Research Article
BibTex RIS Cite

Operational Challenges and Prioritization of Potential Solutions for Integrating Vertiports into Airports

Year 2024, Volume: 6 Issue: 2, 42 - 55, 31.12.2024
https://doi.org/10.51534/tiha.1506936

Abstract

The integration of vertiports into airports for eVTOL/UAV flights poses operational challenges. The aim of the study was to propose and prioritize solutions to overcome these challenges. A comprehensive literature review identified remote vertiport networks, geofencing technology, dedicated airspace corridors, advanced collision avoidance systems and dynamic airspace management as potential solutions. These solutions were prioritized using the Analytic Hierarchy Process (AHP) based on criteria such as safety, cost, efficiency, feasibility, and sustainability. Dynamic airspace management (=0.396) was the highest priority, followed by remote vertiport networks (=0.385), dedicated airspace corridors (=0.273), geofencing technology (=0.205), and advanced collision avoidance systems (=0.137). The study highlights the importance of dynamic data sharing and real-time planning through integrated ATM/UTM systems, enhanced by AI technologies, to ensure safety and efficiency. In addition, the development of remote vertiport networks and dedicated airspace corridors is essential to manage growing air traffic and ensure the safe coexistence of eVTOL/UAVs and traditional aircraft. Geofencing technology and advanced collision avoidance systems are also essential to maintain safety and operational integrity. It is recommended that future studies focus on the integration of ATM/UTM and the application of artificial intelligence. Continued collaboration between UAM stakeholders is essential to develop effective integration strategies.

