical tool used for modeling these statistical data. A Markov chain is a stochastic process in which the next state depends only on the current state and is independent of all past states. In the dynamic environment of basketball, Markov chains are ideal for predicting changes in player performance over time and possible future scenarios. Especially under continuously changing conditions like in-game performance shifts, Markov chains model this variability, allowing for more informed decision-making. This study has analyzed NBA star Stephen Curry's performance. Using Markov Chain analysis, predictions were made based on his three-point shooting, rebound, assist, and total point statistics from the 2015-2016, 2016-2017, and 2017-2018 seasons. The Markov chain was used to forecast how his three-point shots, assists, and other significant statistics might change. Such analyses are thought to better understand the in-game effects of players like Curry and assess the impact of their performance on team success.

References

  • ApSimon, H. G. (1957). 2697. Squash Chances. The Mathematical Gazette, 41(336), 136-137.
  • Attard, P., Suda, D., & Sammut, F. (2023). Bayesian hierarchical modelling of basketball team performance: an NBA regular season case study.
  • Bellman, R. (1977). Dynamic programming and Markovian decision processes with application to baseball. Optimal strategies in sports.
  • Briz-Redón, Á. (2024). A doubly self-exciting poisson model for describing scoring levels in nba basketball. Journal of the Royal Statistical Society Series C: Applied Statistics, 73(3), 735-754.
  • Bunker, R. P., & Thabtah, F. (2019). A machine learning framework for sport result prediction. Applied computing and informatics, 15(1), 27-33.
  • Calvo, G., Armero, C., & Spezia, L. (2023). A Bayesian hidden Markov model for assessing the hot hand phenomenon in basketball shooting performance. arXiv preprint arXiv:2303.17863.
  • Clarke, S. R. (1979). Tie point strategy in American and international squash and badminton. Research Quarterly. American Alliance for Health, Physical Education, Recreation and Dance, 50(4), 729-734.
  • Clarke, S. R., & Norman, J. M. (1979). Comparison of North American and international squash scoring systems—analytical results. Research Quarterly. American Alliance for Health, Physical Education, Recreation and Dance, 50(4), 723-728.
  • Clarke, S. R., & Norman, J. M. (1998). Dynamic programming in cricket: protecting the weaker batsman. Asia Pacific Journal of Operational Research, 15, 93-108.
  • Croucher, J. S. (1982). The effect of the tennis tie-breaker. Research Quarterly for Exercise and Sport, 53(4), 336-339.
  • Croucher, J. S. (1986). The conditional probability of winning games of tennis. Research Quarterly for Exercise and Sport, 57(1), 23-26.
  • Çinlar, E. (1977). Shock and wear models and Markov additive processes. In The theory and applications of reliability with emphasis on Bayesian and nonparametric methods (pp. 193-214). Academic Press.
  • Flatz, A., Loper, M. C., & Weyer, L. (2025). First is the worst, second is the best? A Markov chain analysis of the basketball game knockout. arXiv preprint arXiv:2505.16842.
  • Hernández Moreno, J. (1987). Estudio sobre el análisis de la acción de juego en los deportes de equipo: Su aplicación al baloncesto.
  • Heuer, A., & Rubner, O. (2012). How does the past of a soccer match influence its future? Concepts and statistical analysis. PloS one, 7(11), e47678.
  • Hirotsu, N., & Wright, M. (2003). A Markov chain approach to optimal pinch hitting strategies in a designated hitter rule baseball game. Journal of the Operations Research Society of Japan, 46(3), 353-371.
  • Kayran, A. H., Yücel, M. N., Çölkesen, R., & Uğurkaya, C. (2014). Olasılık teorisi ve stokastik süreçler. Papatya Yayıncılık.
  • Kolias, P., Stavropoulos, N., Papadopoulou, A., & Kostakidis, T. (2022). Evaluating basketball player’s rotation line-ups performance via statistical markov chain modelling. International Journal of Sports Science & Coaching, 17(1), 178-188.
  • Lapham, A. C., & Bartlett, R. M. (1995). The use of artificial intelligence in the analysis of sports performance: A review of applications in human gait analysis and future directions for sports biomechanics. Journal of Sports Sciences, 13(3), 229-237.