References

  • Abastante, F., Corrente, S., Greco, S., Ishizaka, A., & Lami, I. (2019). A new parsimonious AHP methodology: Assigning priorities to many objects by comparing pairwise few reference objects. Expert Systems with Applications, 127, 109–120. https://doi.org/10.1016/j.eswa.2019.02.036
  • Abeyratne, D. R., & Abeyratne, R. (2014). The airport business. In Law and Regulation of Aerodromes. 145–167).
  • Ackerman, E., Cass, S., Dumiak, M., & Gallucci, M. (2021). Transportation: How safe are eVTOLs? Extremely safe—say manufacturers: News. IEEE Spectrum, 58(11), 6–13.
  • Afrin, T., & Yodo, N. (2020). A survey of road traffic congestion measures towards a sustainable and resilient transportation system. Sustainability, 12(11), 4660. https://doi.org/10.3390/su12114660
  • Ahn, B., & Hwang, H. (2022). Design criteria and accommodating capacity analysis of vertiports for urban air mobility and its application at Gimpo Airport in Korea. Applied Sciences, 12(12), 6077. https://doi.org/10.3390/app12126077
  • Ahrenhold, N., Pohling, O., & Schier-Morgenthal, S. (2021). Impact of air taxis on air traffic in the vicinity of airports. Infrastructures, 6(10), 140. https://doi.org/10.3390/infrastructures6100140
  • Ali, B. S. (2019). Traffic management for drones flying in the city. International Journal of Critical Infrastructure Protection, 26, 100310.
  • Almeida, C., Li, W., Meinerz, G., & Li, L. (2016). Satisficing game approach to collaborative decision making including airport management. IEEE Transactions on Intelligent Transportation Systems, 17, 2262–2271. https://doi.org/10.1109/TITS.2016.2516444
  • Al-Rubaye, S., Tsourdos, A., & Namuduri, K. (2023). Advanced air mobility operation and infrastructure for sustainable connected eVTOL vehicle. Drones, 7(5), 319. https://doi.org/10.3390/drones7050319
  • Alturbeh, H., & Whidborne, J. (2020). Visual flight rules-based collision avoidance systems for UAV flying in civil aerospace. Robotics, 9(1), 9. https://doi.org/10.3390/robotics9010009
  • Asslouj, A., Atkins, E., & Rastgoftar, H. (2023). Can a Laplace PDE define air corridors through low-altitude airspace? 2023 International Conference on Unmanned Aircraft Systems (ICUAS), 1–8. https://doi.org/10.1109/ICUAS57906.2023.10180409
  • Auerbach, S., & Koch, B. (2007). Cooperative approaches to managing air traffic efficiently—the airline perspective. Journal of Air Transport Management, 13, 37–44. https://doi.org/10.1016/j.jairtraman.2006.10.005
  • Australia CASA. (2023). Advisory circular AC 139.V-01v1.0: Guidance for vertiport design, D23/134615. Retrieved from https://www.casa.gov.au/sites/default/files/2023-07/advisory-circular-139.v-01-guidance-vertiport-design.pdf
  • Brunelli, M., Ditta, C. C., & Postorino, M. N. (2023). New infrastructures for urban air mobility systems: A systematic review on vertiport location and capacity. Journal of Air Transport Management, 112, 102460. https://doi.org/10.1016/j.jairtraman.2023.102460
  • Cafieri, S., & D’Ambrosio, C. (2017). Feasibility pump for aircraft deconfliction with speed regulation. Journal of Global Optimization, 71, 501–515. https://doi.org/10.1007/s10898-017-0560-7
  • Caulfield, B., Bailey, D., & Mullarkey, S. (2013). Using data envelopment analysis as a public transport project appraisal tool. Transport Policy, 29, 74–85. https://doi.org/10.1016/j.tranpol.2013.04.006
  • Chang, Y., Shao, P., & Chen, H. (2015). Performance evaluation of airport safety management systems in Taiwan. Safety Science, 75, 72–86. https://doi.org/10.1016/j.ssci.2014.12.006
  • Cheng, P., & Geng, R. (2010). Dynamic airspace management—Models and algorithms. Air Traffic Control.
  • Cheng, V. H. (2004). Surface operation automation research for airport tower and flight deck automation. In Proceedings. The 7th International IEEE Conference on Intelligent Transportation Systems (IEEE Cat. No. 04TH8749, 607–612. https://doi.org/10.1109/ITSC.2004.1398970
  • Cizrelioğulları, M. N., Barut, P., & Imanov, T. (2022). Future air transportation ramification: Urban air mobility (UAM) concept. Prizren Social Science Journal, 6(2), 24–31.
  • Clarke, M., Smart, J., Botero, E. M., Maier, W., & Alonso, J. J. (2019). Strategies for posing a well-defined problem for urban air mobility vehicles. In AIAA Scitech 2019 Forum, 0818. https://doi.org/10.2514/6.2019-0818
  • Coppola, P., De Fabiis, F., & Silvestri, F. (2024). Urban air mobility (UAM): Airport shuttles or city-taxis? Transport Policy, 150, 24–34.
  • Daskilewicz, M., German, B., Warren, M., Garrow, L., Boddupalli, S., & Douthat, T. (2018). Progress in vertiport placement and estimating aircraft range requirements for eVTOL daily commuting. 2018 Aviation Technology, Integration, and Operations Conference. https://doi.org/10.2514/6.2018-2884
  • Dmitruk, A., & Koshevoy, G. (1991). On the existence of a technical efficiency criterion. Journal of Economic Theory, 55, 121–144. https://doi.org/10.1016/0022-0531(91)90061-7
  • Dulchinos, V., Wood, R. D., Farrahi, A., Mogford, R., Shyr, M., & Ghatas, R. (2022). Design and analysis of corridors for UAM operations. In 2022 IEEE/AIAA 41st Digital Avionics Systems Conference (DASC), pp. 1–10. https://doi.org/10.1109/DASC55683.2022.9925820
  • Eissfeldt, H. (2020). Sustainable urban air mobility supported with participatory noise sensing. Sustainability, 12(8), 3320. https://doi.org/10.3390/su12083320
  • Ellis, K. K., Prinzel, L. J., Davies, M. D., Homola, J., Glaab, L., Krois, P., et al. (2023). An in-time aviation safety management system (IASMS) concept of operations for vertiport design and operations. In AIAA AVIATION 2023 Forum, 3965. https://doi.org/10.2514/6.2023-3965
  • European Union Safety Agency. (2022). Prototype technical specifications for the design of VFR vertiports for operation with manned VTOL-capable aircraft certified in the enhanced category. Retrieved from https://www.easa.europa.eu/document-library/general-publications/prototype-technical-designspecifications-vertiports
  • Forsyth, P. (2007). The impacts of emerging aviation trends on airport infrastructure. Journal of Air Transport Management, 13, 45–52. https://doi.org/10.1016/j.jairtraman.2006.10.004
  • Future Travel Experience. (2022). Mobility. Retrieved from https://www.futuretravelexperience.com/2022/08/vports-to-build-and-operate-vertiport-hub-at-sao-paulo-international-airport/
  • Gelhausen, M., Berster, P., & Wilken, D. (2013). Do airport capacity constraints have a serious impact on the future development of air traffic? Journal of Air Transport Management, 28, 3–13. https://doi.org/10.1016/j.jairtraman.2012.12.004
  • Gerdes, I., Temme, A., & Schultz, M. (2018). Dynamic airspace sectorisation for flight-centric operations. Transportation Research Part C: Emerging Technologies, 95, 460–480. https://doi.org/10.1016/j.trc.2018.07.032
  • Gibson, W., & Morrell, P. (2004). Theory and practice in aircraft financial evaluation. Journal of Air Transport Management, 10, 427–433. https://doi.org/10.1016/j.jairtraman.2004.07.002
  • Gillis, D., Petri, M., Pratelli, A., Semanjski, I., & Semanjski, S. (2021). Urban air mobility: A state of art analysis. In Computational Science and Its Applications–ICCSA 2021: 21st International Conference, Cagliari, Italy, September 13–16, 2021, Proceedings, Part II, 411–425. Springer International Publishing.
  • Groupe ADP. (n.d.). Innovation. Retrieved from https://presse.groupeadp.fr/first-vertiport-pontoise/?lang=en
  • Guida, R., Bertolino, A. C., De Martin, A., Raviola, A., Jacazio, G., & Sorli, M. (2023). On the effects of strain wave gear kinematic errors on the behavior of an electro-mechanical flight control actuator for eVTOL aircrafts. Materials Research Proceedings, 26, 207–212. https://doi.org/10.21741/9781644902431-34
  • Hosseinzadeh, M. (2021). UAV geofencing: Navigation of UVAs in constrained environments. In Unmanned Aerial Systems, 567–594. Academic Press. https://doi.org/10.1016/B978-0-12-820276-0.00029-7
  • Jain, S., Jain, S. S., & Jain, G. V. (2018). An operational analysis and congestion estimation of urban bus route based on ITS. Civil Engineering Research Journal, 3(2), 555610. https://doi.org/10.19080/CERJ.2018.03.555610
  • Janic, M. (2000). An assessment of risk and safety in civil aviation. Journal of Air Transport Management, 6, 43–50. https://doi.org/10.1016/S0969-6997(99)00021-6
  • Janic, M. (2016). Analyzing, modeling, and assessing the performances of land use by airports. International Journal of Sustainable Transportation, 10, 683–702. https://doi.org/10.1080/15568318.2015.1104566
  • Jin, Z., Ng, K. K., Zhang, C., Wu, L., & Li, A. (2024). Integrated optimization of strategic planning and service operations for urban air mobility systems. Transportation Research Part A: Policy and Practice, 183, 104059.
  • Karacapilidis, N. (2000). Integrating new information and communication technologies in a group decision support system. International Transactions in Operational Research, 7, 487–507. https://doi.org/10.1016/S0969-6016(00)00028-9
  • Kim, W., Park, J., Yu, J. W., & Ko, J. (2023). A study on the criterions affecting UAM vertiport location based on user-oriented perspectives. Journal of Korean Society of Transportation, 41(2), 212–225.
  • Kleinbekman, I. C., Mitici, M. A., & Wei, P. (2018). eVTOL arrival sequencing and scheduling for on-demand urban air mobility. In 2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC), 1–7. IEEE. https://doi.org/10.1109/DASC.2018.8569645
  • Kong, Y., Zhang, X., & Mahadevan, S. (2022). Bayesian deep learning for aircraft hard landing safety assessment. IEEE Transactions on Intelligent Transportation Systems, 23(10), 17062–17076.
  • Koscak, P., Jencova, E., Galanda, J., & Liptakova, D. (2019). Airports SMS penetration with occupational health protection. 2019 New Trends in Aviation Development (NTAD), 96–101. https://doi.org/10.1109/NTAD.2019.8875592
  • Lanshou, H., & Fuqing, D. (2010). Dynamic air route management based on flight demand. In 2010 Second International Conference on Computer and Network Technology (pp. 426–429). IEEE. https://doi.org/10.1109/ICCNT.2010.79
  • Lascara, B., Lacher, A., DeGarmo, M., Maroney, D., Niles, R., & Vempati, L. (2019). Urban air mobility airspace integration concepts: Operational concepts and exploration approaches. MITRE CORP MCLEAN VA MCLEAN. Retrieved from https://apps.dtic.mil/sti/pdfs/AD1107997.pdf
  • Lin, C., & Wu, Y. (2011). Collision avoidance solution for low-altitude flights. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 225, 779–790. https://doi.org/10.1177/0954410011399211
  • Lombaerts, T., Kaneshige, J., Schuet, S., Aponso, B. L., Shish, K. H., & Hardy, G. (2020). Dynamic inversion-based full envelope flight control for an eVTOL vehicle using a unified framework. In AIAA Scitech 2020 Forum (p. 1619). https://doi.org/10.2514/6.2020-1619
  • Markatos, D. N., & Pantelakis, S. G. (2022). Assessment of the impact of material selection on aviation sustainability, from a circular economy perspective. Aerospace, 9(2), 52.
  • McQueen, B. (2021). Unsettled issues concerning urban air mobility infrastructure (No. EPR2021025). SAE Technical Paper. Retrieved from https://saemobilus.sae.org/content/EPR2021025/
  • Michael, A. P., & Meyers, P. E. (2022). Engineering brief no. 105, vertiport design. Memorandum, Airport Engineering Division, AAS-100, Federal Aviation Administration. Retrieved from https://www.faa.gov/sites/faa.gov/files/eb-105-vertiports.pdf
  • Mudumba, S. V., Chao, H., Maheshwari, A., DeLaurentis, D. A., & Crossley, W. A. (2021). Modeling CO2 emissions from trips using urban air mobility and emerging automobile technologies. Transportation Research Record, 2675(9), 1224–1237. https://doi.org/10.1177/03611981211006439
  • Nikulin, A. (2018). The system of collaborative decision making as an effective tool for the organization of the airport operation in peak loads. Civil Aviation High Technologies. https://doi.org/10.26467/2079-0619-2018-21-5-43-55
  • Panchal, I., Armanini, S., & Metz, I. (2023). Validation of collision detection and avoidance methods for urban air mobility through simulation. ArXiv, abs/2311.18047. https://doi.org/10.48550/arXiv.2311.18047
  • Park, H., Sison, F., Mendez, B., Marchetti, M., & Anaya, G. (2020). Conceptual design of vertiport and UAM corridor. San Jose State University. Retrieved from https://vsgc.odu.edu/acrpdesigncompetition/wp-content/uploads/sites/3/2021/06/2021-ACRP-Design-Competition_1st_Operation.pdf
  • Peksa, M., Dandl, F., & Bogenberger, K. (2023). Hierarchical vertiport network for an urban air mobility system: Munich metropolitan area case study. 2023 IEEE/AIAA 42nd Digital Avionics Systems Conference (DASC), 1–6. https://doi.org/10.1109/DASC58513.2023.10311154
  • Peng, X., Bulusu, V., & Sengupta, R. (2022). Hierarchical vertiport network design for on-demand multi-modal urban air mobility. In 2022 IEEE/AIAA 41st Digital Avionics Systems Conference (DASC) 1–8. IEEE. https://doi.org/10.1109/DASC55683.2022.9925782
  • Pothana, P., Joy, J., Snyder, P., & Vidhyadharan, S. (2023). UAS air-risk assessment in and around airports. In 2023 Integrated Communication, Navigation and Surveillance Conference (ICNS). 1–11. https://doi.org/10.1109/ICNS58246.2023.10124319
  • Pradeep, P. (2019). Arrival management for eVTOL aircraft in on-demand urban air mobility. Aerospace Engineering. Retrieved from https://dr.lib.iastate.edu/handle/20.500.12876/31259
  • Pradeep, P., & Wei, P. (2018). Energy efficient arrival with RTA constraint for urban eVTOL operations. In 2018 AIAA Aerospace Sciences Meeting.
  • Preis, L. (2021). Quick sizing, throughput estimating and layout planning for VTOL aerodromes: A methodology for vertiport design. In AIAA Aviation 2021 Forum (p. 2372). https://doi.org/10.2514/6.2021-2372
  • Preis, L. (2023). Estimating vertiport passenger throughput capacity for prominent eVTOL designs. CEAS Aeronautical Journal, 1–16.
  • Preis, L., & Hornung, M. (2022). Vertiport operations modeling, agent-based simulation and parameter value specification. Electronics, 11(7), 1071. https://doi.org/10.3390/electronics11071071
  • Preis, L., & Vazquez, M. H. (2022). Vertiport throughput capacity under constraints caused by vehicle design, regulations and operations. In Delft International Conference on Urban Air-Mobility (DICUAM). Retrieved from http://cdn.aanmelderusercontent.nl/i/doc/8fa60b7fcfa71ea900ce2bea2037a151
  • Qu, W., Xu, C., Tan, X., Tang, A., He, H., & Liao, X. (2023). Preliminary concept of urban air mobility traffic rules. Drones, 7(1), 54. https://doi.org/10.3390/drones7010054
  • Raigoza, K., Chadwick, A., & Kishore, C. (2022). Electric vertical take-off and landing (eVTOL) vehicle reliability and safety analysis. In ASME International Mechanical Engineering Congress and Exposition. 86717, V009T14A036. American Society of Mechanical Engineers. https://doi.org/10.1115/IMECE2022-97038
  • Rimjha, M., & Trani, A. (2021). Urban air mobility: Factors affecting vertiport capacity. In 2021 Integrated Communications Navigation and Surveillance Conference (ICNS). 1–14. https://doi.org/10.1109/ICNS52807.2021.9441631
  • Rothfeld, R., Fu, M., Balać, M., & Antoniou, C. (2021). Potential urban air mobility travel time savings: An exploratory analysis of Munich, Paris, and San Francisco. Sustainability, 13(4), 2217. https://doi.org/10.3390/su13042217
  • Saaty, T. L., & Vargas, L. G. (2006). Decision making with the analytic network process. Springer Science+Business Media, LLC.
  • Sanches, M. P., Faria, R. A. P., & Cunha, S. R. (2020). Visual flight rules-based collision avoidance system for VTOL UAV. In 2020 5th International Conference on Robotics and Automation Engineering (ICRAE). https://doi.org/10.1109/ICRAE50850.2020.93108
  • Schweiger, K., & Preis, L. (2022). Urban air mobility: Systematic review of scientific publications and regulations for vertiport design and operations. Drones, 6(7), 179. https://doi.org/10.3390/drones6070179
  • Scott, B. I. (2022). Vertiports: Ready for takeoff... and landing. Journal of Air Law and Commerce, 87, 503.
  • Shmelova, T., Sikirda, Y., Yatsko, M., & Kasatkin, M. (2021). Synthesis of the collaborative decision-making models for the remote pilot during flight emergency. In 2021 IEEE 6th International Conference on Actual Problems of Unmanned Aerial Vehicles Development (APUAVD). 66–70. https://doi.org/10.1109/APUAVD53804.2021.9615175
  • Smith, M., Strohmeier, M., Lenders, V., & Martinovic, I. (2020). Understanding realistic attacks on airborne collision avoidance systems. Journal of Transportation Security, 15, 87–118. https://doi.org/10.1007/s12198-021-00238-2
  • Song, K., Yeo, H., & Moon, J. H. (2021). Approach control concepts and optimal vertiport airspace design for urban air mobility (UAM) operation. International Journal of Aeronautical and Space Sciences, 22, 982–994.
  • Sridhar, B., Grabbe, S., & Mukherjee, A. (2008). Modeling and optimization in traffic flow management. Proceedings of the IEEE, 96, 2060–2080. https://doi.org/10.1109/JPROC.2008.2006141
  • Stevens, M. N., Coloe, B., & Atkins, E. M. (2015). Platform-independent geofencing for low altitude UAS operations. In 15th AIAA Aviation Technology, Integration, and Operations Conference, 3329. https://doi.org/10.2514/6.2015-3329
  • Stevens, M., & Atkins, E. (2020). Geofence definition and deconfliction for UAS traffic management. IEEE Transactions on Intelligent Transportation Systems, 22(9), 5880–5889.
  • Taylor, M., Saldanli, A., & Park, A. (2020). Design of a vertiport design tool. In 2020 Integrated Communications Navigation and Surveillance Conference (ICNS). 2A2-1. https://doi.org/10.1109/ICNS50378.2020.9222989
  • Thu, Z. W., Kim, D., Lee, J., Won, W. J., Lee, H. J., Ywet, N. L., Maw, A. A., & Lee, J. W. (2022). Multivehicle point-to-point network problem formulation for UAM operation management used with dynamic scheduling. Applied Sciences, 12(22), 11858. https://doi.org/10.3390/app122211858
  • Tomaszewska, J., Krzysiak, P., Zieja, M., & Woch, M. (2018). Statistical analysis of ground-related incidents at airports. Journal of KONES, 25, 467–472. https://doi.org/10.5604/01.3001.0012.4369
  • Toratani, D., Hirabayashi, H., Senoguchi, A., & Otsuyama, T. (2023). Study on urban air mobility corridor design in the vicinity of airports. In 2023 IEEE/AIAA 42nd Digital Avionics Systems Conference (DASC). 1–7. https://doi.org/10.1109/DASC58513.2023.10311283
  • Tuncal, A., & Uslu, S. (2021). Kentsel hava hareketliliği kavramının gelişiminde iki önemli faktör: ATM ve toplum. Karamanoğlu Mehmetbey Üniversitesi Sosyal ve Ekonomik Araştırmalar Dergisi, 23(41), 564–577.
  • Unverricht, J., Buck, B. K., Petty, B., Chancey, E. T., Politowicz, M. S., & Glaab, L. J. (2024). Vertiport management from simulation to flight: Continued human factors assessment of vertiport operations. In AIAA SCITECH 2024 Forum. 0526. https://doi.org/10.2514/6.2024-0526
  • Vascik, P. D., & Hansman, R. J. (2019). Development of vertiport capacity envelopes and analysis of their sensitivity to topological and operational factors. In AIAA Scitech 2019 Forum. 0526. https://doi.org/10.2514/6.2019-0526
  • Vascik, P. D., & Hansman, R. J. (2020). Allocation of airspace cutouts to enable procedurally separated small aircraft operations in terminal areas. In AIAA AVIATION 2020 FORUM. 2905.
  • Vitale, C. (2023). Eve and Kookiejar set to advance vertiport operations in Dubai. Retrieved from https://www.airport-technology.com/news/eve-and-kookiejar-set-to-advance-vertiport-operations-in-dubai/?cf-view
  • Volocopter. (2022). Newsroom. Retrieved from https://www.volocopter.com/en/newsroom/italys-first-vertiport-deployed-at-fiumicino-airport
  • Wang, K., Jacquillat, A., & Vaze, V. (2022). Vertiport planning for urban aerial mobility: An adaptive discretization approach. Manufacturing & Service Operations Management, 24, 3215–3235. https://doi.org/10.1287/msom.2022.1148
  • Wang, X., Sang, Y., & Zhou, G. (2020). Combining stable inversion and H∞ synthesis for trajectory tracking and disturbance rejection control of civil aircraft auto landing. Applied Sciences, 10(4), 1224.
  • Willey, L., & Salmon, J. (2021). A method for urban air mobility network design using hub location and subgraph isomorphism. Transportation Research Part C: Emerging Technologies, 125, 102997. https://doi.org/10.1016/j.trc.2021.102997
  • Wipf, H. (2020). Safety versus security in aviation. In The Coupling of Safety and Security: Exploring Interrelations in Theory and Practice. 29–41.
  • Wu, Z., & Zhang, Y. (2021). Integrated network design and demand forecast for on-demand urban air mobility. Engineering, 7(4), 473–487. https://doi.org/10.1016/j.eng.2020.11.007
  • Xie, Y., Shortle, J., & Donohue, G. (2004). Airport terminal-approach safety and capacity analysis using an agent-based model. In Proceedings of the 2004 Winter Simulation Conference, 2004. 2, 1349–1357.
  • Yang, X., & Wei, P. (2021). Autonomous free flight operations in urban air mobility with computational guidance and collision avoidance. IEEE Transactions on Intelligent Transportation Systems, 22, 5962–5975. https://doi.org/10.1109/TITS.2020.3048360
  • Yang, X., Deng, L., Liu, J., Wei, P., & Li, H. (2020). Multi-agent autonomous operations in urban air mobility with communication constraints. In AIAA Scitech 2020 Forum (p. 1839). https://doi.org/10.2514/6.2020-1839
  • Ye, S., Wan, Z., Zeng, L., Li, C., & Zhang, Y. (2020). A vision-based navigation method for eVTOL final approach in urban air mobility (UAM). In 2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI). 645–649. https://doi.org/10.1109/CVCI51460.2020.9338487
  • Yedavalli, P. (2021). Designing and simulating urban air mobility vertiport networks under land use constraints (No. TRBAM-21-00693). Retrieved from https://trid.trb.org/view/1759451
  • Yedavalli, P., & Cohen, A. (2022). Planning land use constrained networks of urban air mobility infrastructure in the San Francisco Bay Area. Transportation Research Record, 2676, 106–116. https://doi.org/10.1177/03611981221076839
  • Yılmaz, A., & Ulvi, H. (2022). Kentsel hava sahasında insansız hava aracı sistemleri trafik yönetimi için verilmesi gereken hizmetler ve kullanılabilecek bazı teknolojiler. Türkiye İnsansız Hava Araçları Dergisi, 4(1), 8–18.
  • Zanin, M., & Lillo, F. (2013). Modelling the air transport with complex networks: A short review. The European Physical Journal Special Topics, 215, 5–21. https://doi.org/10.1140/epjst/e2013-01711-9
  • Zelinski, S. (2020). Operational analysis of vertiport surface topology. In 2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC). 1–10. https://doi.org/10.1109/DASC50938.2020.9256794
  • Zhang, H., Fei, Y., Li, J., Li, B., & Liu, H. (2022). Method of vertiport capacity assessment based on queuing theory of unmanned aerial vehicles. Sustainability, 15(1), 709.
  • Zhang, X. (2019). Operation and cohesion strategy of hub airport ground based on the background of multi-terminal areas. In IOP Conference Series: Earth and Environmental Science. 330 (2), 022128. IOP Publishing. https://doi.org/10.1088/1755-1315/330/2/022128
  • Zhu, G., & Wei, P. (2016). Low-altitude UAS traffic coordination with dynamic geofencing. In 16th AIAA Aviation Technology, Integration, and Operations Conference.