  • Lees, A. (2002). Technique analysis in sports: a critical review. Journal of sports sciences, 20(10), 813-828.
  • McGarry, T., Anderson, D. I., Wallace, S. A., Hughes, M. D., & Franks, I. M. (2002). Sport competition as a dynamical self-organizing system. Journal of sports sciences, 20(10), 771-781.
  • McGarry, T., & Franks, I. M. (1994). A stochastic approach to predicting competition squash match‐play. Journal of sports sciences, 12(6), 573-584.
  • McGarry, T., & Franks, I. M. (1996a). In search of invariant athletic behaviour in sport: An example from championship squash match‐play. Journal of sports sciences, 14(5), 445-456.
  • McGarry, T., & Franks, I. M. (1996). Development, application, and limitation of a stochastic Markov model in explaining championship squash performance. Research quarterly for exercise and sport, 67(4), 406-415.
  • Morris, C. (1977). The most important points in tennis. Optimal strategies in sport, 131-140.
  • Norman, J. M. (1999). Markov process applications in sport. In IFORS conference. Beijing, China (Vol. 50, pp. 536-545).
  • Ouyang, Y., Li, X., Zhou, W., Hong, W., Zheng, W., Qi, F., & Peng, L. (2024). Integration of machine learning XGBoost and SHAP models for NBA game outcome prediction and quantitative analysis methodology. Plos one, 19(7), e0307478.
  • Özel Kadılar, G. (2023). Stokastik Süreçler ve R Uygulamaları.
  • Papageorgiou, G., Sarlis, V., & Tjortjis, C. (2025). An innovative method for accurate NBA player performance forecasting and line-up optimization in daily fantasy sports. International Journal of Data Science and Analytics, 20(2), 1215-1238.
  • Pfeifer, P. E., & Deutsch, S. J. (1981). A probabilistic model for evaluation of volleyball scoring systems. Research quarterly for exercise and sport, 52(3), 330-338.
  • Pollard, G. H. (1985). A statistical investigation of squash. Research Quarterly for Exercise and Sport, 56(2), 144-150.
  • Pollard, G. H. (1987). A new tennis scoring system. Research Quarterly for Exercise and Sport, 58(3), 229-233.
  • Prais, S. J. (1955). Measuring social mobility. Journal of the Royal Statistical Society. Series A (General), 118(1), 56-66.
  • Reis, M., & Dutal, H. (2016). Determining hydrological drought probability in future using markov chain model for Kahramanmaras city.
  • Renick, J. (1977). Tie point strategy in badminton and international squash. Research Quarterly. American Alliance for Health, Physical Education and Recreation, 48(2), 492-498.
  • Sandholtz, N., & Bornn, L. (2020). Markov decision processes with dynamic transition probabilities: An analysis of shooting strategies in basketball.
  • Sandri, M., Zuccolotto, P., & Manisera, M. (2020). Markov switching modelling of shooting performance variability and teammate interactions in basketball. Journal of the Royal Statistical Society Series C: Applied Statistics, 69(5), 1337-1356.
  • Schutz, R. W. (1970). A mathematical model for evaluating scoring systems with specific reference to tennis. Research Quarterly. American Association for Health, Physical Education and Recreation, 41(4), 552-561.
  • Schutz, R. W., & Kinsey, W. J. (1977). Comparison of North American and international squash scoring systems—a computer simulation. Research Quarterly. American Alliance for Health, Physical Education and Recreation, 48(1), 248-251.
  • Simon, H. A. (1951). 2226. The luck of the toss in squash rackets. The Mathematical Gazette, 35(313), 193-194.
  • Trninić, S., Karalejić, M., Jakovljević, S., & Jelaska, I. (2010a). Structural analysis of knowledge based on principal attributes of the game of basketball. Fizička kultura, 64(1), 5-25.
  • Trninić, S., Karalejić, M., Jakovljević, S., & Jelaska, I. (2010b). Structural analysis of knowledge based on specific attributes of the game of basketball. Fizička kultura, 64(2), 22-41.
  • Trninić, S., Milanović, D., Blašković, M., Birkić, Ž., & Dizdar, D. (1995). The influence of defensive and offensive rebounds on the final score in a basketball game. Kinesiology, 27(2), 44-49.
  • Trninić, S., Perica, A., & Pavičić, L. (1994). Analysis of states in basketball game. Kinesiology, 26(1-2), 27-32.
  • Trueman, R. E. (1977). Analysis of baseball as a Markov process. Optimal Strategies in Sports.
  • Wright, M. B. (1988). Probabilities and decision rules for the game of squash rackets. Journal of the Operational Research Society, 39, 91-99.
There are 46 citations in total.