Havalimanlarına Vertiportların Entegrasyonundaki Operasyonel Zorluklar ve Potansiyel Çözümlerin Önceliklendirilmesi

Year 2024, Volume: 6 Issue: 2, 42 - 55, 31.12.2024
https://doi.org/10.51534/tiha.1506936

Abstract

Vertiportların eVTOL/UAV uçuşları için havalimanlarına entegrasyonu fırsatlarla beraber operasyonel zorlukları da beraberinde getirmektedir. Bu çalışmanın amacı, bu zorlukların üstesinden gelmek için çözümler önermek ve bu çözümleri önceliklendirmektir. Kapsamlı bir literatür taraması sonucunda havalimanı civarında vertiport ağları, coğrafi sınır belirleme teknolojisi, ayrılmış hava sahası koridorları, ileri çarpışma önleme sistemleri ve dinamik hava sahası yönetimi gibi potansiyel çözümler belirlenmiştir. Bu çözümler emniyet, maliyet, verimlilik, uygulanabilirlik ve sürdürülebilirlik kriterlerine dayalı olarak Analitik Hiyerarşi Süreci (AHP) kullanılarak önceliklendirilmiştir. Dinamik hava sahası yönetimi (=0.396) en yüksek önceliğe sahipken, bunu sırasıyla havalimanı civarına konumlandırılan vertiport ağları (=0.385), ayrılmış hava sahası koridorları (=0.273), coğrafi sınır belirleme teknolojisi (=0.205) ve ileri çarpışma önleme sistemleri (=0.137) takip etmiştir. Çalışma uçuş emniyeti ve verimliliği sağlamak için entegre ATM/UTM sistemleri aracılığıyla dinamik veri paylaşımı ve gerçek zamanlı planlamanın, yapay zeka teknolojileriyle desteklenmesinin önemini vurgulamaktadır. Ayrıca artan hava trafiğini yönetmek ve eVTOL/UAV'ların geleneksel hava araçlarıyla emniyetli bir şekilde bir arada bulunmasını sağlamak için havalimanı civarına konumlandırılan vertiport ağlarının ve ayrılmış hava sahası koridorlarının geliştirilmesi gereklidir. Coğrafi sınır belirleme teknolojisi ve ileri çarpışma önleme sistemleri de operasyonel bütünlüğü sürdürmek için önemlidir. Gelecek çalışmaların ATM/UTM entegrasyonuna ve bu entegrasyonda yapay zekanın uygulanmasına odaklanması önerilmektedir. UAM paydaşları arasındaki sürekli iş birliği, etkili entegrasyon stratejileri geliştirme sürecine fayda sağlayacaktır.

References

  • Abastante, F., Corrente, S., Greco, S., Ishizaka, A., & Lami, I. (2019). A new parsimonious AHP methodology: Assigning priorities to many objects by comparing pairwise few reference objects. Expert Systems with Applications, 127, 109–120. https://doi.org/10.1016/j.eswa.2019.02.036
  • Abeyratne, D. R., & Abeyratne, R. (2014). The airport business. In Law and Regulation of Aerodromes. 145–167).
  • Ackerman, E., Cass, S., Dumiak, M., & Gallucci, M. (2021). Transportation: How safe are eVTOLs? Extremely safe—say manufacturers: News. IEEE Spectrum, 58(11), 6–13.
  • Afrin, T., & Yodo, N. (2020). A survey of road traffic congestion measures towards a sustainable and resilient transportation system. Sustainability, 12(11), 4660. https://doi.org/10.3390/su12114660
  • Ahn, B., & Hwang, H. (2022). Design criteria and accommodating capacity analysis of vertiports for urban air mobility and its application at Gimpo Airport in Korea. Applied Sciences, 12(12), 6077. https://doi.org/10.3390/app12126077
  • Ahrenhold, N., Pohling, O., & Schier-Morgenthal, S. (2021). Impact of air taxis on air traffic in the vicinity of airports. Infrastructures, 6(10), 140. https://doi.org/10.3390/infrastructures6100140
  • Ali, B. S. (2019). Traffic management for drones flying in the city. International Journal of Critical Infrastructure Protection, 26, 100310.
  • Almeida, C., Li, W., Meinerz, G., & Li, L. (2016). Satisficing game approach to collaborative decision making including airport management. IEEE Transactions on Intelligent Transportation Systems, 17, 2262–2271. https://doi.org/10.1109/TITS.2016.2516444
  • Al-Rubaye, S., Tsourdos, A., & Namuduri, K. (2023). Advanced air mobility operation and infrastructure for sustainable connected eVTOL vehicle. Drones, 7(5), 319. https://doi.org/10.3390/drones7050319
  • Alturbeh, H., & Whidborne, J. (2020). Visual flight rules-based collision avoidance systems for UAV flying in civil aerospace. Robotics, 9(1), 9. https://doi.org/10.3390/robotics9010009
  • Asslouj, A., Atkins, E., & Rastgoftar, H. (2023). Can a Laplace PDE define air corridors through low-altitude airspace? 2023 International Conference on Unmanned Aircraft Systems (ICUAS), 1–8. https://doi.org/10.1109/ICUAS57906.2023.10180409
  • Auerbach, S., & Koch, B. (2007). Cooperative approaches to managing air traffic efficiently—the airline perspective. Journal of Air Transport Management, 13, 37–44. https://doi.org/10.1016/j.jairtraman.2006.10.005
  • Australia CASA. (2023). Advisory circular AC 139.V-01v1.0: Guidance for vertiport design, D23/134615. Retrieved from https://www.casa.gov.au/sites/default/files/2023-07/advisory-circular-139.v-01-guidance-vertiport-design.pdf
  • Brunelli, M., Ditta, C. C., & Postorino, M. N. (2023). New infrastructures for urban air mobility systems: A systematic review on vertiport location and capacity. Journal of Air Transport Management, 112, 102460. https://doi.org/10.1016/j.jairtraman.2023.102460
  • Cafieri, S., & D’Ambrosio, C. (2017). Feasibility pump for aircraft deconfliction with speed regulation. Journal of Global Optimization, 71, 501–515. https://doi.org/10.1007/s10898-017-0560-7
  • Caulfield, B., Bailey, D., & Mullarkey, S. (2013). Using data envelopment analysis as a public transport project appraisal tool. Transport Policy, 29, 74–85. https://doi.org/10.1016/j.tranpol.2013.04.006
  • Chang, Y., Shao, P., & Chen, H. (2015). Performance evaluation of airport safety management systems in Taiwan. Safety Science, 75, 72–86. https://doi.org/10.1016/j.ssci.2014.12.006
  • Cheng, P., & Geng, R. (2010). Dynamic airspace management—Models and algorithms. Air Traffic Control.
  • Cheng, V. H. (2004). Surface operation automation research for airport tower and flight deck automation. In Proceedings. The 7th International IEEE Conference on Intelligent Transportation Systems (IEEE Cat. No. 04TH8749, 607–612. https://doi.org/10.1109/ITSC.2004.1398970
  • Cizrelioğulları, M. N., Barut, P., & Imanov, T. (2022). Future air transportation ramification: Urban air mobility (UAM) concept. Prizren Social Science Journal, 6(2), 24–31.
  • Clarke, M., Smart, J., Botero, E. M., Maier, W., & Alonso, J. J. (2019). Strategies for posing a well-defined problem for urban air mobility vehicles. In AIAA Scitech 2019 Forum, 0818. https://doi.org/10.2514/6.2019-0818
  • Coppola, P., De Fabiis, F., & Silvestri, F. (2024). Urban air mobility (UAM): Airport shuttles or city-taxis? Transport Policy, 150, 24–34.
  • Daskilewicz, M., German, B., Warren, M., Garrow, L., Boddupalli, S., & Douthat, T. (2018). Progress in vertiport placement and estimating aircraft range requirements for eVTOL daily commuting. 2018 Aviation Technology, Integration, and Operations Conference. https://doi.org/10.2514/6.2018-2884
  • Dmitruk, A., & Koshevoy, G. (1991). On the existence of a technical efficiency criterion. Journal of Economic Theory, 55, 121–144. https://doi.org/10.1016/0022-0531(91)90061-7
  • Dulchinos, V., Wood, R. D., Farrahi, A., Mogford, R., Shyr, M., & Ghatas, R. (2022). Design and analysis of corridors for UAM operations. In 2022 IEEE/AIAA 41st Digital Avionics Systems Conference (DASC), pp. 1–10. https://doi.org/10.1109/DASC55683.2022.9925820
  • Eissfeldt, H. (2020). Sustainable urban air mobility supported with participatory noise sensing. Sustainability, 12(8), 3320. https://doi.org/10.3390/su12083320
  • Ellis, K. K., Prinzel, L. J., Davies, M. D., Homola, J., Glaab, L., Krois, P., et al. (2023). An in-time aviation safety management system (IASMS) concept of operations for vertiport design and operations. In AIAA AVIATION 2023 Forum, 3965. https://doi.org/10.2514/6.2023-3965
  • European Union Safety Agency. (2022). Prototype technical specifications for the design of VFR vertiports for operation with manned VTOL-capable aircraft certified in the enhanced category. Retrieved from https://www.easa.europa.eu/document-library/general-publications/prototype-technical-designspecifications-vertiports
  • Forsyth, P. (2007). The impacts of emerging aviation trends on airport infrastructure. Journal of Air Transport Management, 13, 45–52. https://doi.org/10.1016/j.jairtraman.2006.10.004
  • Future Travel Experience. (2022). Mobility. Retrieved from https://www.futuretravelexperience.com/2022/08/vports-to-build-and-operate-vertiport-hub-at-sao-paulo-international-airport/
  • Gelhausen, M., Berster, P., & Wilken, D. (2013). Do airport capacity constraints have a serious impact on the future development of air traffic? Journal of Air Transport Management, 28, 3–13. https://doi.org/10.1016/j.jairtraman.2012.12.004
  • Gerdes, I., Temme, A., & Schultz, M. (2018). Dynamic airspace sectorisation for flight-centric operations. Transportation Research Part C: Emerging Technologies, 95, 460–480. https://doi.org/10.1016/j.trc.2018.07.032
  • Gibson, W., & Morrell, P. (2004). Theory and practice in aircraft financial evaluation. Journal of Air Transport Management, 10, 427–433. https://doi.org/10.1016/j.jairtraman.2004.07.002
  • Gillis, D., Petri, M., Pratelli, A., Semanjski, I., & Semanjski, S. (2021). Urban air mobility: A state of art analysis. In Computational Science and Its Applications–ICCSA 2021: 21st International Conference, Cagliari, Italy, September 13–16, 2021, Proceedings, Part II, 411–425. Springer International Publishing.
  • Groupe ADP. (n.d.). Innovation. Retrieved from https://presse.groupeadp.fr/first-vertiport-pontoise/?lang=en
  • Guida, R., Bertolino, A. C., De Martin, A., Raviola, A., Jacazio, G., & Sorli, M. (2023). On the effects of strain wave gear kinematic errors on the behavior of an electro-mechanical flight control actuator for eVTOL aircrafts. Materials Research Proceedings, 26, 207–212. https://doi.org/10.21741/9781644902431-34