Details

Primary Language Turkish
Subjects Applied Statistics
Journal Section Research Article
Authors

Gamze Özel Kadılar 0000-0003-3886-3074

Alihan Demirci 0009-0001-7778-323X

Hatice Nur Karakavak 0009-0009-9915-7115

Early Pub Date December 9, 2025
Publication Date December 14, 2025
Submission Date February 20, 2025
Acceptance Date October 18, 2025
Published in Issue Year 2025 Volume: 24 Issue: 48

Cite

APA Özel Kadılar, G., Demirci, A., & Karakavak, H. N. (2025). BASKETBOLDA MAÇ İÇİ İSTATİSTİKLERİNİN MARKOV ZİNCİRLERİ İLE ANALİZİ: STEPHEN CURRY ÖRNEĞİ. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 24(48), 509-533. https://doi.org/10.55071/ticaretfbd.1643592
AMA Özel Kadılar G, Demirci A, Karakavak HN. BASKETBOLDA MAÇ İÇİ İSTATİSTİKLERİNİN MARKOV ZİNCİRLERİ İLE ANALİZİ: STEPHEN CURRY ÖRNEĞİ. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. December 2025;24(48):509-533. doi:10.55071/ticaretfbd.1643592
Chicago Özel Kadılar, Gamze, Alihan Demirci, and Hatice Nur Karakavak. “BASKETBOLDA MAÇ İÇİ İSTATİSTİKLERİNİN MARKOV ZİNCİRLERİ İLE ANALİZİ: STEPHEN CURRY ÖRNEĞİ”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 24, no. 48 (December 2025): 509-33. https://doi.org/10.55071/ticaretfbd.1643592.
EndNote Özel Kadılar G, Demirci A, Karakavak HN (December 1, 2025) BASKETBOLDA MAÇ İÇİ İSTATİSTİKLERİNİN MARKOV ZİNCİRLERİ İLE ANALİZİ: STEPHEN CURRY ÖRNEĞİ. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 24 48 509–533.
IEEE G. Özel Kadılar, A. Demirci, and H. N. Karakavak, “BASKETBOLDA MAÇ İÇİ İSTATİSTİKLERİNİN MARKOV ZİNCİRLERİ İLE ANALİZİ: STEPHEN CURRY ÖRNEĞİ”, İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, vol. 24, no. 48, pp. 509–533, 2025, doi: 10.55071/ticaretfbd.1643592.
ISNAD Özel Kadılar, Gamze et al. “BASKETBOLDA MAÇ İÇİ İSTATİSTİKLERİNİN MARKOV ZİNCİRLERİ İLE ANALİZİ: STEPHEN CURRY ÖRNEĞİ”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 24/48 (December2025), 509-533. https://doi.org/10.55071/ticaretfbd.1643592.
JAMA Özel Kadılar G, Demirci A, Karakavak HN. BASKETBOLDA MAÇ İÇİ İSTATİSTİKLERİNİN MARKOV ZİNCİRLERİ İLE ANALİZİ: STEPHEN CURRY ÖRNEĞİ. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. 2025;24:509–533.
MLA Özel Kadılar, Gamze et al. “BASKETBOLDA MAÇ İÇİ İSTATİSTİKLERİNİN MARKOV ZİNCİRLERİ İLE ANALİZİ: STEPHEN CURRY ÖRNEĞİ”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, vol. 24, no. 48, 2025, pp. 509-33, doi:10.55071/ticaretfbd.1643592.
Vancouver Özel Kadılar G, Demirci A, Karakavak HN. BASKETBOLDA MAÇ İÇİ İSTATİSTİKLERİNİN MARKOV ZİNCİRLERİ İLE ANALİZİ: STEPHEN CURRY ÖRNEĞİ. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. 2025;24(48):509-33.