  • Hosseinzadeh, M. (2021). UAV geofencing: Navigation of UVAs in constrained environments. In Unmanned Aerial Systems, 567–594. Academic Press. https://doi.org/10.1016/B978-0-12-820276-0.00029-7
  • Jain, S., Jain, S. S., & Jain, G. V. (2018). An operational analysis and congestion estimation of urban bus route based on ITS. Civil Engineering Research Journal, 3(2), 555610. https://doi.org/10.19080/CERJ.2018.03.555610
  • Janic, M. (2000). An assessment of risk and safety in civil aviation. Journal of Air Transport Management, 6, 43–50. https://doi.org/10.1016/S0969-6997(99)00021-6
  • Janic, M. (2016). Analyzing, modeling, and assessing the performances of land use by airports. International Journal of Sustainable Transportation, 10, 683–702. https://doi.org/10.1080/15568318.2015.1104566
  • Jin, Z., Ng, K. K., Zhang, C., Wu, L., & Li, A. (2024). Integrated optimization of strategic planning and service operations for urban air mobility systems. Transportation Research Part A: Policy and Practice, 183, 104059.
  • Karacapilidis, N. (2000). Integrating new information and communication technologies in a group decision support system. International Transactions in Operational Research, 7, 487–507. https://doi.org/10.1016/S0969-6016(00)00028-9
  • Kim, W., Park, J., Yu, J. W., & Ko, J. (2023). A study on the criterions affecting UAM vertiport location based on user-oriented perspectives. Journal of Korean Society of Transportation, 41(2), 212–225.
  • Kleinbekman, I. C., Mitici, M. A., & Wei, P. (2018). eVTOL arrival sequencing and scheduling for on-demand urban air mobility. In 2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC), 1–7. IEEE. https://doi.org/10.1109/DASC.2018.8569645
  • Kong, Y., Zhang, X., & Mahadevan, S. (2022). Bayesian deep learning for aircraft hard landing safety assessment. IEEE Transactions on Intelligent Transportation Systems, 23(10), 17062–17076.
  • Koscak, P., Jencova, E., Galanda, J., & Liptakova, D. (2019). Airports SMS penetration with occupational health protection. 2019 New Trends in Aviation Development (NTAD), 96–101. https://doi.org/10.1109/NTAD.2019.8875592
  • Lanshou, H., & Fuqing, D. (2010). Dynamic air route management based on flight demand. In 2010 Second International Conference on Computer and Network Technology (pp. 426–429). IEEE. https://doi.org/10.1109/ICCNT.2010.79
  • Lascara, B., Lacher, A., DeGarmo, M., Maroney, D., Niles, R., & Vempati, L. (2019). Urban air mobility airspace integration concepts: Operational concepts and exploration approaches. MITRE CORP MCLEAN VA MCLEAN. Retrieved from https://apps.dtic.mil/sti/pdfs/AD1107997.pdf
  • Lin, C., & Wu, Y. (2011). Collision avoidance solution for low-altitude flights. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 225, 779–790. https://doi.org/10.1177/0954410011399211
  • Lombaerts, T., Kaneshige, J., Schuet, S., Aponso, B. L., Shish, K. H., & Hardy, G. (2020). Dynamic inversion-based full envelope flight control for an eVTOL vehicle using a unified framework. In AIAA Scitech 2020 Forum (p. 1619). https://doi.org/10.2514/6.2020-1619
  • Markatos, D. N., & Pantelakis, S. G. (2022). Assessment of the impact of material selection on aviation sustainability, from a circular economy perspective. Aerospace, 9(2), 52.
  • McQueen, B. (2021). Unsettled issues concerning urban air mobility infrastructure (No. EPR2021025). SAE Technical Paper. Retrieved from https://saemobilus.sae.org/content/EPR2021025/
  • Michael, A. P., & Meyers, P. E. (2022). Engineering brief no. 105, vertiport design. Memorandum, Airport Engineering Division, AAS-100, Federal Aviation Administration. Retrieved from https://www.faa.gov/sites/faa.gov/files/eb-105-vertiports.pdf
  • Mudumba, S. V., Chao, H., Maheshwari, A., DeLaurentis, D. A., & Crossley, W. A. (2021). Modeling CO2 emissions from trips using urban air mobility and emerging automobile technologies. Transportation Research Record, 2675(9), 1224–1237. https://doi.org/10.1177/03611981211006439
  • Nikulin, A. (2018). The system of collaborative decision making as an effective tool for the organization of the airport operation in peak loads. Civil Aviation High Technologies. https://doi.org/10.26467/2079-0619-2018-21-5-43-55
  • Panchal, I., Armanini, S., & Metz, I. (2023). Validation of collision detection and avoidance methods for urban air mobility through simulation. ArXiv, abs/2311.18047. https://doi.org/10.48550/arXiv.2311.18047
  • Park, H., Sison, F., Mendez, B., Marchetti, M., & Anaya, G. (2020). Conceptual design of vertiport and UAM corridor. San Jose State University. Retrieved from https://vsgc.odu.edu/acrpdesigncompetition/wp-content/uploads/sites/3/2021/06/2021-ACRP-Design-Competition_1st_Operation.pdf
  • Peksa, M., Dandl, F., & Bogenberger, K. (2023). Hierarchical vertiport network for an urban air mobility system: Munich metropolitan area case study. 2023 IEEE/AIAA 42nd Digital Avionics Systems Conference (DASC), 1–6. https://doi.org/10.1109/DASC58513.2023.10311154
  • Peng, X., Bulusu, V., & Sengupta, R. (2022). Hierarchical vertiport network design for on-demand multi-modal urban air mobility. In 2022 IEEE/AIAA 41st Digital Avionics Systems Conference (DASC) 1–8. IEEE. https://doi.org/10.1109/DASC55683.2022.9925782
  • Pothana, P., Joy, J., Snyder, P., & Vidhyadharan, S. (2023). UAS air-risk assessment in and around airports. In 2023 Integrated Communication, Navigation and Surveillance Conference (ICNS). 1–11. https://doi.org/10.1109/ICNS58246.2023.10124319
  • Pradeep, P. (2019). Arrival management for eVTOL aircraft in on-demand urban air mobility. Aerospace Engineering. Retrieved from https://dr.lib.iastate.edu/handle/20.500.12876/31259
  • Pradeep, P., & Wei, P. (2018). Energy efficient arrival with RTA constraint for urban eVTOL operations. In 2018 AIAA Aerospace Sciences Meeting.
  • Preis, L. (2021). Quick sizing, throughput estimating and layout planning for VTOL aerodromes: A methodology for vertiport design. In AIAA Aviation 2021 Forum (p. 2372). https://doi.org/10.2514/6.2021-2372
  • Preis, L. (2023). Estimating vertiport passenger throughput capacity for prominent eVTOL designs. CEAS Aeronautical Journal, 1–16.
  • Preis, L., & Hornung, M. (2022). Vertiport operations modeling, agent-based simulation and parameter value specification. Electronics, 11(7), 1071. https://doi.org/10.3390/electronics11071071
  • Preis, L., & Vazquez, M. H. (2022). Vertiport throughput capacity under constraints caused by vehicle design, regulations and operations. In Delft International Conference on Urban Air-Mobility (DICUAM). Retrieved from http://cdn.aanmelderusercontent.nl/i/doc/8fa60b7fcfa71ea900ce2bea2037a151
  • Qu, W., Xu, C., Tan, X., Tang, A., He, H., & Liao, X. (2023). Preliminary concept of urban air mobility traffic rules. Drones, 7(1), 54. https://doi.org/10.3390/drones7010054
  • Raigoza, K., Chadwick, A., & Kishore, C. (2022). Electric vertical take-off and landing (eVTOL) vehicle reliability and safety analysis. In ASME International Mechanical Engineering Congress and Exposition. 86717, V009T14A036. American Society of Mechanical Engineers. https://doi.org/10.1115/IMECE2022-97038
  • Rimjha, M., & Trani, A. (2021). Urban air mobility: Factors affecting vertiport capacity. In 2021 Integrated Communications Navigation and Surveillance Conference (ICNS). 1–14. https://doi.org/10.1109/ICNS52807.2021.9441631
  • Rothfeld, R., Fu, M., Balać, M., & Antoniou, C. (2021). Potential urban air mobility travel time savings: An exploratory analysis of Munich, Paris, and San Francisco. Sustainability, 13(4), 2217. https://doi.org/10.3390/su13042217
  • Saaty, T. L., & Vargas, L. G. (2006). Decision making with the analytic network process. Springer Science+Business Media, LLC.
  • Sanches, M. P., Faria, R. A. P., & Cunha, S. R. (2020). Visual flight rules-based collision avoidance system for VTOL UAV. In 2020 5th International Conference on Robotics and Automation Engineering (ICRAE). https://doi.org/10.1109/ICRAE50850.2020.93108
  • Schweiger, K., & Preis, L. (2022). Urban air mobility: Systematic review of scientific publications and regulations for vertiport design and operations. Drones, 6(7), 179. https://doi.org/10.3390/drones6070179
  • Scott, B. I. (2022). Vertiports: Ready for takeoff... and landing. Journal of Air Law and Commerce, 87, 503.
  • Shmelova, T., Sikirda, Y., Yatsko, M., & Kasatkin, M. (2021). Synthesis of the collaborative decision-making models for the remote pilot during flight emergency. In 2021 IEEE 6th International Conference on Actual Problems of Unmanned Aerial Vehicles Development (APUAVD). 66–70. https://doi.org/10.1109/APUAVD53804.2021.9615175
  • Smith, M., Strohmeier, M., Lenders, V., & Martinovic, I. (2020). Understanding realistic attacks on airborne collision avoidance systems. Journal of Transportation Security, 15, 87–118. https://doi.org/10.1007/s12198-021-00238-2
  • Song, K., Yeo, H., & Moon, J. H. (2021). Approach control concepts and optimal vertiport airspace design for urban air mobility (UAM) operation. International Journal of Aeronautical and Space Sciences, 22, 982–994.
  • Sridhar, B., Grabbe, S., & Mukherjee, A. (2008). Modeling and optimization in traffic flow management. Proceedings of the IEEE, 96, 2060–2080. https://doi.org/10.1109/JPROC.2008.2006141
  • Stevens, M. N., Coloe, B., & Atkins, E. M. (2015). Platform-independent geofencing for low altitude UAS operations. In 15th AIAA Aviation Technology, Integration, and Operations Conference, 3329. https://doi.org/10.2514/6.2015-3329
  • Stevens, M., & Atkins, E. (2020). Geofence definition and deconfliction for UAS traffic management. IEEE Transactions on Intelligent Transportation Systems, 22(9), 5880–5889.
  • Taylor, M., Saldanli, A., & Park, A. (2020). Design of a vertiport design tool. In 2020 Integrated Communications Navigation and Surveillance Conference (ICNS). 2A2-1. https://doi.org/10.1109/ICNS50378.2020.9222989
  • Thu, Z. W., Kim, D., Lee, J., Won, W. J., Lee, H. J., Ywet, N. L., Maw, A. A., & Lee, J. W. (2022). Multivehicle point-to-point network problem formulation for UAM operation management used with dynamic scheduling. Applied Sciences, 12(22), 11858. https://doi.org/10.3390/app122211858
  • Tomaszewska, J., Krzysiak, P., Zieja, M., & Woch, M. (2018). Statistical analysis of ground-related incidents at airports. Journal of KONES, 25, 467–472. https://doi.org/10.5604/01.3001.0012.4369
  • Toratani, D., Hirabayashi, H., Senoguchi, A., & Otsuyama, T. (2023). Study on urban air mobility corridor design in the vicinity of airports. In 2023 IEEE/AIAA 42nd Digital Avionics Systems Conference (DASC). 1–7. https://doi.org/10.1109/DASC58513.2023.10311283
  • Tuncal, A., & Uslu, S. (2021). Kentsel hava hareketliliği kavramının gelişiminde iki önemli faktör: ATM ve toplum. Karamanoğlu Mehmetbey Üniversitesi Sosyal ve Ekonomik Araştırmalar Dergisi, 23(41), 564–577.
  • Unverricht, J., Buck, B. K., Petty, B., Chancey, E. T., Politowicz, M. S., & Glaab, L. J. (2024). Vertiport management from simulation to flight: Continued human factors assessment of vertiport operations. In AIAA SCITECH 2024 Forum. 0526. https://doi.org/10.2514/6.2024-0526
  • Vascik, P. D., & Hansman, R. J. (2019). Development of vertiport capacity envelopes and analysis of their sensitivity to topological and operational factors. In AIAA Scitech 2019 Forum. 0526. https://doi.org/10.2514/6.2019-0526
  • Vascik, P. D., & Hansman, R. J. (2020). Allocation of airspace cutouts to enable procedurally separated small aircraft operations in terminal areas. In AIAA AVIATION 2020 FORUM. 2905.
  • Vitale, C. (2023). Eve and Kookiejar set to advance vertiport operations in Dubai. Retrieved from https://www.airport-technology.com/news/eve-and-kookiejar-set-to-advance-vertiport-operations-in-dubai/?cf-view
  • Volocopter. (2022). Newsroom. Retrieved from https://www.volocopter.com/en/newsroom/italys-first-vertiport-deployed-at-fiumicino-airport
  • Wang, K., Jacquillat, A., & Vaze, V. (2022). Vertiport planning for urban aerial mobility: An adaptive discretization approach. Manufacturing & Service Operations Management, 24, 3215–3235. https://doi.org/10.1287/msom.2022.1148
  • Wang, X., Sang, Y., & Zhou, G. (2020). Combining stable inversion and H∞ synthesis for trajectory tracking and disturbance rejection control of civil aircraft auto landing. Applied Sciences, 10(4), 1224.
  • Willey, L., & Salmon, J. (2021). A method for urban air mobility network design using hub location and subgraph isomorphism. Transportation Research Part C: Emerging Technologies, 125, 102997. https://doi.org/10.1016/j.trc.2021.102997
  • Wipf, H. (2020). Safety versus security in aviation. In The Coupling of Safety and Security: Exploring Interrelations in Theory and Practice. 29–41.
  • Wu, Z., & Zhang, Y. (2021). Integrated network design and demand forecast for on-demand urban air mobility. Engineering, 7(4), 473–487. https://doi.org/10.1016/j.eng.2020.11.007
  • Xie, Y., Shortle, J., & Donohue, G. (2004). Airport terminal-approach safety and capacity analysis using an agent-based model. In Proceedings of the 2004 Winter Simulation Conference, 2004. 2, 1349–1357.
  • Yang, X., & Wei, P. (2021). Autonomous free flight operations in urban air mobility with computational guidance and collision avoidance. IEEE Transactions on Intelligent Transportation Systems, 22, 5962–5975. https://doi.org/10.1109/TITS.2020.3048360
  • Yang, X., Deng, L., Liu, J., Wei, P., & Li, H. (2020). Multi-agent autonomous operations in urban air mobility with communication constraints. In AIAA Scitech 2020 Forum (p. 1839). https://doi.org/10.2514/6.2020-1839
  • Ye, S., Wan, Z., Zeng, L., Li, C., & Zhang, Y. (2020). A vision-based navigation method for eVTOL final approach in urban air mobility (UAM). In 2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI). 645–649. https://doi.org/10.1109/CVCI51460.2020.9338487
  • Yedavalli, P. (2021). Designing and simulating urban air mobility vertiport networks under land use constraints (No. TRBAM-21-00693). Retrieved from https://trid.trb.org/view/1759451
  • Yedavalli, P., & Cohen, A. (2022). Planning land use constrained networks of urban air mobility infrastructure in the San Francisco Bay Area. Transportation Research Record, 2676, 106–116. https://doi.org/10.1177/03611981221076839
  • Yılmaz, A., & Ulvi, H. (2022). Kentsel hava sahasında insansız hava aracı sistemleri trafik yönetimi için verilmesi gereken hizmetler ve kullanılabilecek bazı teknolojiler. Türkiye İnsansız Hava Araçları Dergisi, 4(1), 8–18.
  • Zanin, M., & Lillo, F. (2013). Modelling the air transport with complex networks: A short review. The European Physical Journal Special Topics, 215, 5–21. https://doi.org/10.1140/epjst/e2013-01711-9
  • Zelinski, S. (2020). Operational analysis of vertiport surface topology. In 2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC). 1–10. https://doi.org/10.1109/DASC50938.2020.9256794
  • Zhang, H., Fei, Y., Li, J., Li, B., & Liu, H. (2022). Method of vertiport capacity assessment based on queuing theory of unmanned aerial vehicles. Sustainability, 15(1), 709.
  • Zhang, X. (2019). Operation and cohesion strategy of hub airport ground based on the background of multi-terminal areas. In IOP Conference Series: Earth and Environmental Science. 330 (2), 022128. IOP Publishing. https://doi.org/10.1088/1755-1315/330/2/022128
  • Zhu, G., & Wei, P. (2016). Low-altitude UAS traffic coordination with dynamic geofencing. In 16th AIAA Aviation Technology, Integration, and Operations Conference.
There are 107 citations in total.

Details

Primary Language English
Subjects Regional Studies
Journal Section Research Articles
Authors

Arif Tuncal 0000-0003-4343-6261

Publication Date December 31, 2024
Submission Date June 28, 2024
Acceptance Date November 3, 2024
Published in Issue Year 2024 Volume: 6 Issue: 2

Cite

APA Tuncal, A. (2024). Operational Challenges and Prioritization of Potential Solutions for Integrating Vertiports into Airports. Türkiye İnsansız Hava Araçları Dergisi, 6(2), 42-55. https://doi.org/10.51534/tiha.1506936
AMA Tuncal A. Operational Challenges and Prioritization of Potential Solutions for Integrating Vertiports into Airports. tiha. December 2024;6(2):42-55. doi:10.51534/tiha.1506936
Chicago Tuncal, Arif. “Operational Challenges and Prioritization of Potential Solutions for Integrating Vertiports into Airports”. Türkiye İnsansız Hava Araçları Dergisi 6, no. 2 (December 2024): 42-55. https://doi.org/10.51534/tiha.1506936.
EndNote Tuncal A (December 1, 2024) Operational Challenges and Prioritization of Potential Solutions for Integrating Vertiports into Airports. Türkiye İnsansız Hava Araçları Dergisi 6 2 42–55.
IEEE A. Tuncal, “Operational Challenges and Prioritization of Potential Solutions for Integrating Vertiports into Airports”, tiha, vol. 6, no. 2, pp. 42–55, 2024, doi: 10.51534/tiha.1506936.
ISNAD Tuncal, Arif. “Operational Challenges and Prioritization of Potential Solutions for Integrating Vertiports into Airports”. Türkiye İnsansız Hava Araçları Dergisi 6/2 (December 2024), 42-55. https://doi.org/10.51534/tiha.1506936.
JAMA Tuncal A. Operational Challenges and Prioritization of Potential Solutions for Integrating Vertiports into Airports. tiha. 2024;6:42–55.
MLA Tuncal, Arif. “Operational Challenges and Prioritization of Potential Solutions for Integrating Vertiports into Airports”. Türkiye İnsansız Hava Araçları Dergisi, vol. 6, no. 2, 2024, pp. 42-55, doi:10.51534/tiha.1506936.
Vancouver Tuncal A. Operational Challenges and Prioritization of Potential Solutions for Integrating Vertiports into Airports. tiha. 2024;6(2):42-55.